tensor.py 65.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
L
li099 已提交
39 40 41
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
42
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
43
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
44 45 46
]


X
xuwei06 已提交
47
def create_tensor(dtype, name=None, persistable=False):
48
    """
W
wangchaochaohu 已提交
49
    Create a variable, which will hold a Tensor with data type dtype.
50 51

    Args:
W
wangchaochaohu 已提交
52 53 54 55
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
56
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
57
            default value is False.
58 59

    Returns:
W
wangchaochaohu 已提交
60
        Variable: The tensor to be created according to dtype.
61 62 63 64

    Examples:
        .. code-block:: python

65
          import paddle.fluid as fluid
66 67
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
68 69 70 71
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
72
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
73 74
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
75 76


77 78
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
79
                     name=None,
80 81 82 83
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
84
	:api_attr: Static Graph
S
swtkiwi 已提交
85

86
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
87 88 89 90 91
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

92 93 94 95 96 97 98
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
99 100 101
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
102
        default_initializer (Initializer, optional): Initializer for the parameter
103 104

    Returns:
105
        The created parameter.
Y
yuyang18 已提交
106 107

    Examples:
108 109
        .. code-block:: python

110 111 112
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
113
    """
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
133
    helper = LayerHelper("create_parameter", **locals())
134
    if attr is None:
X
xuwei06 已提交
135
        attr = ParamAttr(name=name)
136 137
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
138 139 140
                                   default_initializer)


141 142 143 144 145 146 147
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
148
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
149

150
    Parameters:
151
        shape (list[int]|tuple[int]): Shape of the variable
152
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
153
                      variable will be filled with it.
154 155
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
156
                           Default: False
157
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
158
                         Default: False
159 160
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
161 162

    Returns:
163
        Variable: The created Variable
F
fengjiayi 已提交
164 165 166 167

    Examples:
        .. code-block:: python

168 169 170
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
171
                                           persistable=True, force_cpu=True, name='new_var')
172
    """
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
190 191
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
192 193 194 195 196
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
197 198 199
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
200

Q
Qiao Longfei 已提交
201 202 203
    return var


204
def cast(x, dtype):
Y
Yu Yang 已提交
205
    """
S
swtkiwi 已提交
206

207
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
208 209
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
210 211

    Args:
212
        x(Tensor): An input N-D Tensor with data type bool, float16,
213 214
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
215
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
216 217

    Returns:
218
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
219 220 221

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
222

223
            import paddle
224

225 226
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
227
    """
228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
232
        return out
233

234 235 236 237
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
238 239
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
240
        'uint8', 'uint16'
241 242 243
    ], 'cast')

    helper = LayerHelper('cast', **locals())
244 245
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


255
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
256
    """
257
    This OP concatenates the input along the axis.
258 259

    Args:
260 261
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
262 263
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
264
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
265
            as ``axis+R``. Default is 0.
266 267 268
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
269 270

    Returns:
271
        Tensor: A Tensor with the same data type as ``input``.
272 273 274

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
275

276
            import paddle.fluid as fluid
277 278
            import numpy as np

279 280 281 282 283 284
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
285 286 287 288
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
289 290
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
291 292
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
293 294 295 296 297 298 299 300
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
301
    """
302 303

    if in_dygraph_mode():
S
songyouwei 已提交
304 305
        if isinstance(axis, Variable):
            axis = axis.numpy()
306
            axis = axis.item(0)
307
        return core.ops.concat(input, 'axis', axis)
308

309 310 311 312 313 314 315 316 317 318 319
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
320
        input = [input]
321
    check_type(axis, 'axis', (int, Variable), 'concat')
322

323 324 325 326 327
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

328
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
329
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
330 331

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
332 333 334 335
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

336
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
337
                "number of the elements must be 1, but received %s." % len(input)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
357 358 359
    return out


G
Guo Sheng 已提交
360
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
361
    r"""
G
Guo Sheng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
412 413

    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
421 422

    Returns:
G
Guo Sheng 已提交
423 424 425
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            import numpy as np
G
Guo Sheng 已提交
432 433 434 435 436 437 438
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
439
    """
440 441 442 443 444 445 446 447 448 449 450
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

