tensor.py 65.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
J
Jiabin Yang 已提交
24
from ..framework import convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
J
Jiabin Yang 已提交
246
    if _non_static_mode():
247 248
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
249
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
250
        return out
251

252
    check_variable_and_dtype(x, 'x', [
253 254
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
255
    ], 'cast')
256
    check_dtype(dtype, 'dtype', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
259 260 261
    ], 'cast')

    helper = LayerHelper('cast', **locals())
262 263
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


273
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
274
    """
275
    This OP concatenates the input along the axis.
276 277

    Args:
278 279
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
280 281
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
282
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
283
            as ``axis+R``. Default is 0.
284 285 286
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
287 288

    Returns:
289
        Tensor: A Tensor with the same data type as ``input``.
290 291 292

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
293

294
            import paddle.fluid as fluid
295 296
            import numpy as np

297 298 299 300 301 302
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
303 304 305 306
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
307 308
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
309 310
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
311 312 313 314 315 316 317 318
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
319
    """
320

J
Jiabin Yang 已提交
321
    if _non_static_mode():
S
songyouwei 已提交
322 323
        if isinstance(axis, Variable):
            axis = axis.numpy()
324
            axis = axis.item(0)
325 326
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
327
        return _C_ops.concat(input, 'axis', axis)
328

329 330 331 332 333 334 335 336 337 338 339
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
340
        input = [input]
341
    check_type(axis, 'axis', (int, Variable), 'concat')
342

343 344 345 346 347
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

348
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
349
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
350 351

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
352 353 354 355
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

356
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
357
                "number of the elements must be 1, but received %s." % len(input)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
377 378 379
    return out


G
Guo Sheng 已提交
380
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
381
    r"""
G
Guo Sheng 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
432 433

    Args:
G
Guo Sheng 已提交
434 435 436 437 438 439 440
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
441 442

    Returns:
G
Guo Sheng 已提交
443 444 445
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
446 447 448 449

    Examples:
        .. code-block:: python

450
            import paddle.fluid as fluid
451
            import numpy as np
G
Guo Sheng 已提交
452 453 454 455 456 457 458
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
459
    """
J
Jiabin Yang 已提交
460
    if _non_static_mode():
461 462 463 464 465 466 467 468 469 470
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

471 472 473 474 475
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
476
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
477 478 479
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
480
        type='tensor_array_to_tensor',
L
li099 已提交
481 482 483
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
484 485
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
486 487 488
    return out, out_index


489
def sums(input, out=None):
490
    r"""
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
512 513

    Args:
514 515 516 517
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
518 519

    Returns:
520 521
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
522 523

    Examples:
F
fengjiayi 已提交
524
        .. code-block:: python
K
kavyasrinet 已提交
525

526 527 528 529 530 531 532 533 534
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
535

536 537
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
538
    """
539 540 541 542
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
543
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
544 545
    else:
        check_variable_and_dtype(input, "input", \
546
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
547

Y
Yu Yang 已提交
548 549
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
550 551
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
552 553 554 555
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
556 557 558 559 560
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
561 562 563
    return out


F
fengjiayi 已提交
564
def assign(input, output=None):
565
    """
S
swtkiwi 已提交
566

567
    The OP copies the :attr:`input` to the :attr:`output`.
568

569
    Parameters:
570 571 572 573
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
574
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
575
            be created as :attr:`output`. Default: None.
576 577

    Returns:
578
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
579 580 581

    Examples:
        .. code-block:: python
582

583
          import paddle
584
          import numpy as np
585
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
586 587 588 589
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
590 591 592
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
593
    """
Y
Yu Yang 已提交
594
    helper = LayerHelper('assign', **locals())
595 596
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
597 598
    is_inplace = True if output is not None else False

