tensor.py 64.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
78
	:api_attr: Static Graph
S
swtkiwi 已提交
79

80
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
81 82 83 84 85
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

86 87 88 89 90 91 92
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
93 94 95
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
96
        default_initializer (Initializer, optional): Initializer for the parameter
97 98

    Returns:
99
        The created parameter.
Y
yuyang18 已提交
100 101

    Examples:
102 103
        .. code-block:: python

104
            import paddle.fluid as fluid
105 106
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
107
    """
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
127
    helper = LayerHelper("create_parameter", **locals())
128
    if attr is None:
X
xuwei06 已提交
129
        attr = ParamAttr(name=name)
130 131
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
132 133 134
                                   default_initializer)


135 136 137 138 139 140 141
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
142
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
143

144 145 146
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
147
                      variable will be filled with it.
148 149
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
150
                           Default: False
151
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
152
                         Default: False
153 154
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
155 156

    Returns:
157
        Variable: The created Variable
F
fengjiayi 已提交
158 159 160 161

    Examples:
        .. code-block:: python

162
            import paddle.fluid as fluid
163 164
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
165
                                           persistable=True, force_cpu=True, name='new_var')
166
    """
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
184 185
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
186 187 188 189 190
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
191 192 193
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
194

Q
Qiao Longfei 已提交
195 196 197
    return var


198
def cast(x, dtype):
Y
Yu Yang 已提交
199
    """
200 201 202
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
203

204 205 206
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
207 208

    Args:
209 210 211
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
212
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
213 214

    Returns:
215
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
216 217 218

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
219

220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
243
    """
244 245
    check_variable_and_dtype(
        x, 'x',
246 247
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
248 249 250 251 252 253
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
254
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
266 267
	:alias_main: paddle.concat
	:alias: paddle.concat,paddle.tensor.concat,paddle.tensor.manipulation.concat
268

269
    This OP concatenates the input along the axis.
270 271

    Args:
272 273 274 275 276
        input(list): List of input Tensors with data type float16, float32, float64, int32,
            int64. All the Tensors in ``input`` must have the same data type.
        axis(int|Variable, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with type ``int`` or a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``.
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
277 278 279 280
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
281 282 283 284
    Raises:
        TypeError: The dtype of input must be one of float16, float32, float64, int32 and int64. 
        TypeError: The ``axis`` must be int or Variable. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
        TypeError: All the Tensors in ``input`` must have the same data type.
285 286

    Returns:
287
        Variable: A Tensor with the same data type as ``input``.
288 289 290

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
291

292
            import paddle.fluid as fluid
293 294 295 296 297 298 299 300 301 302 303 304
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
305 306
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
307 308 309 310 311 312 313 314 315 316
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
317
    """
318 319

    if in_dygraph_mode():
S
songyouwei 已提交
320 321 322
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis[0]
323
        return core.ops.concat(input, 'axis', axis)
324

325 326 327 328 329
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
330
    for id, x in enumerate(input):
331 332
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
333
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
334 335 336
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")
337
    check_type(axis, 'axis', (int, Variable), 'concat')
338

339 340 341 342 343
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

344
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
345
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
369 370 371
    return out


G
Guo Sheng 已提交
372
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
373
    """
G
Guo Sheng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
424 425

    Args:
G
Guo Sheng 已提交
426 427 428 429 430 431 432
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
433 434

    Returns:
G
Guo Sheng 已提交
435 436 437
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
438 439 440 441

    Examples:
        .. code-block:: python

442
            import paddle.fluid as fluid
443
            import numpy as np
G
Guo Sheng 已提交
444 445 446 447 448 449 450
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
451
    """
452 453 454 455 456 457 458 459 460 461 462
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

463 464 465 466 467
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
468
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
469 470 471
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
472
        type='tensor_array_to_tensor',
L
li099 已提交
473 474 475
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
476 477
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
478 479 480
    return out, out_index


481
def sums(input, out=None):
F
fengjiayi 已提交
482
    """
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
504 505

    Args:
506 507 508 509
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
510 511

    Returns:
512 513
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
514 515

    Examples:
F
fengjiayi 已提交
516
        .. code-block:: python
K
kavyasrinet 已提交
517

518 519 520 521 522 523 524 525 526
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
527

528 529
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
530
    """
531 532 533 534 535 536 537 538 539
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
540 541
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
542 543
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
544 545 546 547
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
548 549 550 551 552
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
553 554 555
    return out


F
fengjiayi 已提交
556
def assign(input, output=None):
557
    """
558 559 560
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
561

562
    The OP copies the :attr:`input` to the :attr:`output`.
563

564 565
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
566
            float16, float32, float64, int32 and int64.
567 568
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
569 570