451 452 453 454 455
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
456
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
457 458 459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
460
        type='tensor_array_to_tensor',
L
li099 已提交
461 462 463
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
464 465
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
466 467 468
    return out, out_index


469
def sums(input, out=None):
470
    r"""
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
492 493

    Args:
494 495 496 497
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
498 499

    Returns:
500 501
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
502 503

    Examples:
F
fengjiayi 已提交
504
        .. code-block:: python
K
kavyasrinet 已提交
505

506 507 508 509 510 511 512 513 514
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
515

516 517
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
518
    """
519 520 521 522 523 524 525 526 527
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
528 529
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
530 531
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
532 533 534 535
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
536 537 538 539 540
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
541 542 543
    return out


F
fengjiayi 已提交
544
def assign(input, output=None):
545
    """
S
swtkiwi 已提交
546

547
    The OP copies the :attr:`input` to the :attr:`output`.
548

549
    Parameters:
550 551 552 553
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
554
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
555
            be created as :attr:`output`. Default: None.
556 557

    Returns:
558
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
559 560 561

    Examples:
        .. code-block:: python
562

563
          import paddle
564
          import numpy as np
565
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
566 567 568 569
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
570 571 572
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
573
    """
Y
Yu Yang 已提交
574
    helper = LayerHelper('assign', **locals())
575 576
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
577 578
    is_inplace = True if output is not None else False

579 580 581 582 583
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)

X
xuwei06 已提交
584
    if isinstance(input, Variable):
A
arlesniak 已提交
585 586 587
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'
        ], 'assign', '(When the type of input in assign is Variable.)')
588 589 590
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
591
        helper.append_op(
R
robot 已提交
592
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
593 594
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
595 596 597 598 599 600 601 602
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
603 604 605 606
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
607
            value_name = "fp32_values"
608
            values = [float(v) for v in input.flat]
609
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
610
            value_name = "int32_values"
611
            values = [int(v) for v in input.flat]
612 613 614
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
615
        else:
616 617
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
618
                "the data type of 'input' must be bool, float32, int32 or int64, but "
619
                "received %s." % convert_dtype(dtype))
620 621 622
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
623 624 625
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
626 627 628 629 630 631
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
632
                value_name: values
X
xuwei06 已提交
633 634
            })

635 636 637
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
638 639 640
    return output


641
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
642
    """
S
swtkiwi 已提交
643

W
wangchaochaohu 已提交
644
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
645
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
646

T
tianshuo78520a 已提交
647
    The attribute `stop_gradient` of the created Tensor is set to True.
648 649

    Args:
650 651 652
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
653
        dtype(np.dtype|str): Data type of the output Tensor which can
654
            be float16, float32, float64, uint8, int32, int64.
655 656 657 658 659 660
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
661 662
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
663 664

    Returns:
665
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
666

667 668 669
    Examples:
        .. code-block:: python

670
          import paddle.fluid as fluid
671
          # attr shape is a list which doesn't contain  Tensor.
672 673
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
674
          # data1=[[5], [5]] data2=[[5], [5]]
675

676
          # attr shape is a list which contains Tensor.
677
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
678
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
679

680
          # attr shape is a Tensor.
681
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
682
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
683
          
684
          # attr value is a Tensor.
W
wangchaochaohu 已提交
685 686
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
687
    """
688

W
wangchaochaohu 已提交
689
    attrs = {'force_cpu': force_cpu}
690
    dtype = convert_dtype(dtype)
691
    if not isinstance(value, Variable):
692
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
693
            attrs['str_value'] = str(int(value))
694
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
695 696
        else:
            attrs['str_value'] = str(float(value))
697
            attrs['value'] = float(value)
698 699

    if in_dygraph_mode():
700
        shape = utils.convert_shape_to_list(shape)
701 702
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
703 704

        if isinstance(value, Variable):
705
            if dtype in ['uint8', 'int64', 'int32']:
706
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
707
            else:
708
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
709

710 711
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
712 713
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
714 715 716
        out.stop_gradient = True
        return out

