tensor.py 63.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17

import numpy
18
import six
19
import warnings
20
from six.moves import reduce
21

Y
Yu Yang 已提交
22
from ..layer_helper import LayerHelper
23
from ..param_attr import ParamAttr
24
from ..initializer import Initializer
25
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
26
from ..framework import Variable
27
from ..initializer import Constant
28
from ..core import VarDesc
29
from .. import core
30
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
31
from . import utils
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from paddle.utils import deprecated
34

35
from .utils import check_shape
Y
Yu Yang 已提交
36 37

__all__ = [
L
li099 已提交
38 39 40
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
41
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
42
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
43 44 45
]


X
xuwei06 已提交
46
def create_tensor(dtype, name=None, persistable=False):
47
    """
W
wangchaochaohu 已提交
48
    Create a variable, which will hold a Tensor with data type dtype.
49 50

    Args:
W
wangchaochaohu 已提交
51 52 53 54
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
55
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
56
            default value is False.
57 58

    Returns:
W
wangchaochaohu 已提交
59
        Variable: The tensor to be created according to dtype.
60 61 62 63

    Examples:
        .. code-block:: python

64
          import paddle.fluid as fluid
65 66
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
67 68 69 70
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
71
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
72 73
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
74 75


76 77
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
78
                     name=None,
79 80 81 82
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
83
	:api_attr: Static Graph
S
swtkiwi 已提交
84

85
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
86 87 88 89 90
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

91 92 93 94 95 96 97
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
98 99 100
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
101
        default_initializer (Initializer, optional): Initializer for the parameter
102 103

    Returns:
104
        The created parameter.
Y
yuyang18 已提交
105 106

    Examples:
107 108
        .. code-block:: python

109 110 111
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
112
    """
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
132
    helper = LayerHelper("create_parameter", **locals())
133
    if attr is None:
X
xuwei06 已提交
134
        attr = ParamAttr(name=name)
135 136
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
137 138 139
                                   default_initializer)


140 141 142 143 144 145 146
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
147
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
148

149 150 151
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
152
                      variable will be filled with it.
153 154
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
155
                           Default: False
156
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
157
                         Default: False
158 159
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
160 161

    Returns:
162
        Variable: The created Variable
F
fengjiayi 已提交
163 164 165 166

    Examples:
        .. code-block:: python

167 168 169
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
170
                                           persistable=True, force_cpu=True, name='new_var')
171
    """
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
189 190
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
191 192 193 194 195
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
196 197 198
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
199

Q
Qiao Longfei 已提交
200 201 202
    return var


203
def cast(x, dtype):
Y
Yu Yang 已提交
204
    """
S
swtkiwi 已提交
205

206 207 208
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211
        x(Tensor): An input N-D Tensor with data type bool, float16,
212 213
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle
223

224 225
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
226
    """
227 228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)

232 233
    check_variable_and_dtype(
        x, 'x',
234 235
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
236 237 238 239 240 241
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
242 243
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
244 245 246 247 248 249 250 251 252
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


253
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
254
    """
255
    This OP concatenates the input along the axis.
256 257

    Args:
258 259
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
260 261
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
262
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
263
            as ``axis+R``. Default is 0.
264 265 266
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
267 268

    Returns:
269
        Tensor: A Tensor with the same data type as ``input``.
270 271 272

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
273

274
            import paddle.fluid as fluid
275 276
            import numpy as np

277 278 279 280 281 282
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
283 284 285 286
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
287 288
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
289 290
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
291 292 293 294 295 296 297 298
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
299
    """
300 301

    if in_dygraph_mode():
S
songyouwei 已提交
302 303
        if isinstance(axis, Variable):
            axis = axis.numpy()
304
            axis = axis.item(0)
305
        return core.ops.concat(input, 'axis', axis)
306

307 308 309 310 311 312 313 314 315 316 317
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
318
        input = [input]
319
    check_type(axis, 'axis', (int, Variable), 'concat')
320

321 322 323 324 325
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

326
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
327
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
328 329 330

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
331
                "number of the elements must be 1, but received %s." % len(input)
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
351 352 353
    return out