599 600 601 602
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
603 604
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
605
    # but _non_static_mode()==False under @to_static, which means
606 607 608
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        if _non_static_mode():
            if output is None:
                if _in_legacy_dygraph():
                    output = core.VarBase()
                else:
                    output = core.eager.Tensor()
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
627
    elif isinstance(input, numpy.ndarray):
628 629 630 631 632
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
633
        dtype = convert_np_dtype_to_dtype_(input.dtype)
634 635 636 637 638 639 640 641
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
642 643
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
644
            values = [int(v) for v in input.flat]
645
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
646
            value_name = "fp32_values"
647
            values = [float(v) for v in input.flat]
648
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
649
            value_name = "int32_values"
650
            values = [int(v) for v in input.flat]
651 652 653
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
654
        else:
655 656
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
657
                "the data type of 'input' must be bool, float32, int32 or int64, but "
658
                "received %s." % convert_dtype(dtype))
659 660 661
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
662 663 664
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
665 666 667 668 669 670
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
671
                value_name: values
X
xuwei06 已提交
672 673
            })

J
Jiabin Yang 已提交
674
    if is_inplace and _non_static_mode():
675
        output._bump_inplace_version()
676

Y
Yu Yang 已提交
677 678 679
    return output


680
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
681
    """
S
swtkiwi 已提交
682

W
wangchaochaohu 已提交
683
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
684
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
685

T
tianshuo78520a 已提交
686
    The attribute `stop_gradient` of the created Tensor is set to True.
687 688

    Args:
689 690 691
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
692
        dtype(np.dtype|str): Data type of the output Tensor which can
693
            be float16, float32, float64, uint8, int16, int32, int64.
694 695 696 697 698 699
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
700 701
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
702 703

    Returns:
704
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
705

706 707 708
    Examples:
        .. code-block:: python

709
          import paddle.fluid as fluid
710
          # attr shape is a list which doesn't contain  Tensor.
711 712
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
713
          # data1=[[5], [5]] data2=[[5], [5]]
714

715
          # attr shape is a list which contains Tensor.
716
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
717
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
718

719
          # attr shape is a Tensor.
720
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
721
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
722
          
723
          # attr value is a Tensor.
W
wangchaochaohu 已提交
724 725
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
726
    """
727

W
wangchaochaohu 已提交
728
    attrs = {'force_cpu': force_cpu}
729
    dtype = convert_dtype(dtype)
730
    if not isinstance(value, Variable):
731
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
732
            attrs['str_value'] = str(int(value))
733
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
734 735
        else:
            attrs['str_value'] = str(float(value))
736
            attrs['value'] = float(value)
737

J
Jiabin Yang 已提交
738
    if _non_static_mode():
739
        shape = utils.convert_shape_to_list(shape)
740 741
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
742 743

        if isinstance(value, Variable):
744
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
745
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
746
            else:
747
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
748

W
wanghuancoder 已提交
749 750 751 752
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
753 754 755
        out.stop_gradient = True
        return out

756 757 758
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
759 760
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
761 762
        inputs['ValueTensor'] = value

763
    check_shape(shape)
764 765
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
766
        'int64', 'complex64', 'complex128'
767
    ], 'fill_constant')
768
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
769

770 771 772 773 774
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
775
    utils.get_shape_tensor_inputs(
776
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
777

Y
Yu Yang 已提交
778
    if out is None:
X
Xin Pan 已提交
779
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
780
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
781 782
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
783
        inputs=inputs,
Y
Yu Yang 已提交
784
        outputs={'Out': [out]},
L
liym27 已提交
785
        attrs=attrs,
M
minqiyang 已提交
786
        stop_gradient=True)
Y
Yu Yang 已提交
787 788 789 790
    out.stop_gradient = True
    return out


791
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
792
@templatedoc()
Y
Yu Yang 已提交
793 794 795 796 797
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
798 799
                                  output_dim_idx=0,
                                  force_cpu=False):
800
    """
T
tianshuo78520a 已提交
801
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
802 803 804 805
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
806 807