    Returns:
571
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
572 573 574

    Examples:
        .. code-block:: python
575

576
          import paddle.fluid as fluid
577 578 579 580 581 582
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
583
    """
Y
Yu Yang 已提交
584
    helper = LayerHelper('assign', **locals())
585
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
586
    if isinstance(input, Variable):
587 588 589 590
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
591 592 593
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
594
        helper.append_op(
R
robot 已提交
595
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
596 597
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
598 599 600 601
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
602
            value_name = "fp32_values"
603
            values = [float(v) for v in input.flat]
604
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
605
            value_name = "int32_values"
606
            values = [int(v) for v in input.flat]
607 608 609
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
610
        else:
611 612
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
613
                "the data type of 'input' must be bool, float32, int32 or int64, but "
614
                "received %s." % convert_dtype(dtype))
615 616 617
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
618 619 620
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
621 622 623 624 625 626
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
627
                value_name: values
X
xuwei06 已提交
628 629
            })

Y
Yu Yang 已提交
630 631 632
    return output


633
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
634
    """
635 636 637
	:alias_main: paddle.fill_constant
	:alias: paddle.fill_constant,paddle.tensor.fill_constant,paddle.tensor.creation.fill_constant
	:old_api: paddle.fluid.layers.fill_constant
S
swtkiwi 已提交
638

W
wangchaochaohu 已提交
639
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
640
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
641

T
tianshuo78520a 已提交
642
    The attribute `stop_gradient` of the created Tensor is set to True.
643 644

    Args:
645 646 647 648
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
649 650
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
651
        value(bool|float|int|Variable): The constant value used to initialize 
W
wangchaochaohu 已提交
652 653
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
654 655 656
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
657 658
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
659 660

    Returns:
W
wangchaochaohu 已提交
661 662
        Variable: Tensor which is created according to shape and dtype.

663
    Raises:
W
wangchaochaohu 已提交
664
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
665
            and the data type of out Tensor must be the same as the dtype. 
666
        TypeError: The shape must be one of list, tuple and Variable.
667 668 669 670

    Examples:
        .. code-block:: python

671
          import paddle.fluid as fluid
672 673 674
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
675
          # data1=[[5], [5]] data2=[[5], [5]]
676 677 678

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
679
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
680 681

          # attr shape is an Variable Tensor.
682
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
683
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
684 685 686 687
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
688
    """
689

W
wangchaochaohu 已提交
690
    attrs = {'force_cpu': force_cpu}
691
    if not isinstance(value, Variable):
W
wangchaochaohu 已提交
692 693 694 695
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
696 697

    if in_dygraph_mode():
698
        shape = utils._convert_shape_to_list(shape)
699 700
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
701 702 703 704 705 706 707

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

708 709
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
710 711
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
712 713 714
        out.stop_gradient = True
        return out

715 716 717 718 719
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value

720
    check_dtype(dtype, 'dtype',
721 722 723
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
724

725
    if isinstance(shape, Variable):
726 727
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')

728 729 730 731 732
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
733 734
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
735

Y
Yu Yang 已提交
736
    if out is None:
X
Xin Pan 已提交
737
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
738
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
739 740
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
741
        inputs=inputs,
Y
Yu Yang 已提交
742
        outputs={'Out': [out]},
L
liym27 已提交
743
        attrs=attrs,
M
minqiyang 已提交
744
        stop_gradient=True)
Y
Yu Yang 已提交
745 746 747 748
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
749
@templatedoc()
Y
Yu Yang 已提交
750 751 752 753 754
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
755 756
                                  output_dim_idx=0,
                                  force_cpu=False):
757
    """
T
tianshuo78520a 已提交
758
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
759 760 761 762
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
763 764

    Args:
W
wangchaochaohu 已提交
765 766 767 768 769 770 771 772 773 774 775
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
776
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
777 778

    Returns:
W
wangchaochaohu 已提交
779
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
780 781 782 783 784

    Examples:

        .. code-block:: python

785
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
786
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
787
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
788
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
789

790
    """
Y
Yu Yang 已提交
791
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
792
    out = helper.create_variable_for_type_inference(dtype=dtype)
793 794 795 796 797 798
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
799
        'force_cpu': force_cpu
800 801 802 803 804
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
805 806 807 808
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
809
        attrs=attrs)
Y
Yu Yang 已提交
810 811 812 813
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
814 815
def argmin(x, axis=0):
    """
816 817 818
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
819

S
sneaxiy 已提交
820 821
    **argmin**

822 823
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
824 825

    Args:
826 827 828 829 830
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
831

S
sneaxiy 已提交
832
    Returns:
833
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
834

