detection.py 177.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
import paddle

22 23
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
24
from ..layer_helper import LayerHelper
Z
zhiboniu 已提交
25
from ..framework import Variable, _non_static_mode, static_only, in_dygraph_mode
26
from .. import core
27
from .loss import softmax_with_cross_entropy
28 29
from . import tensor
from . import nn
30
from . import ops
M
minqiyang 已提交
31
from ... import compat as cpt
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
33
import math
M
minqiyang 已提交
34
import six
35
import numpy as np
36
from functools import reduce
37
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
38
from paddle.utils import deprecated
W
wanghuancoder 已提交
39
from paddle import _C_ops
L
lyq 已提交
40
from ..framework import in_dygraph_mode
41

C
chengduoZH 已提交
42
__all__ = [
43 44 45 46 47 48 49 50
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
51
    'retinanet_target_assign',
52
    'sigmoid_focal_loss',
53 54 55 56
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
57
    'generate_mask_labels',
58 59 60 61
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
62
    'yolo_box',
63
    'box_clip',
J
jerrywgz 已提交
64
    'multiclass_nms',
65
    'locality_aware_nms',
Y
Yang Zhang 已提交
66
    'matrix_nms',
67
    'retinanet_detection_output',
68
    'distribute_fpn_proposals',
69
    'box_decoder_and_assign',
70
    'collect_fpn_proposals',
C
chengduoZH 已提交
71
]
72 73


74 75 76 77 78 79 80 81 82 83 84
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
85
    r"""
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
110
    regression for each anchor, hence the target label for each positive(or negative)
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
125 126

    Args:
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
168
            information of each image is a 3-vector which are the height and width
169 170 171 172 173 174 175 176 177 178 179 180
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
181 182

    Returns:
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
224 225 226 227 228

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
229 230 231 232 233 234 235 236 237 238 239
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
240
                            dtype='int32')
241
          is_crowd = fluid.data(name='is_crowd', shape=[1],
242
                            dtype='int32')
243
          im_info = fluid.data(name='im_info', shape=[1, 3],
244
                            dtype='float32')
245
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
246 247 248 249 250
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

268 269 270 271 272 273 274 275 276 277
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    helper.append_op(type="retinanet_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'GtLabels': gt_labels,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight,
                         'ForegroundNumber': fg_num
                     },
                     attrs={
                         'positive_overlap': positive_overlap,
                         'negative_overlap': negative_overlap
                     })
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


314 315
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
316
                      anchor_box,
317
                      anchor_var,
318 319 320
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
321
                      rpn_batch_size_per_im=256,
322 323
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
324
                      rpn_positive_overlap=0.7,
325 326
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
327
    """
H
haowang101779990 已提交
328
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
346
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
347 348
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
349
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
350 351 352
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
353
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
354 355 356 357 358
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
359
            coordinate of the anchor box. The data type can be float32 or float64.
360
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
361
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
362
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
363
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
364
            bboxes of mini-batch input. The data type can be float32 or float64.
365
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
366
                             The data type must be int32.
367 368
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
369
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
370
                                    The data type must be int32.
371
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
372
            by straddle_thresh pixels. The data type must be float32.
373
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
374
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
375 376
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
377
            example. The data type must be float32.
Y
Yuan Gao 已提交
378 379
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
380
            examples. The data type must be float32.
Y
Yuan Gao 已提交
381 382

    Returns:
M
minqiyang 已提交
383
        tuple:
384 385 386 387 388 389 390 391 392 393 394 395 396
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
397 398 399 400

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
401
            import paddle.fluid as fluid
402 403 404 405 406 407 408
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
409 410
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
411

Y
Yuan Gao 已提交
412 413 414
    """

    helper = LayerHelper('rpn_target_assign', **locals())
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

431
    # Assign target label to anchors
J
jerrywgz 已提交
432 433 434 435 436 437 438
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    helper.append_op(type="rpn_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight
                     },
                     attrs={
                         'rpn_batch_size_per_im': rpn_batch_size_per_im,
                         'rpn_straddle_thresh': rpn_straddle_thresh,
                         'rpn_positive_overlap': rpn_positive_overlap,
                         'rpn_negative_overlap': rpn_negative_overlap,
                         'rpn_fg_fraction': rpn_fg_fraction,
                         'use_random': use_random
                     })
Y
Yuan Gao 已提交
461