G
Guo Sheng 已提交
354
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
355
    r"""
G
Guo Sheng 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
406 407

    Args:
G
Guo Sheng 已提交
408 409 410 411 412 413 414
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
415 416

    Returns:
G
Guo Sheng 已提交
417 418 419
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
420 421 422 423

    Examples:
        .. code-block:: python

424
            import paddle.fluid as fluid
425
            import numpy as np
G
Guo Sheng 已提交
426 427 428 429 430 431 432
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
433
    """
434 435 436 437 438 439 440 441 442 443 444
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

445 446 447 448 449
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
450
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
451 452 453
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
454
        type='tensor_array_to_tensor',
L
li099 已提交
455 456 457
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
458 459
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
460 461 462
    return out, out_index


463
def sums(input, out=None):
464
    r"""
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
486 487

    Args:
488 489 490 491
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
492 493

    Returns:
494 495
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
496 497

    Examples:
F
fengjiayi 已提交
498
        .. code-block:: python
K
kavyasrinet 已提交
499

500 501 502 503 504 505 506 507 508
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
509

510 511
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
512
    """
513 514 515 516 517 518 519 520 521
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
522 523
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
524 525
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
526 527 528 529
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
530 531 532 533 534
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
535 536 537
    return out


F
fengjiayi 已提交
538
def assign(input, output=None):
539
    """
S
swtkiwi 已提交
540

541
    The OP copies the :attr:`input` to the :attr:`output`.
542

543 544
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
545
            float16, float32, float64, int32 and int64.
546 547
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
548 549

    Returns:
550
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
551 552 553

    Examples:
        .. code-block:: python
554

555
          import paddle
556
          import numpy as np
557 558 559 560 561 562 563 564
          data = paddle.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.nn.functional.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.nn.functional.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.nn.functional.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
565
    """
Y
Yu Yang 已提交
566
    helper = LayerHelper('assign', **locals())
567
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
568 569
    is_inplace = True if output is not None else False

X
xuwei06 已提交
570
    if isinstance(input, Variable):
571 572 573 574
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
575 576 577
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
578
        helper.append_op(
R
robot 已提交
579
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
580 581
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
582 583 584 585
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
586
            value_name = "fp32_values"
587
            values = [float(v) for v in input.flat]
588
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
589
            value_name = "int32_values"
590
            values = [int(v) for v in input.flat]
591 592 593
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
594
        else:
595 596
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
597
                "the data type of 'input' must be bool, float32, int32 or int64, but "
598
                "received %s." % convert_dtype(dtype))
599 600 601
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
602 603 604
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
605 606 607 608 609 610
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
611
                value_name: values
X
xuwei06 已提交
612 613
            })

614 615 616
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
617 618 619
    return output


620
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
621
    """
S
swtkiwi 已提交
622

W
wangchaochaohu 已提交
623
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
624
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
625

T
tianshuo78520a 已提交
626
    The attribute `stop_gradient` of the created Tensor is set to True.
627 628

    Args:
629 630 631
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
632
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
633
            be float16, float32, float64, int32, int64.
634 635 636 637 638 639
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
640 641
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
642 643

    Returns:
644
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
645

646 647 648
    Examples:
        .. code-block:: python

649
          import paddle.fluid as fluid
650
          # attr shape is a list which doesn't contain  Tensor.
651 652
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
653
          # data1=[[5], [5]] data2=[[5], [5]]
654

655
          # attr shape is a list which contains Tensor.
656
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
657
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
658

659
          # attr shape is a Tensor.
660
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
661
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
662
          
663
          # attr value is a Tensor.
W
wangchaochaohu 已提交
664 665
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
666
    """
667

W
wangchaochaohu 已提交
668
    attrs = {'force_cpu': force_cpu}
669
    dtype = convert_dtype(dtype)
670
    if not isinstance(value, Variable):
671
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
672
            attrs['str_value'] = str(int(value))
673
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
674 675
        else:
            attrs['str_value'] = str(float(value))
676
            attrs['value'] = float(value)
677 678

    if in_dygraph_mode():
679
        shape = utils.convert_shape_to_list(shape)
680 681
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
682 683

        if isinstance(value, Variable):
684
            if dtype in ['int64', 'int32']:
685
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
686
            else:
687
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
688