717 718 719
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
720 721
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
722 723
        inputs['ValueTensor'] = value

724
    check_shape(shape)
725 726 727 728
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
729
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
730

731 732 733 734 735
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
736
    utils.get_shape_tensor_inputs(
737
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
738

Y
Yu Yang 已提交
739
    if out is None:
X
Xin Pan 已提交
740
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
741
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
742 743
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
744
        inputs=inputs,
Y
Yu Yang 已提交
745
        outputs={'Out': [out]},
L
liym27 已提交
746
        attrs=attrs,
M
minqiyang 已提交
747
        stop_gradient=True)
Y
Yu Yang 已提交
748 749 750 751
    out.stop_gradient = True
    return out


752
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
753
@templatedoc()
Y
Yu Yang 已提交
754 755 756 757 758
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
759 760
                                  output_dim_idx=0,
                                  force_cpu=False):
761
    """
T
tianshuo78520a 已提交
762
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
763 764 765 766
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
767 768

    Args:
W
wangchaochaohu 已提交
769 770 771 772 773 774 775 776 777 778 779
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
780
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
781 782

    Returns:
W
wangchaochaohu 已提交
783
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
784 785 786 787 788

    Examples:

        .. code-block:: python

789
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
790
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
791
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
792
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
793

794
    """
Y
Yu Yang 已提交
795
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
796
    out = helper.create_variable_for_type_inference(dtype=dtype)
797 798 799 800 801 802
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
803
        'force_cpu': force_cpu
804 805 806 807 808
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
809 810 811 812
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
813
        attrs=attrs)
Y
Yu Yang 已提交
814 815 816 817
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
818 819
def argmin(x, axis=0):
    """
820 821 822
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
823

S
sneaxiy 已提交
824 825
    **argmin**

826 827
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
828 829

    Args:
830 831 832 833 834
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
835

S
sneaxiy 已提交
836
    Returns:
837
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
838

S
sneaxiy 已提交
839 840
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
841

842
            import paddle.fluid as fluid
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
870
    """
871 872 873
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
874
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
875
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
876 877 878 879 880
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
881
    out.stop_gradient = True
S
sneaxiy 已提交
882 883 884 885 886 887 888
    return out


def argmax(x, axis=0):
    """
    **argmax**

889 890
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
891 892

    Args:
893 894 895 896 897
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
898

S
sneaxiy 已提交
899
    Returns:
900
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
901

S
sneaxiy 已提交
902 903
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
904

905
            import paddle.fluid as fluid
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
933
    """
934 935 936
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
937
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
938
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
939 940 941 942 943
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
944
    out.stop_gradient = True
S
sneaxiy 已提交
945 946 947
    return out


948
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
949
    """
950 951 952
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
953

954 955 956
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
957 958

    Args:
959 960 961 962 963
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
964 965 966
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
967 968 969
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
970 971

    Returns:
972 973 974
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
975 976 977 978

    Examples:
        .. code-block:: python

979
            import paddle.fluid as fluid
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1021
    """
1022 1023 1024
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1025
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1026 1027 1028 1029
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1030 1031 1032 1033
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1034
                 'Indices': ids},
1035 1036
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1037 1038 1039
    return out, ids


Y
Yang Yu 已提交
1040
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1041
    """
1042 1043
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1044

1045
    Parameters:
1046
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1047
        dtype (np.dtype|str): Data type of output Tensor, it supports
1048
            bool, float16, float32, float64, int32 and int64.
1049 1050
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1051
            Default: False.
1052 1053

    Returns:
1054
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1055 1056 1057 1058

    Examples:
        .. code-block:: python

1059
          import paddle.fluid as fluid
1060 1061 1062 1063 1064
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1065 1066 1067 1068
    """
    return fill_constant(value=1.0, **locals())


1069
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1070
    """
1071 1072
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1073

1074
    Parameters:
1075
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1076
        dtype (np.dtype|str): Data type of output Tensor, it supports
1077
            bool, float16, float32, float64, int32 and int64.
1078 1079
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1080
            Default: False.
1081 1082
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1083 1084

    Returns:
1085
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1086 1087 1088 1089