    Args:
W
wangchaochaohu 已提交
808 809 810 811 812 813 814 815 816 817 818
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
819
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
820 821

    Returns:
W
wangchaochaohu 已提交
822
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
823 824 825 826 827

    Examples:

        .. code-block:: python

828
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
829
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
830
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
831
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
832

833
    """
Y
Yu Yang 已提交
834
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
835
    out = helper.create_variable_for_type_inference(dtype=dtype)
836 837 838 839 840 841
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
842
        'force_cpu': force_cpu
843 844 845 846 847
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
848 849 850 851
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
852
        attrs=attrs)
Y
Yu Yang 已提交
853 854 855 856
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
857 858
def argmin(x, axis=0):
    """
859 860 861
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
862

S
sneaxiy 已提交
863 864
    **argmin**

865 866
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
867 868

    Args:
869 870 871 872 873
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
874

S
sneaxiy 已提交
875
    Returns:
876
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
877

S
sneaxiy 已提交
878 879
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
880

881
            import paddle.fluid as fluid
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
909
    """
910 911 912
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
913
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
914
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
915 916 917 918 919
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
920
    out.stop_gradient = True
S
sneaxiy 已提交
921 922 923 924 925 926 927
    return out


def argmax(x, axis=0):
    """
    **argmax**

928 929
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
930 931

    Args:
932 933 934 935 936
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
937

S
sneaxiy 已提交
938
    Returns:
939
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
940

S
sneaxiy 已提交
941 942
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
943

944
            import paddle.fluid as fluid
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
972
    """
973 974 975
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
976
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
977
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
978 979 980 981 982
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
983
    out.stop_gradient = True
S
sneaxiy 已提交
984 985 986
    return out


987
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
988
    """
989 990 991
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
992

993 994 995
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
996 997

    Args:
998 999 1000 1001 1002
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1003 1004 1005
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1006 1007 1008
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1009 1010

    Returns:
1011 1012 1013
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1014 1015 1016 1017

    Examples:
        .. code-block:: python

1018
            import paddle.fluid as fluid
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1060
    """
1061 1062 1063
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1064
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1065 1066 1067 1068
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1069 1070 1071 1072
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1073
                 'Indices': ids},
1074 1075
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1076 1077 1078
    return out, ids


Y
Yang Yu 已提交
1079
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1080
    """
1081 1082
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1083

1084
    Parameters:
1085
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1086
        dtype (np.dtype|str): Data type of output Tensor, it supports
1087
            bool, float16, float32, float64, int32 and int64.
1088 1089
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1090
            Default: False.
1091 1092

    Returns:
1093
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1094 1095 1096 1097

    Examples:
        .. code-block:: python

1098
          import paddle.fluid as fluid
1099 1100 1101 1102 1103
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1104 1105 1106 1107
    """
    return fill_constant(value=1.0, **locals())


1108
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1109
    """
1110 1111
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1112

1113
    Parameters:
1114
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1115
        dtype (np.dtype|str): Data type of output Tensor, it supports
1116
            bool, float16, float32, float64, int32 and int64.
1117 1118
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1119
            Default: False.
1120 1121
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1122 1123

    Returns:
1124
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1125 1126 1127 1128

    Examples:
        .. code-block:: python

1129
          import paddle.fluid as fluid
1130
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1131 1132 1133 1134
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1135 1136
    """
    return fill_constant(value=0.0, **locals())
1137 1138


F
fengjiayi 已提交
1139 1140
def reverse(x, axis):
    """
1141 1142 1143
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1144

1145
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1171
    Parameters:
1172 1173
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1174 1175
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1176 1177
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1178 1179

    Returns:
1180
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1181 1182 1183 1184

