tensor.py 65.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
65 66 67
]


X
xuwei06 已提交
68
def create_tensor(dtype, name=None, persistable=False):
69
    """
W
wangchaochaohu 已提交
70
    Create a variable, which will hold a Tensor with data type dtype.
71 72

    Args:
W
wangchaochaohu 已提交
73 74 75 76
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
77
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
78
            default value is False.
79 80

    Returns:
W
wangchaochaohu 已提交
81
        Variable: The tensor to be created according to dtype.
82 83 84 85

    Examples:
        .. code-block:: python

86
          import paddle.fluid as fluid
87 88
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
89 90 91 92
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
93
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
94 95
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
154
    helper = LayerHelper("create_parameter", **locals())
155
    if attr is None:
X
xuwei06 已提交
156
        attr = ParamAttr(name=name)
157 158
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
159 160 161
                                   default_initializer)


162 163 164 165 166 167 168
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
169
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
170

171
    Parameters:
172
        shape (list[int]|tuple[int]): Shape of the variable
173
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
174
                      variable will be filled with it.
175 176
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
177
                           Default: False
178
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
179
                         Default: False
180 181
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
182 183

    Returns:
184
        Variable: The created Variable
F
fengjiayi 已提交
185 186 187 188

    Examples:
        .. code-block:: python

189 190 191
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
192
                                           persistable=True, force_cpu=True, name='new_var')
193
    """
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
211 212
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
213 214 215 216 217
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
218 219 220
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
221

Q
Qiao Longfei 已提交
222 223 224
    return var


225
def cast(x, dtype):
Y
Yu Yang 已提交
226
    """
S
swtkiwi 已提交
227

228
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
229 230
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
231 232

    Args:
233
        x(Tensor): An input N-D Tensor with data type bool, float16,
234 235
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
236
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
237 238

    Returns:
239
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
240 241 242

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
243

244
            import paddle
245

246 247
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
248
    """
249 250 251 252
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
253
        return out
254

255 256 257 258
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
259 260
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
261
        'uint8', 'uint16'
262 263 264
    ], 'cast')

    helper = LayerHelper('cast', **locals())
265 266
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
267 268 269 270 271 272 273 274 275
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


276
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
277
    """
278
    This OP concatenates the input along the axis.
279 280

    Args:
281 282
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
283 284
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
285
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
286
            as ``axis+R``. Default is 0.
287 288 289
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
290 291

    Returns:
292
        Tensor: A Tensor with the same data type as ``input``.
293 294 295

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
296

297
            import paddle.fluid as fluid
298 299
            import numpy as np

300 301 302 303 304 305
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
306 307 308 309
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
310 311
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
312 313
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
314 315 316 317 318 319 320 321
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
322
    """
323 324

    if in_dygraph_mode():
S
songyouwei 已提交
325 326
        if isinstance(axis, Variable):
            axis = axis.numpy()
327
            axis = axis.item(0)
328
        return core.ops.concat(input, 'axis', axis)
329

330 331 332 333 334 335 336 337 338 339 340
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
341
        input = [input]
342
    check_type(axis, 'axis', (int, Variable), 'concat')
343

344 345 346 347 348
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

349
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
350
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
351 352

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
353 354 355 356
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

357
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
358
                "number of the elements must be 1, but received %s." % len(input)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
378 379 380
    return out


G
Guo Sheng 已提交
381
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
382
    r"""
G
Guo Sheng 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
433 434

    Args:
G
Guo Sheng 已提交
435 436 437 438 439 440 441
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
442 443

    Returns:
G
Guo Sheng 已提交
444 445 446
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
447 448 449 450

    Examples:
        .. code-block:: python

451
            import paddle.fluid as fluid
452
            import numpy as np
G
Guo Sheng 已提交
453 454 455 456 457 458 459
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
460
    """
461 462 463 464 465 466 467 468 469 470 471
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

472 473 474 475 476
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
477
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
478 479 480
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
481
        type='tensor_array_to_tensor',
L
li099 已提交
482 483 484
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
485 486
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
487 488 489
    return out, out_index