    Examples:
        .. code-block:: python

1090
          import paddle.fluid as fluid
1091
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1092 1093 1094 1095
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1096 1097
    """
    return fill_constant(value=0.0, **locals())
1098 1099


F
fengjiayi 已提交
1100 1101
def reverse(x, axis):
    """
1102 1103 1104
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1105

1106
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1132
    Parameters:
1133 1134
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1135 1136
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1137 1138
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1139 1140

    Returns:
1141
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1142 1143 1144 1145

    Examples:
        .. code-block:: python

1146
          import paddle.fluid as fluid
1147 1148 1149 1150
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1161
    """
1162 1163 1164
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1165 1166 1167
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1169 1170
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1171
        inputs={'X': x},
F
fengjiayi 已提交
1172 1173 1174 1175 1176
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1177 1178 1179 1180 1181 1182 1183
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1184 1185 1186
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1202 1203
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1204
        file_path(str): The file path where variables will be saved.
1205
        overwrite(bool): Whether or not cover the given file when it has already
1206 1207
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1208 1209 1210 1211 1212 1213 1214 1215

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1216
            import paddle.fluid as fluid
1217 1218 1219 1220 1221 1222 1223
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1236
    Loads a list of variable from a single file.
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1248 1249 1250 1251 1252 1253 1254


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1255
       x (Tensor): The Tensor to be checked.
1256 1257

    Returns:
S
Steffy-zxf 已提交
1258
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1259 1260 1261 1262
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1263 1264
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1265
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1266
          # [False]
1267

1268
    """
S
Steffy-zxf 已提交
1269 1270 1271
    if in_dygraph_mode():
        return core.ops.isinf(x)

1272
    check_type(x, 'x', (Variable), 'has_inf')
1273
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1274
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1275 1276 1277 1278 1279 1280 1281 1282 1283
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1284
       x (Tensor): The Tensor to be checked.
1285 1286

    Returns:
S
Steffy-zxf 已提交
1287
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1288 1289 1290 1291
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1292 1293
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1294
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1295
          # [False]
1296

1297
    """
S
Steffy-zxf 已提交
1298 1299 1300
    if in_dygraph_mode():
        return core.ops.isnan(x)

1301
    check_type(x, 'x', (Variable), 'has_nan')
1302
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1303
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1304 1305 1306 1307 1308 1309
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1310

1311 1312 1313 1314
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1315
        x(Tensor): The Tensor to be checked.
1316 1317

    Returns:
N
Noel 已提交
1318
        Tensor: The tensor storing the output, contains a bool value.
1319 1320 1321 1322 1323

    Examples:

        .. code-block:: python

N
Noel 已提交
1324 1325 1326 1327 1328 1329
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1330
    """
1331 1332
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1333
    helper = LayerHelper("isfinite", **locals())
1334

1335
    out = helper.create_variable_for_type_inference(dtype='bool')
1336 1337
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1338 1339


1340
def range(start, end, step, dtype, name=None):
W
whs 已提交
1341
    """
1342
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1343

1344 1345
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1346

1347 1348
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1349

L
Liufang Sang 已提交
1350
    Parameters:
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1374 1375 1376 1377 1378

    examples:

        .. code-block:: python

1379
            import paddle.fluid as fluid
W
whs 已提交
1380

1381 1382
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1383

1384 1385 1386 1387 1388 1389 1390
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1391

1392 1393 1394 1395 1396
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1397
    if not isinstance(start, Variable):
1398
        with device_guard("cpu"):
1399
            start = fill_constant([1], dtype, start, force_cpu=True)
1400 1401
    elif start.dtype != dtype:
        start = cast(start, dtype)
1402

W
whs 已提交
1403
    if not isinstance(end, Variable):
1404
        with device_guard("cpu"):
1405
            end = fill_constant([1], dtype, end, force_cpu=True)
1406 1407
    elif end.dtype != dtype:
        end = cast(end, dtype)
1408

W
whs 已提交
1409
    if not isinstance(step, Variable):
1410
        with device_guard("cpu"):
1411
            step = fill_constant([1], dtype, step, force_cpu=True)
1412 1413
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1414