689 690
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
691 692
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
693 694 695
        out.stop_gradient = True
        return out

696 697 698
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
699 700
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
701 702
        inputs['ValueTensor'] = value

703
    check_shape(shape)
704
    check_dtype(dtype, 'dtype',
705 706 707
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
708

709 710 711 712 713
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
714
    utils.get_shape_tensor_inputs(
715
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
716

Y
Yu Yang 已提交
717
    if out is None:
X
Xin Pan 已提交
718
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
719
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
720 721
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
722
        inputs=inputs,
Y
Yu Yang 已提交
723
        outputs={'Out': [out]},
L
liym27 已提交
724
        attrs=attrs,
M
minqiyang 已提交
725
        stop_gradient=True)
Y
Yu Yang 已提交
726 727 728 729
    out.stop_gradient = True
    return out


730
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
731
@templatedoc()
Y
Yu Yang 已提交
732 733 734 735 736
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
737 738
                                  output_dim_idx=0,
                                  force_cpu=False):
739
    """
T
tianshuo78520a 已提交
740
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
741 742 743 744
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
745 746

    Args:
W
wangchaochaohu 已提交
747 748 749 750 751 752 753 754 755 756 757
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
758
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
759 760

    Returns:
W
wangchaochaohu 已提交
761
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
762 763 764 765 766

    Examples:

        .. code-block:: python

767
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
768
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
769
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
770
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
771

772
    """
Y
Yu Yang 已提交
773
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
774
    out = helper.create_variable_for_type_inference(dtype=dtype)
775 776 777 778 779 780
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
781
        'force_cpu': force_cpu
782 783 784 785 786
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
787 788 789 790
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
791
        attrs=attrs)
Y
Yu Yang 已提交
792 793 794 795
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
796 797
def argmin(x, axis=0):
    """
798 799 800
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
801

S
sneaxiy 已提交
802 803
    **argmin**

804 805
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
806 807

    Args:
808 809 810 811 812
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
813

S
sneaxiy 已提交
814
    Returns:
815
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
816

S
sneaxiy 已提交
817 818
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
819

820
            import paddle.fluid as fluid
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
848
    """
849 850 851
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
852
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
853
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
854 855 856 857 858
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
859
    out.stop_gradient = True
S
sneaxiy 已提交
860 861 862 863 864 865 866
    return out


def argmax(x, axis=0):
    """
    **argmax**

867 868
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
869 870

    Args:
871 872 873 874 875
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
876

S
sneaxiy 已提交
877
    Returns:
878
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
879

S
sneaxiy 已提交
880 881
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
882

883
            import paddle.fluid as fluid
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
911
    """
912 913 914
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
915
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
916
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
917 918 919 920 921
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
922
    out.stop_gradient = True
S
sneaxiy 已提交
923 924 925
    return out


926
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
927
    """
928 929 930
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
931

932 933 934
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
935 936

    Args:
937 938 939 940 941
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
942 943 944
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
945 946 947
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
948 949

    Returns:
950 951 952
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
953 954 955 956

    Examples:
        .. code-block:: python

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
999
    """
1000 1001 1002
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1003
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1004 1005 1006 1007
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1008 1009 1010 1011
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1012
                 'Indices': ids},
1013 1014
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1015 1016 1017
    return out, ids


Y
Yang Yu 已提交
1018
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1019
    """
1020 1021
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1022

1023
    Parameters:
1024
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1025
        dtype (np.dtype|str): Data type of output Tensor, it supports
1026
            bool, float16, float32, float64, int32 and int64.
1027 1028
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1029
            Default: False.
1030 1031

    Returns:
1032
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1033 1034 1035 1036

    Examples:
        .. code-block:: python

1037
          import paddle.fluid as fluid
1038 1039 1040 1041 1042
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1043 1044 1045 1046
    """
    return fill_constant(value=1.0, **locals())