490
def sums(input, out=None):
491
    r"""
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
513 514

    Args:
515 516 517 518
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
519 520

    Returns:
521 522
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
523 524

    Examples:
F
fengjiayi 已提交
525
        .. code-block:: python
K
kavyasrinet 已提交
526

527 528 529 530 531 532 533 534 535
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
536

537 538
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
539
    """
540 541 542 543 544 545 546 547 548
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
549 550
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
551 552
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
553 554 555 556
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
557 558 559 560 561
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
562 563 564
    return out


F
fengjiayi 已提交
565
def assign(input, output=None):
566
    """
S
swtkiwi 已提交
567

568
    The OP copies the :attr:`input` to the :attr:`output`.
569

570
    Parameters:
571 572 573 574
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
575
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
576
            be created as :attr:`output`. Default: None.
577 578

    Returns:
579
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
580 581 582

    Examples:
        .. code-block:: python
583

584
          import paddle
585
          import numpy as np
586
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
587 588 589 590
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
591 592 593
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
594
    """
Y
Yu Yang 已提交
595
    helper = LayerHelper('assign', **locals())
596 597
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
598 599
    is_inplace = True if output is not None else False

600 601 602 603
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
604 605 606 607 608 609
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
610
        check_dtype(input.dtype, 'input', [
611 612
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
613
        ], 'assign', '(When the type of input in assign is Variable.)')
614 615 616
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
617
        helper.append_op(
R
robot 已提交
618
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
619 620
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
621 622 623 624 625 626 627 628
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
629 630 631 632
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
633
            value_name = "fp32_values"
634
            values = [float(v) for v in input.flat]
635
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
636
            value_name = "int32_values"
637
            values = [int(v) for v in input.flat]
638 639 640
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
641
        else:
642 643
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
644
                "the data type of 'input' must be bool, float32, int32 or int64, but "
645
                "received %s." % convert_dtype(dtype))
646 647 648
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
649 650 651
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
652 653 654 655 656 657
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
658
                value_name: values
X
xuwei06 已提交
659 660
            })

661 662 663
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
664 665 666
    return output


667
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
668
    """
S
swtkiwi 已提交
669

W
wangchaochaohu 已提交
670
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
671
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
672

T
tianshuo78520a 已提交
673
    The attribute `stop_gradient` of the created Tensor is set to True.
674 675

    Args:
676 677 678
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
679
        dtype(np.dtype|str): Data type of the output Tensor which can
680
            be float16, float32, float64, uint8, int32, int64.
681 682 683 684 685 686
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
687 688
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
689 690

    Returns:
691
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
692

693 694 695
    Examples:
        .. code-block:: python

696
          import paddle.fluid as fluid
697
          # attr shape is a list which doesn't contain  Tensor.
698 699
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
700
          # data1=[[5], [5]] data2=[[5], [5]]
701

702
          # attr shape is a list which contains Tensor.
703
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
704
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
705

706
          # attr shape is a Tensor.
707
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
708
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
709
          
710
          # attr value is a Tensor.
W
wangchaochaohu 已提交
711 712
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
713
    """
714

W
wangchaochaohu 已提交
715
    attrs = {'force_cpu': force_cpu}
716
    dtype = convert_dtype(dtype)
717
    if not isinstance(value, Variable):
718
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
719
            attrs['str_value'] = str(int(value))
720
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
721 722
        else:
            attrs['str_value'] = str(float(value))
723
            attrs['value'] = float(value)
724 725

    if in_dygraph_mode():
726
        shape = utils.convert_shape_to_list(shape)
727 728
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
729 730

        if isinstance(value, Variable):
731
            if dtype in ['uint8', 'int64', 'int32']:
732
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
733
            else:
734
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
735

736 737
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
738 739
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
740 741 742
        out.stop_gradient = True
        return out

743 744 745
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
746 747
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
748 749
        inputs['ValueTensor'] = value

750
    check_shape(shape)
751 752 753 754
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
755
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
756

757 758 759 760 761
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
762
    utils.get_shape_tensor_inputs(
763
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
764