462 463 464 465
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
466
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
467

468 469 470 471
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
472

J
jerrywgz 已提交
473
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
474 475


476
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
477
    r"""
478 479 480
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
481

482 483
    **Sigmoid Focal Loss Operator.**

484 485 486 487 488
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

489 490 491
    The focal loss is given as followed:

    .. math::
492 493 494 495 496 497 498
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

499 500 501 502 503 504 505

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
521
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
522
            set to 2.0.
523
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
524 525 526
            is set to 0.25.

    Returns:
527 528 529
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
530 531 532 533

    Examples:
        .. code-block:: python

534
            import numpy as np
535
            import paddle.fluid as fluid
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
601 602
    """

603 604 605 606 607
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

608 609 610 611
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

612 613 614 615 616 617 618 619 620 621 622
    helper.append_op(type="sigmoid_focal_loss",
                     inputs={
                         "X": x,
                         "Label": label,
                         "FgNum": fg_num
                     },
                     attrs={
                         "gamma": gamma,
                         'alpha': alpha
                     },
                     outputs={"Out": out})
623 624 625
    return out


Y
Yuan Gao 已提交
626 627
def detection_output(loc,
                     scores,
628 629 630 631 632 633 634
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
635 636
                     nms_eta=1.0,
                     return_index=False):
637
    """
S
swtkiwi 已提交
638

Q
qingqing01 已提交
639 640
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
641

Q
qingqing01 已提交
642 643
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
644 645 646 647 648
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
649 650 651

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
652 653
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
654 655
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
656
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
657 658 659
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
660
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
661 662
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
663
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
664 665
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
666
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
667 668
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
669
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
670
            to the confidences after filtering detections based on
Q
qingqing01 已提交
671
            score_threshold and before NMS. Default: 400.
672
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
673
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
674 675
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
676 677 678
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
679
        return_index(bool): Whether return selected index. Default: False
680 681

    Returns:
M
minqiyang 已提交
682

683 684 685
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
686 687 688 689 690 691 692 693 694 695 696 697
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
698 699 700
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

701 702 703 704

    Examples:
        .. code-block:: python

705
            import paddle.fluid as fluid
706 707 708
            import paddle

            paddle.enable_static()
709

Q
qingqing01 已提交
710 711 712 713
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
714
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
715 716
                                       loc=loc,
                                       prior_box=pb,
717 718
                                       prior_box_var=pbv,
                                       return_index=True)
719 720
    """
    helper = LayerHelper("detection_output", **locals())
721 722 723 724
    decoded_box = box_coder(prior_box=prior_box,
                            prior_box_var=prior_box_var,
                            target_box=loc,
                            code_type='decode_center_size')
725
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
726
    scores = nn.transpose(scores, perm=[0, 2, 1])
727
    scores.stop_gradient = True
X
Xin Pan 已提交
728 729
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
730 731
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        helper.append_op(type="multiclass_nms2",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={
                             'Out': nmsed_outs,
                             'Index': index
                         },
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
749 750
        index.stop_gradient = True
    else:
751 752 753 754 755 756 757 758 759 760 761 762 763 764
        helper.append_op(type="multiclass_nms",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={'Out': nmsed_outs},
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
765
    nmsed_outs.stop_gradient = True
766 767
    if return_index:
        return nmsed_outs, index
768
    return nmsed_outs
C
chengduoZH 已提交
769 770


X
Xin Pan 已提交
771
@templatedoc()
772
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
773
    """
774 775 776
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
777

X
Xin Pan 已提交
778 779 780
    ${comment}

    Args:
L
LielinJiang 已提交
781 782
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
783
        box_normalized(bool): Whether treat the priorbox as a normalized box.
784
            Set true by default.
X
Xin Pan 已提交
785
    Returns:
L
LielinJiang 已提交
786
        Variable: ${out_comment}.The data type is same with x.
787 788 789 790

