tensor.py 29.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
L
li099 已提交
27 28 29
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
30
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Z
zhoukunsheng 已提交
31
    'range', 'linspace', 'zeros_like', 'diag'
Y
Yu Yang 已提交
32 33 34
]


X
xuwei06 已提交
35
def create_tensor(dtype, name=None, persistable=False):
36
    """
Q
update  
qiaolongfei 已提交
37
    Create an variable, which will hold a LoDTensor with data type dtype.
38 39

    Args:
Q
update  
qiaolongfei 已提交
40
        dtype(string): 'float32'|'int32'|..., the data type of the
41
            created tensor.
Q
update  
qiaolongfei 已提交
42
        name(string): The name of the created tensor, if not set,
43
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
44
        persistable(bool): Set the persistable flag of the create tensor.
45 46 47 48 49 50 51 52 53

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
54
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
55 56
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
57 58


59 60
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
61
                     name=None,
62 63 64 65
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
66 67 68 69 70 71
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

72 73 74 75 76 77 78 79 80 81 82
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
83 84 85
        the created parameter.

    Examples:
86 87 88 89
        .. code-block:: python

            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
90
    """
Q
Qiao Longfei 已提交
91
    helper = LayerHelper("create_parameter", **locals())
92
    if attr is None:
X
xuwei06 已提交
93
        attr = ParamAttr(name=name)
94 95 96 97
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


98 99 100 101 102 103 104
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
105
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
106

107 108
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
109
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
110 111
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
112
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
113
                           Default: False
M
minqiyang 已提交
114
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
115
                         Default: False
M
minqiyang 已提交
116 117
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
118
                        Default: None
119 120 121

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
122 123 124 125

    Examples:
        .. code-block:: python

126 127 128
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
129
    """
Q
Qiao Longfei 已提交
130 131
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
132 133 134 135 136
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
137 138 139
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
140

Q
Qiao Longfei 已提交
141 142 143
    return var


144
def cast(x, dtype):
Y
Yu Yang 已提交
145
    """
M
minqiyang 已提交
146
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
147 148
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
149 150 151 152 153 154 155 156 157 158

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
159

Y
Yibing Liu 已提交
160 161
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
162 163
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
164
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172 173
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


174
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
175
    """
176 177 178
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
179
    and returns that as the output.
180 181 182 183

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
184 185
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
186 187 188 189 190 191

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
192

193 194 195 196 197
            a = fluid.layers.data(name='a', shape=[2, 13], dtype='float32')
            b = fluid.layers.data(name='b', shape=[2, 3], dtype='float32')
            c = fluid.layers.data(name='c', shape=[2, 2], dtype='float32')
            d = fluid.layers.data(name='d', shape=[2, 5], dtype='float32')
            out = fluid.layers.concat(input=[a, b, c, d], axis=2)
Y
Yu Yang 已提交
198 199
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
200
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
209 210 211 212 213 214
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
215

L
li099 已提交
216
    .. code-block:: text
M
minqiyang 已提交
217

L
li099 已提交
218 219 220 221 222 223 224 225
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
226

L
li099 已提交
227
        axis = 1
M
minqiyang 已提交
228

L
li099 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
251
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
252 253 254
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
255
        type='tensor_array_to_tensor',
L
li099 已提交
256 257 258 259 260 261 262
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


263
def sums(input, out=None):
F
fengjiayi 已提交
264 265
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
266 267 268 269 270
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
271
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
272
                             Default: None
K
kavyasrinet 已提交
273 274

    Returns:
F
fengjiayi 已提交
275
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
276 277

    Examples:
F
fengjiayi 已提交
278
        .. code-block:: python
K
kavyasrinet 已提交
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
297 298 299
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
300 301
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
302 303 304 305 306
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
307 308 309
    return out


F
fengjiayi 已提交
310
def assign(input, output=None):
311 312 313 314 315 316
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
317
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
318
        output(Variable|None): The destination variable
319 320 321 322 323 324

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
325

326 327 328 329
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
330
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
331
    if output is None:
X
Xin Pan 已提交
332
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
333 334
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
335
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
336 337
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
338
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
339
            value_name = "fp32_values"
340
            values = [float(v) for v in input.flat]
341
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
342
            value_name = "int32_values"
343
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
344 345
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
346 347 348
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
349 350 351 352 353 354 355

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
356
                value_name: values
X
xuwei06 已提交
357 358 359 360
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
361 362 363
    return output


Q
QI JUN 已提交
364
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
365
    """
366 367
    **fill_constant**

368 369
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
370

371
    The attribute `stop_gradient` of the created tensor is set to True.
372 373

    Args:
374
        shape(tuple|list|None): Shape of the output tensor.
375
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
376 377
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
378
        force_cpu(True|False): data should be on CPU if set true.
379 380

    Returns:
381
        Variable: The tensor variable storing the output.
382 383 384 385 386

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
387
    """
388

Y
Yu Yang 已提交
389 390
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
391
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
392 393 394 395
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
396 397 398 399
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
400
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
401 402
        },
        stop_gradient=True)
Y
Yu Yang 已提交
403 404 405 406
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
407
@templatedoc()
Y
Yu Yang 已提交
408 409 410 411 412
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
413
                                  output_dim_idx=0):
414
    """
Y
yuyang18 已提交
415
    ${comment}
416 417 418 419