Y
Yu Yang 已提交
765
    if out is None:
X
Xin Pan 已提交
766
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
767
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
768 769
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
770
        inputs=inputs,
Y
Yu Yang 已提交
771
        outputs={'Out': [out]},
L
liym27 已提交
772
        attrs=attrs,
M
minqiyang 已提交
773
        stop_gradient=True)
Y
Yu Yang 已提交
774 775 776 777
    out.stop_gradient = True
    return out


778
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
779
@templatedoc()
Y
Yu Yang 已提交
780 781 782 783 784
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
785 786
                                  output_dim_idx=0,
                                  force_cpu=False):
787
    """
T
tianshuo78520a 已提交
788
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
789 790 791 792
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
793 794

    Args:
W
wangchaochaohu 已提交
795 796 797 798 799 800 801 802 803 804 805
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
806
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
807 808

    Returns:
W
wangchaochaohu 已提交
809
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
810 811 812 813 814

    Examples:

        .. code-block:: python

815
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
816
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
817
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
818
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
819

820
    """
Y
Yu Yang 已提交
821
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
822
    out = helper.create_variable_for_type_inference(dtype=dtype)
823 824 825 826 827 828
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
829
        'force_cpu': force_cpu
830 831 832 833 834
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
835 836 837 838
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
839
        attrs=attrs)
Y
Yu Yang 已提交
840 841 842 843
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
844 845
def argmin(x, axis=0):
    """
846 847 848
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
849

S
sneaxiy 已提交
850 851
    **argmin**

852 853
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
854 855

    Args:
856 857 858 859 860
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
861

S
sneaxiy 已提交
862
    Returns:
863
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
864

S
sneaxiy 已提交
865 866
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
867

868
            import paddle.fluid as fluid
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
896
    """
897 898 899
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
900
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
901
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
902 903 904 905 906
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
907
    out.stop_gradient = True
S
sneaxiy 已提交
908 909 910 911 912 913 914
    return out


def argmax(x, axis=0):
    """
    **argmax**

915 916
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
917 918

    Args:
919 920 921 922 923
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
924

S
sneaxiy 已提交
925
    Returns:
926
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
927

S
sneaxiy 已提交
928 929
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
930

931
            import paddle.fluid as fluid
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
959
    """
960 961 962
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
963
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
964
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
965 966 967 968 969
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
970
    out.stop_gradient = True
S
sneaxiy 已提交
971 972 973
    return out


974
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
975
    """
976 977 978
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
979

980 981 982
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
983 984

    Args:
985 986 987 988 989
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
990 991 992
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
993 994 995
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
996 997

    Returns:
998 999 1000
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1001 1002 1003 1004

    Examples:
        .. code-block:: python

1005
            import paddle.fluid as fluid
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1047
    """
1048 1049 1050
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1051
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1052 1053 1054 1055
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1056 1057 1058 1059
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1060
                 'Indices': ids},
1061 1062
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1063 1064 1065
    return out, ids


Y
Yang Yu 已提交
1066
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1067
    """
1068 1069
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1070

1071
    Parameters:
1072
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1073
        dtype (np.dtype|str): Data type of output Tensor, it supports
1074
            bool, float16, float32, float64, int32 and int64.
1075 1076
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1077
            Default: False.
1078 1079

    Returns:
1080
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1081 1082 1083 1084

    Examples:
        .. code-block:: python

1085
          import paddle.fluid as fluid
1086 1087 1088 1089 1090
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1091 1092 1093 1094
    """
    return fill_constant(value=1.0, **locals())


1095
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1096
    """
1097 1098
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1099

1100
    Parameters:
1101
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1102
        dtype (np.dtype|str): Data type of output Tensor, it supports
1103
            bool, float16, float32, float64, int32 and int64.
1104 1105
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1106
            Default: False.
1107 1108
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1109 1110

    Returns:
1111
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1112 1113 1114 1115