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
791
            import numpy as np
792 793
            import paddle.fluid as fluid

L
LielinJiang 已提交
794 795 796 797 798 799
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
800
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
801 802 803 804 805 806 807 808 809 810 811

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
812 813
    """
    helper = LayerHelper("iou_similarity", **locals())
814
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
815

816 817 818 819 820 821 822
    helper.append_op(type="iou_similarity",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     attrs={"box_normalized": box_normalized},
                     outputs={"Out": out})
X
Xin Pan 已提交
823 824 825 826 827 828 829 830 831
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
832 833
              name=None,
              axis=0):
834
    r"""
S
swtkiwi 已提交
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
874 875

    Args:
876
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
877 878 879 880 881 882 883 884 885 886
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
887
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
888 889 890 891 892 893 894 895
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
896
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
897 898 899 900
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
901
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
902 903 904 905
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
906 907

    Returns:
W
wangguanzhong 已提交
908 909
        Variable:

910
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
911 912 913
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
914
        and M represents the number of decoded boxes.
915 916 917 918 919

    Examples:
 
        .. code-block:: python
 
920
            import paddle.fluid as fluid
921 922
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
923
            # For encode
924
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
925
                                  shape=[512, 4],
926 927 928 929
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
930 931 932 933 934
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
935
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
936
                                  shape=[512, 4],
937 938 939 940
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
941 942 943 944 945 946
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
947
    """
948 949 950 951
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
L
lyq 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    if in_dygraph_mode():
        if isinstance(prior_box_var, Variable):
            box_coder_op = _C_ops.final_state_box_coder(prior_box,
                                                        prior_box_var,
                                                        target_box, code_type,
                                                        box_normalized, axis,
                                                        [])
        elif isinstance(prior_box_var, list):
            box_coder_op = _C_ops.final_state_box_coder(prior_box, None,
                                                        target_box, code_type,
                                                        box_normalized, axis,
                                                        prior_box_var)
        else:
            raise TypeError(
                "Input variance of box_coder must be Variable or lisz")
        return box_coder_op
X
Xin Pan 已提交
968 969
    helper = LayerHelper("box_coder", **locals())

970 971
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
972

973 974 975 976 977 978 979 980 981 982 983 984
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
985 986 987 988
    helper.append_op(type="box_coder",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"OutputBox": output_box})
X
Xin Pan 已提交
989 990 991 992 993 994 995 996 997
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
998 999 1000 1001
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
1002 1003

    Returns:
1004
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
1005 1006 1007 1008 1009

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
1010
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
1011
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
1012
    """
1013 1014
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
1015
    helper = LayerHelper("polygon_box_transform", **locals())
1016
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
1017

1018 1019 1020 1021
    helper.append_op(type="polygon_box_transform",
                     inputs={"Input": input},
                     attrs={},
                     outputs={"Output": output})
X
Xin Pan 已提交
1022 1023 1024
    return output


1025
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1026 1027
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1028 1029
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1030
                anchors,
1031
                anchor_mask,
D
dengkaipeng 已提交
1032 1033
                class_num,
                ignore_thresh,
1034
                downsample_ratio,
1035
                gt_score=None,
D
dengkaipeng 已提交
1036
                use_label_smooth=True,
1037 1038
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1039
    """
S
swtkiwi 已提交
1040

D
dengkaipeng 已提交
1041 1042 1043
    ${comment}

    Args:
X
xiaoting 已提交
1044
        x (Variable): ${x_comment}The data type is float32 or float64. 
1045
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1046 1047
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1048 1049
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1050
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1051
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1052
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1053
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1054
        anchors (list|tuple): ${anchors_comment}
1055
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1056 1057
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1058
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1059 1060 1061
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1062
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1063
                            of [N, B]. Default None.
1064
        use_label_smooth (bool): ${use_label_smooth_comment}
1065
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1066 1067

    Returns:
1068
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1069 1070 1071

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1072 1073
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1074
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1075 1076 1077
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1078
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1079 1080