    Examples:
        .. code-block:: python

1185
          import paddle.fluid as fluid
1186 1187 1188 1189
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1200
    """
1201 1202 1203
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1204 1205 1206
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1207
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1208 1209
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1210
        inputs={'X': x},
F
fengjiayi 已提交
1211 1212 1213 1214 1215
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1216 1217 1218 1219 1220 1221 1222
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1223 1224 1225
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1241 1242
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1243
        file_path(str): The file path where variables will be saved.
1244
        overwrite(bool): Whether or not cover the given file when it has already
1245 1246
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1247 1248 1249 1250 1251 1252 1253 1254

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1255
            import paddle.fluid as fluid
1256 1257 1258 1259 1260 1261 1262
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1275
    Loads a list of variable from a single file.
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1287 1288 1289 1290 1291 1292 1293


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1294
       x (Tensor): The Tensor to be checked.
1295 1296

    Returns:
S
Steffy-zxf 已提交
1297
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1298 1299 1300 1301
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1302 1303
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1304
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1305
          # [False]
1306

1307
    """
J
Jiabin Yang 已提交
1308
    if _non_static_mode():
W
wanghuancoder 已提交
1309
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1310

1311
    check_type(x, 'x', (Variable), 'has_inf')
1312
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1313
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1314 1315 1316 1317 1318 1319 1320 1321 1322
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1323
       x (Tensor): The Tensor to be checked.
1324 1325

    Returns:
S
Steffy-zxf 已提交
1326
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1327 1328 1329 1330
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1331 1332
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1333
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1334
          # [False]
1335

1336
    """
J
Jiabin Yang 已提交
1337
    if _non_static_mode():
W
wanghuancoder 已提交
1338
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1339

1340
    check_type(x, 'x', (Variable), 'has_nan')
1341
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1342
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1343 1344 1345 1346 1347 1348
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1349

1350 1351 1352 1353
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1354
        x(Tensor): The Tensor to be checked.
1355 1356

    Returns:
N
Noel 已提交
1357
        Tensor: The tensor storing the output, contains a bool value.
1358 1359 1360 1361 1362

    Examples:

        .. code-block:: python

N
Noel 已提交
1363 1364 1365 1366 1367 1368
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1369
    """
1370 1371
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1372
    helper = LayerHelper("isfinite", **locals())
1373

1374
    out = helper.create_variable_for_type_inference(dtype='bool')
1375 1376
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1377 1378


1379
def range(start, end, step, dtype, name=None):
W
whs 已提交
1380
    """
1381
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1382

1383 1384
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1385

1386 1387
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1388

L
Liufang Sang 已提交
1389
    Parameters:
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1413 1414 1415 1416 1417

    examples:

        .. code-block:: python

1418
            import paddle.fluid as fluid
W
whs 已提交
1419

1420 1421
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1422

1423 1424 1425 1426 1427 1428 1429
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1430

W
whs 已提交
1431
    if not isinstance(start, Variable):
1432
        with device_guard("cpu"):
1433
            start = fill_constant([1], dtype, start, force_cpu=True)
1434 1435
    elif start.dtype != dtype:
        start = cast(start, dtype)
1436

W
whs 已提交
1437
    if not isinstance(end, Variable):
1438
        with device_guard("cpu"):
1439
            end = fill_constant([1], dtype, end, force_cpu=True)
1440 1441
    elif end.dtype != dtype:
        end = cast(end, dtype)
1442

W
whs 已提交
1443
    if not isinstance(step, Variable):
1444
        with device_guard("cpu"):
1445
            step = fill_constant([1], dtype, step, force_cpu=True)
1446 1447
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1448

J
Jiabin Yang 已提交
1449
    if _non_static_mode():
J
Jiawei Wang 已提交
1450 1451 1452
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1453

W
wanghuancoder 已提交
1454 1455 1456 1457 1458
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1459 1460 1461
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1462
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1463 1464 1465 1466 1467
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1468
        outputs={'Out': out})
1469
    out.stop_gradient = True
W
whs 已提交
1470
    return out
Z
zhoukunsheng 已提交
1471 1472


1473
def linspace(start, stop, num, dtype=None, name=None):
1474
    r"""
1475
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1476 1477