S
sneaxiy 已提交
835 836
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
837

838
            import paddle.fluid as fluid
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
866
    """
867 868 869
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
870
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
871
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
872 873 874 875 876
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
877
    out.stop_gradient = True
S
sneaxiy 已提交
878 879 880 881 882 883 884
    return out


def argmax(x, axis=0):
    """
    **argmax**

885 886
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
887 888

    Args:
889 890 891 892 893
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
894

S
sneaxiy 已提交
895
    Returns:
896
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
897

S
sneaxiy 已提交
898 899
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
900

901
            import paddle.fluid as fluid
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
929
    """
930 931 932
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
933
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
934
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
935 936 937 938 939
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
940
    out.stop_gradient = True
S
sneaxiy 已提交
941 942 943
    return out


944
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
945
    """
946 947 948
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
949

950 951 952
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
953 954

    Args:
955 956 957 958 959
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
960 961 962
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
963 964 965
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
966 967

    Returns:
968 969 970
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
971 972 973 974

    Examples:
        .. code-block:: python

975
            import paddle.fluid as fluid
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1017
    """
1018 1019 1020
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1021
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1022 1023 1024 1025
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1026 1027 1028 1029
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1030
                 'Indices': ids},
1031 1032
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1033 1034 1035
    return out, ids


Y
Yang Yu 已提交
1036
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1037
    """
1038 1039
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1040

1041 1042 1043 1044 1045 1046 1047
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1048 1049

    Returns:
1050
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1051 1052 1053 1054

    Examples:
        .. code-block:: python

1055
          import paddle.fluid as fluid
1056
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1057
    """
1058 1059 1060 1061
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1062 1063
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1064 1065 1066
    return fill_constant(value=1.0, **locals())


1067
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1068
    """
1069 1070
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1071

1072 1073 1074 1075 1076 1077 1078
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1079 1080
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1081 1082

    Returns:
1083
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1084 1085 1086 1087

    Examples:
        .. code-block:: python

1088
          import paddle.fluid as fluid
1089
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1090 1091
    """
    return fill_constant(value=0.0, **locals())
1092 1093


F
fengjiayi 已提交
1094 1095
def reverse(x, axis):
    """
1096 1097 1098
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1099

1100
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1126
    Parameters:
1127 1128
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1129 1130
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1131 1132
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1133 1134

    Returns:
1135
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1136 1137 1138 1139

    Examples:
        .. code-block:: python

1140
          import paddle.fluid as fluid
1141 1142 1143 1144
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1155
    """
1156 1157 1158
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1159 1160 1161
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1163 1164
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1165
        inputs={'X': x},
F
fengjiayi 已提交
1166 1167 1168 1169 1170
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1171 1172 1173 1174 1175 1176 1177
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1178 1179 1180
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1196 1197
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1198
        file_path(str): The file path where variables will be saved.
1199
        overwrite(bool): Whether or not cover the given file when it has already
1200 1201
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1202 1203 1204 1205 1206 1207 1208 1209

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1210
            import paddle.fluid as fluid
1211 1212 1213 1214 1215 1216 1217
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1230
    Loads a list of variable from a single file.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1242 1243 1244 1245


def has_inf(x):
    """
1246 1247 1248
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1249

1250 1251 1252
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1253
       x (Variable): The Tensor/LoDTensor to be checked.
1254 1255

    Returns:
L
liu zhengxi 已提交
1256
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1257 1258 1259 1260 1261 1262 1263 1264
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1265
    """
1266
    check_type(x, 'x', (Variable), 'has_inf')
1267
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1268
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1269 1270 1271 1272 1273 1274
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1275 1276 1277
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1278

1279 1280 1281
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1282
       x (Variable): The Tensor/LoDTensor to be checked.
1283 1284

    Returns:
L
liu zhengxi 已提交
1285
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1286 1287 1288 1289 1290 1291 1292 1293
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1294
    """
1295
    check_type(x, 'x', (Variable), 'has_nan')
1296
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1297
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1298 1299 1300 1301 1302 1303
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1304 1305 1306
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1307

1308 1309 1310 1311 1312 1313 1314 1315
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1316 1317 1318 1319 1320

    Examples:

        .. code-block:: python

1321
            import paddle.fluid as fluid
1322 1323 1324
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1325
            out = fluid.layers.isfinite(var)
1326
    """
1327 1328
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1329
    helper = LayerHelper("isfinite", **locals())
1330

1331
    out = helper.create_variable_for_type_inference(dtype='bool')
1332 1333
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1334 1335


1336
def range(start, end, step, dtype, name=None):
W
whs 已提交
1337
    """
1338
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1339

1340 1341
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1342

1343 1344
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1345

L
Liufang Sang 已提交
1346
    Parameters:
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1370 1371 1372 1373 1374

    examples:

        .. code-block:: python

1375
            import paddle.fluid as fluid
W
whs 已提交
1376

1377 1378
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1379

1380 1381 1382 1383 1384 1385 1386
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1387