    Examples:
1081 1082
      .. code-block:: python

1083
          import paddle.fluid as fluid
1084 1085
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1086 1087 1088 1089
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1090 1091
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1092 1093
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1094 1095
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1096 1097 1098 1099
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1100
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1101
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1102
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1103
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1104
    if gt_score is not None and not isinstance(gt_score, Variable):
1105
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1106 1107
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1108 1109
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1110 1111 1112 1113 1114
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1115 1116 1117
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1118

1119 1120 1121 1122 1123 1124 1125
    if _non_static_mode():
        attrs = ("anchors", anchors, "anchor_mask", anchor_mask, "class_num",
                 class_num, "ignore_thresh", ignore_thresh, "downsample_ratio",
                 downsample_ratio, "use_label_smooth", use_label_smooth,
                 "scale_x_y", scale_x_y)
        loss, _, _ = _C_ops.yolov3_loss(x, gt_box, gt_label, gt_score, *attrs)
        return loss
D
dengkaipeng 已提交
1126

1127 1128
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1129 1130 1131
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1132 1133
    inputs = {
        "X": x,
1134 1135
        "GTBox": gt_box,
        "GTLabel": gt_label,
1136
    }
1137
    if gt_score is not None:
1138
        inputs["GTScore"] = gt_score
1139

D
dengkaipeng 已提交
1140 1141
    attrs = {
        "anchors": anchors,
1142
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1143 1144
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1145
        "downsample_ratio": downsample_ratio,
1146
        "use_label_smooth": use_label_smooth,
1147
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1148 1149
    }

1150 1151 1152 1153 1154 1155 1156 1157
    helper.append_op(type='yolov3_loss',
                     inputs=inputs,
                     outputs={
                         'Loss': loss,
                         'ObjectnessMask': objectness_mask,
                         'GTMatchMask': gt_match_mask
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1158 1159 1160
    return loss


1161
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1162
@templatedoc(op_type="yolo_box")
1163 1164 1165 1166 1167 1168
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1169
             clip_bbox=True,
1170
             name=None,
1171 1172 1173
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
D
dengkaipeng 已提交
1174
    """
S
swtkiwi 已提交
1175

D
dengkaipeng 已提交
1176 1177 1178
    ${comment}

    Args:
X
xiaoting 已提交
1179 1180
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1181 1182 1183 1184
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1185
        clip_bbox (bool): ${clip_bbox_comment}
1186
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1187 1188 1189
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
1190 1191
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1192 1193

    Returns:
D
dengkaipeng 已提交
1194
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1195 1196
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1197 1198 1199 1200 1201 1202 1203 1204

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1205

D
dengkaipeng 已提交
1206 1207
    .. code-block:: python

X
xiaoting 已提交
1208
        import paddle.fluid as fluid
1209 1210
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1211 1212
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1213
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1214
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1215 1216 1217 1218 1219
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1220 1221 1222
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1223
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1224
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1225
    if not isinstance(class_num, int):
1226
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1227
    if not isinstance(conf_thresh, float):
1228
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1229 1230 1231 1232 1233 1234 1235

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1236
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1237
        "downsample_ratio": downsample_ratio,
1238
        "clip_bbox": clip_bbox,
1239
        "scale_x_y": scale_x_y,
1240 1241
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
D
dengkaipeng 已提交
1242 1243
    }

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    helper.append_op(type='yolo_box',
                     inputs={
                         "X": x,
                         "ImgSize": img_size,
                     },
                     outputs={
                         'Boxes': boxes,
                         'Scores': scores,
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1254 1255 1256
    return boxes, scores


X
Xin Pan 已提交
1257
@templatedoc()
1258 1259
def detection_map(detect_res,
                  label,
1260 1261
                  class_num,
                  background_label=0,
1262 1263
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1264 1265 1266 1267
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1279 1280 1281 1282 1283 1284 1285 1286
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1296
            import paddle.fluid as fluid
1297
            from fluid.layers import detection
1298
            detect_res = fluid.data(
X
Xin Pan 已提交
1299 1300 1301
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1302
            label = fluid.data(
X
Xin Pan 已提交
1303 1304 1305 1306
                name='label',
                shape=[10, 6],
                dtype='float32')