1047
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1048
    """
1049 1050
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1051

1052
    Parameters:
1053
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1054
        dtype (np.dtype|str): Data type of output Tensor, it supports
1055
            bool, float16, float32, float64, int32 and int64.
1056 1057
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1058
            Default: False.
1059 1060
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1061 1062

    Returns:
1063
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1064 1065 1066 1067

    Examples:
        .. code-block:: python

1068
          import paddle.fluid as fluid
1069
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1070 1071 1072 1073
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1074 1075
    """
    return fill_constant(value=0.0, **locals())
1076 1077


F
fengjiayi 已提交
1078 1079
def reverse(x, axis):
    """
1080 1081 1082
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1083

1084
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1110
    Parameters:
1111 1112
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1113 1114
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1115 1116
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1117 1118

    Returns:
1119
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1120 1121 1122 1123

    Examples:
        .. code-block:: python

1124
          import paddle.fluid as fluid
1125 1126 1127 1128
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1139
    """
1140 1141 1142
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1143 1144 1145
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1146
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1147 1148
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1149
        inputs={'X': x},
F
fengjiayi 已提交
1150 1151 1152 1153 1154
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1155 1156 1157 1158 1159 1160 1161
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1162 1163 1164
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1180 1181
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1182
        file_path(str): The file path where variables will be saved.
1183
        overwrite(bool): Whether or not cover the given file when it has already
1184 1185
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1186 1187 1188 1189 1190 1191 1192 1193

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1194
            import paddle.fluid as fluid
1195 1196 1197 1198 1199 1200 1201
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1214
    Loads a list of variable from a single file.
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1226 1227 1228 1229 1230 1231 1232


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1233
       x (Tensor): The Tensor to be checked.
1234 1235

    Returns:
S
Steffy-zxf 已提交
1236
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1237 1238 1239 1240
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1241 1242
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1243
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1244
          # [False]
1245

1246
    """
S
Steffy-zxf 已提交
1247 1248 1249
    if in_dygraph_mode():
        return core.ops.isinf(x)

1250
    check_type(x, 'x', (Variable), 'has_inf')
1251
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1253 1254 1255 1256 1257 1258 1259 1260 1261
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1262
       x (Tensor): The Tensor to be checked.
1263 1264

    Returns:
S
Steffy-zxf 已提交
1265
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1266 1267 1268 1269
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1270 1271
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1272
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1273
          # [False]
1274

1275
    """
S
Steffy-zxf 已提交
1276 1277 1278
    if in_dygraph_mode():
        return core.ops.isnan(x)

1279
    check_type(x, 'x', (Variable), 'has_nan')
1280
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1281
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1282 1283 1284 1285 1286 1287
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1288

1289 1290 1291 1292
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1293
        x(Tensor): The Tensor to be checked.
1294 1295

    Returns:
N
Noel 已提交
1296
        Tensor: The tensor storing the output, contains a bool value.
1297 1298 1299 1300 1301

    Examples:

        .. code-block:: python

N
Noel 已提交
1302 1303 1304 1305 1306 1307
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1308
    """
1309 1310
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1311
    helper = LayerHelper("isfinite", **locals())
1312

1313
    out = helper.create_variable_for_type_inference(dtype='bool')
1314 1315
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1316 1317


1318
def range(start, end, step, dtype, name=None):
W
whs 已提交
1319
    """
1320
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1321

1322 1323
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1324

1325 1326
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1327

L
Liufang Sang 已提交
1328
    Parameters:
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1352 1353 1354 1355 1356

    examples:

        .. code-block:: python

1357
            import paddle.fluid as fluid
W
whs 已提交
1358

1359 1360
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1361

1362 1363 1364 1365 1366 1367 1368
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1369

W
whs 已提交
1370
    if not isinstance(start, Variable):
1371 1372
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1373 1374
    elif start.dtype != dtype:
        start = cast(start, dtype)
1375

W
whs 已提交
1376
    if not isinstance(end, Variable):
1377 1378
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1379 1380
    elif end.dtype != dtype:
        end = cast(end, dtype)
1381