W
whs 已提交
1388 1389
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1390 1391
    elif start.dtype != dtype:
        start = cast(start, dtype)
1392

W
whs 已提交
1393 1394
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1395 1396
    elif end.dtype != dtype:
        end = cast(end, dtype)
1397

W
whs 已提交
1398 1399
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1400 1401
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1402

1403 1404
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1405

1406 1407 1408 1409
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1410 1411 1412 1413 1414
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1415
        outputs={'Out': out})
1416
    out.stop_gradient = True
W
whs 已提交
1417
    return out
Z
zhoukunsheng 已提交
1418 1419


1420
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1421
    """
1422
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1423 1424

    Args:
1425 1426 1427 1428 1429 1430
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
1431 1432 1433 1434
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of output tensor, it could be 'float32' and 'float64'.
            Default: if None, the data type is `float32`.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1435 1436

    Returns:
1437 1438 1439
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1440

1441 1442 1443 1444 1445 1446
    Raises:
        TypeError: The dtype must be one of float32 and float64.
        TypeError: The dtype of `start` and `stop`  must be one of float32 and float64.
        TypeError: The dtype of `num` must be one of int32 and int64.


Z
zhoukunsheng 已提交
1447
    Examples:
Z
zhoukunsheng 已提交
1448 1449
        .. code-block:: python

1450
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1451 1452
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1453 1454

    """
1455 1456
    if dtype is None:
        dtype = 'float32'
Z
zhoukunsheng 已提交
1457 1458 1459 1460 1461 1462
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1463 1464 1465 1466 1467 1468 1469 1470 1471
    if in_dygraph_mode():
        return core.ops.linspace(start, stop, num)

    helper = LayerHelper("linspace", **locals())

    check_dtype(start.dtype, 'start', ['float32', 'float64'], 'linspace')
    check_dtype(stop.dtype, 'stop', ['float32', 'float64'], 'linspace')
    check_dtype(num.dtype, 'num', ['int32', 'int64'], 'linspace')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'linspace')
Z
zhoukunsheng 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1482 1483


Z
zhoukunsheng 已提交
1484 1485
def zeros_like(x, out=None):
    """
1486
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1487 1488 1489
    with `x`.

    Args:
1490 1491 1492 1493 1494 1495
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1496 1497

    Returns:
1498 1499 1500
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1501 1502 1503 1504

    Examples:
        .. code-block:: python

1505
          import paddle.fluid as fluid
1506
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1507 1508
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1509 1510
    """

1511 1512
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1513 1514 1515
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1516 1517 1518
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1519
            'zeros_like')
1520

Z
zhoukunsheng 已提交
1521 1522 1523 1524
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1525 1526 1527 1528


def diag(diagonal):
    """
1529 1530 1531
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1532

1533
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1534 1535

    Args:
1536 1537
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1538 1539

    Returns:
1540 1541
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1542 1543 1544 1545 1546 1547 1548

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1549 1550 1551

          import paddle.fluid as fluid
          import numpy as np
1552 1553 1554
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1555 1556

    """
1557 1558 1559
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1572 1573


1574 1575 1576 1577 1578
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1579
    """
1580 1581 1582
	:alias_main: paddle.eye
	:alias: paddle.eye,paddle.tensor.eye,paddle.tensor.creation.eye
	:old_api: paddle.fluid.layers.eye
S
swtkiwi 已提交
1583

1584 1585
    **eye**

1586
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1587 1588 1589

    Args:
        num_rows(int): the number of rows in each batch tensor.
1590 1591 1592 1593 1594 1595 1596 1597 1598
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
        batch_shape(list(int), optional): If provided, the returned tensor will have a leading
            batch size of this shape, default is None.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1599 1600

    Returns:
1601
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1602 1603 1604
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1605 1606 1607 1608 1609

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1610 1611
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1612
          #  [0, 1, 0]
1613 1614
          #  [0, 0, 1]]

1615
          data = fluid.layers.eye(2, 3, dtype='int32')
1616
          # [[1, 0, 0]
1617
          #  [0, 1, 0]]
1618 1619

          data = fluid.layers.eye(2, batch_shape=[3])
1620 1621 1622 1623 1624
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1625 1626
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1627 1628 1629 1630 1631
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1654 1655

    if batch_shape is not None:
1656 1657 1658 1659 1660 1661 1662
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1663 1664
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1665
        for batch_val in (batch_shape):
1666 1667
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1668 1669 1670 1671 1672 1673

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1674 1675 1676
    return out


Z
zhoukunsheng 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1689
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1700 1701
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1702 1703 1704 1705

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1706 1707 1708 1709
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1710 1711 1712 1713 1714 1715
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out