1307
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1308
    """
1309 1310
    helper = LayerHelper("detection_map", **locals())

1311
    def __create_var(type):
X
Xin Pan 已提交
1312
        return helper.create_variable_for_type_inference(dtype=type)
1313 1314

    map_out = __create_var('float32')
Z
zhongpu 已提交
1315 1316 1317 1318 1319 1320
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1321

Z
zhongpu 已提交
1322 1323 1324
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    helper.append_op(type="detection_map",
                     inputs={
                         'Label': label,
                         'DetectRes': detect_res,
                         'HasState': has_state,
                         'PosCount': pos_count,
                         'TruePos': true_pos,
                         'FalsePos': false_pos
                     },
                     outputs={
                         'MAP': map_out,
                         'AccumPosCount': accum_pos_count_out,
                         'AccumTruePos': accum_true_pos_out,
                         'AccumFalsePos': accum_false_pos_out
                     },
                     attrs={
                         'overlap_threshold': overlap_threshold,
                         'evaluate_difficult': evaluate_difficult,
                         'ap_type': ap_version,
                         'class_num': class_num,
                     })
1347
    return map_out
1348 1349


1350 1351 1352 1353
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1354
    """
S
swtkiwi 已提交
1355

Y
yuyang18 已提交
1356 1357
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1358
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1359 1360 1361 1362
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1363
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1364 1365 1366

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1367 1368 1369
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1370

Y
yuyang18 已提交
1371
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1372 1373 1374
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1375 1376 1377
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1378 1379
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1391
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1392
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1393 1394 1395 1396
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1397
    Returns:
W
wangguanzhong 已提交
1398
        Tuple:
Y
yuyang18 已提交
1399

W
wangguanzhong 已提交
1400 1401
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1402 1403 1404 1405 1406
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1407 1408
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1409 1410 1411 1412 1413 1414 1415
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1416
        >>> import paddle.fluid as fluid
1417 1418
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1419 1420
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1421 1422
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1423 1424 1425
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    helper.append_op(type='bipartite_match',
                     inputs={'DistMat': dist_matrix},
                     attrs={
                         'match_type': match_type,
                         'dist_threshold': dist_threshold,
                     },
                     outputs={
                         'ColToRowMatchIndices': match_indices,
                         'ColToRowMatchDist': match_distance
                     })
1436 1437 1438 1439 1440 1441 1442 1443 1444
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1445

1446 1447 1448 1449
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1450

1451 1452 1453 1454 1455
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1456

1457
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1458

1459 1460 1461
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1462

1463 1464
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1465

1466
        Otherwise,
C
chengduoZH 已提交
1467

1468 1469
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1470

Q
qingqing01 已提交
1471
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1472

Q
qingqing01 已提交
1473 1474
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1475

1476
    .. code-block:: text
C
chengduoZH 已提交
1477

Q
qingqing01 已提交
1478 1479 1480
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1481 1482

    Args:
Q
qingqing01 已提交
1483 1484 1485
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1486 1487 1488
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1489 1490
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1491
           the total number of negative example indices.
Q
qingqing01 已提交
1492 1493 1494 1495 1496
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1497 1498

    Returns:
Q
qingqing01 已提交
1499 1500 1501 1502 1503 1504 1505 1506
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1507 1508 1509 1510 1511

    Examples:

        .. code-block:: python

1512
            import paddle.fluid as fluid
1513 1514
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1515
            x = fluid.data(
1516 1517 1518
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1519 1520
                lod_level=1)
            matched_id = fluid.data(
1521 1522
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1523
                dtype='int32')
1524 1525 1526 1527
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1528 1529
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1530 1531
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    helper.append_op(type='target_assign',
                     inputs={
                         'X': input,
                         'MatchIndices': matched_indices,
                         'NegIndices': negative_indices
                     },
                     outputs={
                         'Out': out,
                         'OutWeight': out_weight
                     },
                     attrs={'mismatch_value': mismatch_value})
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1560
             normalize=True,
1561
             sample_size=None):
1562
    r"""
1563 1564 1565
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1566