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
420
        input(${input_type}): ${input_comment}.
421

Y
yuyang18 已提交
422
        shape(${shape_type}): ${shape_comment}.
423

Y
yuyang18 已提交
424 425 426
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
427

Y
yuyang18 已提交
428 429 430 431 432
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
433
        ${out_comment}.
H
haowang101779990 已提交
434 435 436 437 438 439 440 441

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

442
    """
Y
Yu Yang 已提交
443
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
444
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
460 461 462 463
def argmin(x, axis=0):
    """
    **argmin**

464
    This function computes the indices of the min elements
S
sneaxiy 已提交
465 466 467 468 469 470
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
471

S
sneaxiy 已提交
472 473
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
474

S
sneaxiy 已提交
475 476
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
477

478 479 480
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmin(x, axis=0)
            out = fluid.layers.argmin(x, axis=-1)
S
sneaxiy 已提交
481 482
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
483
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
484 485 486 487 488 489 490 491 492 493 494 495
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

496
    This function computes the indices of the max elements
S
sneaxiy 已提交
497 498 499 500 501 502
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
503

S
sneaxiy 已提交
504 505
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
506

S
sneaxiy 已提交
507 508
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
509

510 511 512
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmax(x, axis=0)
            out = fluid.layers.argmax(x, axis=-1)
S
sneaxiy 已提交
513 514
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
515
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
516 517 518 519 520 521 522 523
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


524
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
525
    """
M
minqiyang 已提交
526 527
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
528 529 530
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
531

Y
Yibing Liu 已提交
532 533 534 535 536 537 538 539 540 541 542 543
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
544
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
545 546 547 548
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
549 550
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
551
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
552
        name(str|None): (optional) A name for this layer. If set None, the
553
                   layer will be named automatically.
Y
Yibing Liu 已提交
554 555 556 557 558 559 560

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

561 562
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out, indices = fluid.layers.argsort(input=x, axis=0)
Y
Yibing Liu 已提交
563 564
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
565 566 567 568
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
569 570 571 572
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
573 574
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
575 576 577
    return out, ids


Y
Yang Yu 已提交
578
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
579
    """
580 581 582 583 584 585 586 587
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
588
        shape(tuple|list): Shape of output tensor
589
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
590 591 592 593 594 595 596 597

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
598
    """
C
chengduozh 已提交
599 600 601 602
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
603 604 605
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
606
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
607
    """
608 609 610 611 612 613 614 615
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
616 617 618
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
619 620

    Returns:
W
wanghaoshuang 已提交
621
        Variable: The tensor variable storing the output.
622 623 624 625 626

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
627 628
    """
    return fill_constant(value=0.0, **locals())
629 630


F
fengjiayi 已提交
631 632 633 634 635 636 637 638
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
639 640 641
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
656
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
657 658
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
659
        inputs={'X': x},
F
fengjiayi 已提交
660 661 662 663 664
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


665 666 667 668 669 670 671
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
672 673 674
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
690 691
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
692
        file_path(str): The file path where variables will be saved.
693
        overwrite(bool): Whether or not cover the given file when it has already
694 695
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
735 736 737 738 739 740 741 742 743 744 745


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
746 747 748 749 750 751 752 753
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

754 755
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
757 758 759 760 761 762 763 764 765 766 767 768 769
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
770 771 772 773 774 775 776 777
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

778 779
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
780
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
797
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
798 799
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
847 848


Z
zhoukunsheng 已提交
849 850 851 852 853 854 855 856
def linspace(start, stop, num, dtype):
    """
    Return fixed number of evenly spaced values within a given interval.

    First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.

    Args:
        start(float|Variable): First entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
857
        stop(float|Variable): Last entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
858 859 860 861 862 863
        num(int|Variable): Number of entry in the sequence. It is an int scalar, or a tensor of shape [1] with type int32.
        dtype(string): 'float32'|'float64', the data type of the output tensor.

    Returns:
        Variable: The tensor variable storing a 1-D tensor. 

Z
zhoukunsheng 已提交
864
    Examples:
Z
zhoukunsheng 已提交
865 866
        .. code-block:: python

Z
zhoukunsheng 已提交
867 868
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
889 890


Z
zhoukunsheng 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
def zeros_like(x, out=None):
    """
    **zeros_like**

    This function creates a zeros tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
        Variable: The tensor variable storing the output.

    Examples:
        .. code-block:: python

Z
zhoukunsheng 已提交
908 909 910
          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
911 912 913 914 915 916 917 918 919
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955


def diag(diagonal):
    """
    **diag**

    This function creates a square matrix which has diagonal values specified by `diagonal`.

    Args:
        diagonal(Variable|numpy.ndarray): The input tensor specifying diagonal values, should be of rank 1.

    Returns:
        Variable: The tensor variable storing the square matrix.

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
          data = fluid.layers.diag(np.arange(3, 6)) 

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out