W
whs 已提交
1382
    if not isinstance(step, Variable):
1383 1384
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1385 1386
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1387

1388 1389
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1390

1391 1392 1393 1394
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1395 1396 1397 1398 1399
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1400
        outputs={'Out': out})
1401
    out.stop_gradient = True
W
whs 已提交
1402
    return out
Z
zhoukunsheng 已提交
1403 1404


1405
def linspace(start, stop, num, dtype=None, name=None):
1406
    r"""
1407
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1408 1409

    Args:
1410 1411 1412 1413
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1414
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1415
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1416
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1417
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1418 1419
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1420 1421

    Returns:
1422
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1423 1424
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1425

Z
zhoukunsheng 已提交
1426
    Examples:
Z
zhoukunsheng 已提交
1427 1428
        .. code-block:: python

1429 1430 1431
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1432 1433

    """
1434 1435
    if dtype is None:
        dtype = 'float32'
1436 1437 1438
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1439 1440
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1441 1442
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1443
    if not isinstance(start, Variable):
1444 1445
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1446
    if not isinstance(stop, Variable):
1447 1448
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1449
    if not isinstance(num, Variable):
1450 1451
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1452
    if in_dygraph_mode():
1453 1454
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1455 1456 1457

    helper = LayerHelper("linspace", **locals())

1458 1459 1460
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1461
    if isinstance(start, Variable):
1462 1463
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1464 1465
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1466

1467
    if isinstance(stop, Variable):
1468 1469
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1470 1471 1472 1473 1474 1475
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1476 1477 1478 1479 1480 1481 1482 1483
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1484 1485

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1486 1487 1488

    helper.append_op(
        type='linspace',
1489 1490 1491 1492
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1493
        outputs={'Out': [out]})
1494 1495
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1496
    return out
1497 1498


Z
zhoukunsheng 已提交
1499 1500
def zeros_like(x, out=None):
    """
1501
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1502 1503 1504
    with `x`.

    Args:
1505 1506 1507 1508 1509 1510
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1511 1512

    Returns:
1513 1514 1515
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1516 1517 1518 1519

    Examples:
        .. code-block:: python

1520
          import paddle.fluid as fluid
1521
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1522 1523
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1524 1525
    """

1526 1527
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1528 1529 1530
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1531 1532 1533
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1534
            'zeros_like')
1535

Z
zhoukunsheng 已提交
1536 1537 1538 1539
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1540 1541


1542
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1543
def diag(diagonal):
1544
    r"""
1545 1546 1547
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1548

1549
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1550 1551

    Args:
1552 1553
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1554 1555

    Returns:
1556 1557
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1558 1559 1560 1561 1562 1563 1564

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1565 1566 1567

          import paddle.fluid as fluid
          import numpy as np
1568 1569 1570
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1571 1572

    """
1573 1574 1575
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1588 1589


1590 1591 1592 1593 1594
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1595
    """
1596
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1597 1598 1599

    Args:
        num_rows(int): the number of rows in each batch tensor.
1600 1601
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1602 1603
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1604
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1605 1606 1607 1608
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1609 1610

    Returns:
1611
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1612 1613 1614 1615 1616

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1617 1618
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1619
          #  [0, 1, 0]
1620 1621
          #  [0, 0, 1]]

1622
          data = fluid.layers.eye(2, 3, dtype='int32')
1623
          # [[1, 0, 0]
1624
          #  [0, 1, 0]]
1625 1626

          data = fluid.layers.eye(2, batch_shape=[3])
1627 1628 1629 1630 1631
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1632 1633
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1634 1635 1636 1637 1638
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1661 1662

    if batch_shape is not None:
1663 1664 1665 1666 1667 1668 1669
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1670 1671
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1672
        for batch_val in (batch_shape):
1673 1674
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1675 1676 1677 1678 1679 1680

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1681 1682 1683
    return out


Z
zhoukunsheng 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1696
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1707 1708
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1709 1710 1711 1712

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1713 1714 1715 1716
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1717 1718 1719 1720 1721 1722
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1723 1724 1725 1726 1727 1728


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)