    Args:
1478 1479 1480 1481
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1482
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1483
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1484
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1485
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1486 1487
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1488 1489

    Returns:
1490
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1491 1492
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1493

Z
zhoukunsheng 已提交
1494
    Examples:
Z
zhoukunsheng 已提交
1495 1496
        .. code-block:: python

1497 1498 1499
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1500 1501

    """
1502 1503
    if dtype is None:
        dtype = 'float32'
1504 1505 1506
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1507 1508
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1509 1510
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1511
    if not isinstance(start, Variable):
1512 1513
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1514
    if not isinstance(stop, Variable):
1515 1516
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1517
    if not isinstance(num, Variable):
1518 1519
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
J
Jiabin Yang 已提交
1520
    if _non_static_mode():
W
wanghuancoder 已提交
1521 1522
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1523 1524 1525

    helper = LayerHelper("linspace", **locals())

1526 1527 1528
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1529
    if isinstance(start, Variable):
1530 1531
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1532 1533
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1534

1535
    if isinstance(stop, Variable):
1536 1537
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1538 1539 1540 1541 1542 1543
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1544 1545 1546 1547 1548 1549 1550 1551
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1552 1553

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1554 1555 1556

    helper.append_op(
        type='linspace',
1557 1558 1559 1560
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1561
        outputs={'Out': [out]})
1562 1563
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1564
    return out
1565 1566


Z
zhoukunsheng 已提交
1567 1568
def zeros_like(x, out=None):
    """
1569
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1570 1571 1572
    with `x`.

    Args:
1573 1574 1575 1576 1577 1578
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1579 1580

    Returns:
1581 1582 1583
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1584 1585 1586 1587

    Examples:
        .. code-block:: python

1588
          import paddle.fluid as fluid
1589
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1590 1591
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1592 1593
    """

1594 1595
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1596 1597 1598
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1599 1600 1601
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1602
            'zeros_like')
1603

Z
zhoukunsheng 已提交
1604 1605 1606 1607
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1608 1609


1610
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1611
def diag(diagonal):
1612
    r"""
1613 1614 1615
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1616

1617
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1618 1619

    Args:
1620 1621
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1622 1623

    Returns:
1624 1625
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1626 1627 1628 1629 1630 1631 1632

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1633 1634 1635

          import paddle.fluid as fluid
          import numpy as np
1636 1637 1638
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1639 1640

    """
1641 1642 1643
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1656 1657


1658 1659 1660 1661 1662
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1663
    """
1664
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1665 1666 1667

    Args:
        num_rows(int): the number of rows in each batch tensor.
1668 1669
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1670 1671
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1672
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1673 1674 1675 1676
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1677 1678

    Returns:
1679
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1680 1681 1682 1683 1684

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1685 1686
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1687
          #  [0, 1, 0]
1688 1689
          #  [0, 0, 1]]

1690
          data = fluid.layers.eye(2, 3, dtype='int32')
1691
          # [[1, 0, 0]
1692
          #  [0, 1, 0]]
1693 1694

          data = fluid.layers.eye(2, batch_shape=[3])
1695 1696 1697 1698 1699
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1700 1701
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1702 1703 1704 1705 1706
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1707

J
Jiabin Yang 已提交
1708
    if _non_static_mode():
W
wanghuancoder 已提交
1709 1710
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1729 1730

    if batch_shape is not None:
1731 1732 1733
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1734
        if _non_static_mode():
W
wanghuancoder 已提交
1735 1736
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1737

1738 1739
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1740
        for batch_val in (batch_shape):
1741 1742
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1743 1744 1745 1746 1747 1748

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1749 1750 1751
    return out


Z
zhoukunsheng 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1764
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1775 1776
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1777 1778 1779 1780

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1781 1782 1783 1784
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1785 1786 1787 1788 1789 1790
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1791 1792 1793 1794 1795 1796


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)