    Examples:
        .. code-block:: python

1116
          import paddle.fluid as fluid
1117
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1118 1119 1120 1121
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1122 1123
    """
    return fill_constant(value=0.0, **locals())
1124 1125


F
fengjiayi 已提交
1126 1127
def reverse(x, axis):
    """
1128 1129 1130
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1131

1132
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1158
    Parameters:
1159 1160
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1161 1162
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1163 1164
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1165 1166

    Returns:
1167
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1168 1169 1170 1171

    Examples:
        .. code-block:: python

1172
          import paddle.fluid as fluid
1173 1174 1175 1176
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1187
    """
1188 1189 1190
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1191 1192 1193
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1194
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1195 1196
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1197
        inputs={'X': x},
F
fengjiayi 已提交
1198 1199 1200 1201 1202
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1203 1204 1205 1206 1207 1208 1209
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1210 1211 1212
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1228 1229
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1230
        file_path(str): The file path where variables will be saved.
1231
        overwrite(bool): Whether or not cover the given file when it has already
1232 1233
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1234 1235 1236 1237 1238 1239 1240 1241

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1242
            import paddle.fluid as fluid
1243 1244 1245 1246 1247 1248 1249
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1262
    Loads a list of variable from a single file.
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1274 1275 1276 1277 1278 1279 1280


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1281
       x (Tensor): The Tensor to be checked.
1282 1283

    Returns:
S
Steffy-zxf 已提交
1284
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1285 1286 1287 1288
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1289 1290
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1291
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1292
          # [False]
1293

1294
    """
S
Steffy-zxf 已提交
1295 1296 1297
    if in_dygraph_mode():
        return core.ops.isinf(x)

1298
    check_type(x, 'x', (Variable), 'has_inf')
1299
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1300
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1301 1302 1303 1304 1305 1306 1307 1308 1309
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1310
       x (Tensor): The Tensor to be checked.
1311 1312

    Returns:
S
Steffy-zxf 已提交
1313
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1314 1315 1316 1317
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1318 1319
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1320
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1321
          # [False]
1322

1323
    """
S
Steffy-zxf 已提交
1324 1325 1326
    if in_dygraph_mode():
        return core.ops.isnan(x)

1327
    check_type(x, 'x', (Variable), 'has_nan')
1328
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1329
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1330 1331 1332 1333 1334 1335
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1336

1337 1338 1339 1340
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1341
        x(Tensor): The Tensor to be checked.
1342 1343

    Returns:
N
Noel 已提交
1344
        Tensor: The tensor storing the output, contains a bool value.
1345 1346 1347 1348 1349

    Examples:

        .. code-block:: python

N
Noel 已提交
1350 1351 1352 1353 1354 1355
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1356
    """
1357 1358
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1359
    helper = LayerHelper("isfinite", **locals())
1360

1361
    out = helper.create_variable_for_type_inference(dtype='bool')
1362 1363
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1364 1365


1366
def range(start, end, step, dtype, name=None):
W
whs 已提交
1367
    """
1368
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1369

1370 1371
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1372

1373 1374
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1375

L
Liufang Sang 已提交
1376
    Parameters:
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1400 1401 1402 1403 1404

    examples:

        .. code-block:: python

1405
            import paddle.fluid as fluid
W
whs 已提交
1406

1407 1408
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1409

1410 1411 1412 1413 1414 1415 1416
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1417

1418 1419 1420 1421 1422
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1423
    if not isinstance(start, Variable):
1424
        with device_guard("cpu"):
1425
            start = fill_constant([1], dtype, start, force_cpu=True)
1426 1427
    elif start.dtype != dtype:
        start = cast(start, dtype)
1428

W
whs 已提交
1429
    if not isinstance(end, Variable):
1430
        with device_guard("cpu"):
1431
            end = fill_constant([1], dtype, end, force_cpu=True)
1432 1433
    elif end.dtype != dtype:
        end = cast(end, dtype)
1434

W
whs 已提交
1435
    if not isinstance(step, Variable):
1436
        with device_guard("cpu"):
1437
            step = fill_constant([1], dtype, step, force_cpu=True)
1438 1439
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1440