1415 1416
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1417

1418 1419 1420
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1421
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1422 1423 1424 1425 1426
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1427
        outputs={'Out': out})
1428
    out.stop_gradient = True
W
whs 已提交
1429
    return out
Z
zhoukunsheng 已提交
1430 1431


1432
def linspace(start, stop, num, dtype=None, name=None):
1433
    r"""
1434
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1435 1436

    Args:
1437 1438 1439 1440
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1441
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1442
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1443
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1444
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1445 1446
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1447 1448

    Returns:
1449
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1450 1451
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1452

Z
zhoukunsheng 已提交
1453
    Examples:
Z
zhoukunsheng 已提交
1454 1455
        .. code-block:: python

1456 1457 1458
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1459 1460

    """
1461 1462
    if dtype is None:
        dtype = 'float32'
1463 1464 1465
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1466 1467
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1468 1469
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1470
    if not isinstance(start, Variable):
1471 1472
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1473
    if not isinstance(stop, Variable):
1474 1475
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1476
    if not isinstance(num, Variable):
1477 1478
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1479
    if in_dygraph_mode():
1480 1481
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1482 1483 1484

    helper = LayerHelper("linspace", **locals())

1485 1486 1487
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1488
    if isinstance(start, Variable):
1489 1490
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1491 1492
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1493

1494
    if isinstance(stop, Variable):
1495 1496
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1497 1498 1499 1500 1501 1502
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1503 1504 1505 1506 1507 1508 1509 1510
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1511 1512

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1513 1514 1515

    helper.append_op(
        type='linspace',
1516 1517 1518 1519
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1520
        outputs={'Out': [out]})
1521 1522
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1523
    return out
1524 1525


Z
zhoukunsheng 已提交
1526 1527
def zeros_like(x, out=None):
    """
1528
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1529 1530 1531
    with `x`.

    Args:
1532 1533 1534 1535 1536 1537
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1538 1539

    Returns:
1540 1541 1542
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1543 1544 1545 1546

    Examples:
        .. code-block:: python

1547
          import paddle.fluid as fluid
1548
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1549 1550
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1551 1552
    """

1553 1554
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1555 1556 1557
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1558 1559 1560
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1561
            'zeros_like')
1562

Z
zhoukunsheng 已提交
1563 1564 1565 1566
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1567 1568


1569
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1570
def diag(diagonal):
1571
    r"""
1572 1573 1574
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1575

1576
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1577 1578

    Args:
1579 1580
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1581 1582

    Returns:
1583 1584
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1585 1586 1587 1588 1589 1590 1591

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1592 1593 1594

          import paddle.fluid as fluid
          import numpy as np
1595 1596 1597
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1598 1599

    """
1600 1601 1602
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1615 1616


1617 1618 1619 1620 1621
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1622
    """
1623
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1624 1625 1626

    Args:
        num_rows(int): the number of rows in each batch tensor.
1627 1628
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1629 1630
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1631
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1632 1633 1634 1635
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1636 1637

    Returns:
1638
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1639 1640 1641 1642 1643

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1644 1645
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1646
          #  [0, 1, 0]
1647 1648
          #  [0, 0, 1]]

1649
          data = fluid.layers.eye(2, 3, dtype='int32')
1650
          # [[1, 0, 0]
1651
          #  [0, 1, 0]]
1652 1653

          data = fluid.layers.eye(2, batch_shape=[3])
1654 1655 1656 1657 1658
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1659 1660
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1661 1662 1663 1664 1665
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1688 1689

    if batch_shape is not None:
1690 1691 1692 1693 1694
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1695
            return core.ops.expand(out, None, 'expand_times', expand_times)
1696

1697 1698
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1699
        for batch_val in (batch_shape):
1700 1701
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1702 1703 1704 1705 1706 1707

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1708 1709 1710
    return out


Z
zhoukunsheng 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1723
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1734 1735
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1736 1737 1738 1739

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1740 1741 1742 1743
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1744 1745 1746 1747 1748 1749
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1750 1751 1752 1753 1754 1755


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)