1441 1442
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1443

1444 1445 1446
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1447
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1448 1449 1450 1451 1452
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1453
        outputs={'Out': out})
1454
    out.stop_gradient = True
W
whs 已提交
1455
    return out
Z
zhoukunsheng 已提交
1456 1457


1458
def linspace(start, stop, num, dtype=None, name=None):
1459
    r"""
1460
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1461 1462

    Args:
1463 1464 1465 1466
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1467
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1468
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1469
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1470
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1471 1472
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1473 1474

    Returns:
1475
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1476 1477
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1478

Z
zhoukunsheng 已提交
1479
    Examples:
Z
zhoukunsheng 已提交
1480 1481
        .. code-block:: python

1482 1483 1484
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1485 1486

    """
1487 1488
    if dtype is None:
        dtype = 'float32'
1489 1490 1491
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1492 1493
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1494 1495
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1496
    if not isinstance(start, Variable):
1497 1498
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1499
    if not isinstance(stop, Variable):
1500 1501
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1502
    if not isinstance(num, Variable):
1503 1504
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1505
    if in_dygraph_mode():
1506 1507
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1508 1509 1510

    helper = LayerHelper("linspace", **locals())

1511 1512 1513
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1514
    if isinstance(start, Variable):
1515 1516
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1517 1518
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1519

1520
    if isinstance(stop, Variable):
1521 1522
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1523 1524 1525 1526 1527 1528
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1529 1530 1531 1532 1533 1534 1535 1536
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1537 1538

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1539 1540 1541

    helper.append_op(
        type='linspace',
1542 1543 1544 1545
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1546
        outputs={'Out': [out]})
1547 1548
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1549
    return out
1550 1551


Z
zhoukunsheng 已提交
1552 1553
def zeros_like(x, out=None):
    """
1554
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1555 1556 1557
    with `x`.

    Args:
1558 1559 1560 1561 1562 1563
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1564 1565

    Returns:
1566 1567 1568
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1569 1570 1571 1572

    Examples:
        .. code-block:: python

1573
          import paddle.fluid as fluid
1574
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1575 1576
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1577 1578
    """

1579 1580
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1581 1582 1583
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1584 1585 1586
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1587
            'zeros_like')
1588

Z
zhoukunsheng 已提交
1589 1590 1591 1592
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1593 1594


1595
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1596
def diag(diagonal):
1597
    r"""
1598 1599 1600
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1601

1602
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1603 1604

    Args:
1605 1606
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1607 1608

    Returns:
1609 1610
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1611 1612 1613 1614 1615 1616 1617

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1618 1619 1620

          import paddle.fluid as fluid
          import numpy as np
1621 1622 1623
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1624 1625

    """
1626 1627 1628
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1641 1642


1643 1644 1645 1646 1647
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1648
    """
1649
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1650 1651 1652

    Args:
        num_rows(int): the number of rows in each batch tensor.
1653 1654
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1655 1656
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1657
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1658 1659 1660 1661
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1662 1663

    Returns:
1664
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1665 1666 1667 1668 1669

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1670 1671
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1672
          #  [0, 1, 0]
1673 1674
          #  [0, 0, 1]]

1675
          data = fluid.layers.eye(2, 3, dtype='int32')
1676
          # [[1, 0, 0]
1677
          #  [0, 1, 0]]
1678 1679

          data = fluid.layers.eye(2, batch_shape=[3])
1680 1681 1682 1683 1684
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1685 1686
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1687 1688 1689 1690 1691
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1714 1715

    if batch_shape is not None:
1716 1717 1718 1719 1720
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1721
            return core.ops.expand(out, None, 'expand_times', expand_times)
1722

1723 1724
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1725
        for batch_val in (batch_shape):
1726 1727
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1728 1729 1730 1731 1732 1733

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1734 1735 1736
    return out


Z
zhoukunsheng 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1749
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1760 1761
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1762 1763 1764 1765

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1766 1767 1768 1769
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1770 1771 1772 1773 1774 1775
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1776 1777 1778 1779 1780 1781


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)