Y
yuyang18 已提交
1567
    **Multi-box loss layer for object detection algorithm of SSD**
1568

翟飞跃 已提交
1569 1570
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1571 1572 1573 1574
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1575
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1576

1577
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1578

T
tianshuo78520a 已提交
1579
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1580

1581
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1582

1583
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1584

1585
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1586

1587 1588
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1589

1590
    4. Assign classification and regression targets
Y
yuyang18 已提交
1591

1592
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1593

1594
      4.2. Assign regression targets.
Y
yuyang18 已提交
1595

1596
      4.3. Assign classification targets.
Y
yuyang18 已提交
1597

1598
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1599

1600
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1601

1602
      5.2 Compute localization loss.
Y
yuyang18 已提交
1603

1604 1605 1606 1607 1608 1609
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1610 1611
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1612 1613
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1614 1615
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1616
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1617
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1618
            bboxes of mini-batch input.The data type is float32 or float64.
1619
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1620 1621 1622
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1623
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1624 1625
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1626
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1627
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1628 1629
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1630 1631
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1632
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1633
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1634
        neg_overlap (float): The negative overlap upper bound for the unmatched
1635
            predictions. Use only when mining_type is 'max_negative',
1636 1637 1638 1639
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1640
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1641 1642
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1643
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1644
            of output locations, True by default.
1645 1646
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1647 1648

    Returns:
1649 1650 1651
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1652 1653

    Raises:
Y
yuyang18 已提交
1654 1655
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1656 1657

    Examples:
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1677 1678 1679 1680 1681 1682 1683
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1684
    conf_shape = nn.shape(confidence)
1685 1686

    def __reshape_to_2d(var):
1687
        return nn.flatten(x=var, axis=2)
1688

T
tianshuo78520a 已提交
1689
    # 1. Find matched bounding box by prior box.
1690 1691
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1692
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1693 1694
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1695 1696 1697

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1698 1699
    gt_label = nn.reshape(x=gt_label,
                          shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1700
    gt_label.stop_gradient = True
1701 1702 1703
    target_label, _ = target_assign(gt_label,
                                    matched_indices,
                                    mismatch_value=background_label)
1704 1705 1706 1707 1708
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1709
    target_label.stop_gradient = True
1710
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1711
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1712
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1713
    actual_shape.stop_gradient = True
1714 1715
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1716 1717 1718
    conf_loss = nn.reshape(x=conf_loss,
                           shape=(-1, 0),
                           actual_shape=actual_shape)
1719
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1720
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1721
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1722 1723
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    helper.append_op(type='mine_hard_examples',
                     inputs={
                         'ClsLoss': conf_loss,
                         'LocLoss': None,
                         'MatchIndices': matched_indices,
                         'MatchDist': matched_dist,
                     },
                     outputs={
                         'NegIndices': neg_indices,
                         'UpdatedMatchIndices': updated_matched_indices
                     },
                     attrs={
                         'neg_pos_ratio': neg_pos_ratio,
                         'neg_dist_threshold': neg_overlap,
                         'mining_type': mining_type,
                         'sample_size': sample_size,
                     })
1741 1742 1743

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
1744 1745 1746 1747
    encoded_bbox = box_coder(prior_box=prior_box,
                             prior_box_var=prior_box_var,
                             target_box=gt_box,
                             code_type='encode_center_size')
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1762

1763
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1764 1765 1766
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1767 1768 1769 1770
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1771 1772 1773 1774 1775 1776 1777 1778
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1779 1780 1781 1782
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1783 1784
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1785
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1786 1787 1788
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1789 1790 1791 1792 1793
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1794
    return loss
C
chengduoZH 已提交
1795 1796


Z
zhiboniu 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
def prior_box(
    input,
    image,
    min_sizes,
    max_sizes=None,
    aspect_ratios=[1.],
    variance=[0.1, 0.1, 0.2, 0.2],
    flip=False,
    clip=False,
    steps=[0.0, 0.0],
    offset=0.5,
    name=None,
    min_max_aspect_ratios_order=False,
):
1811
    """
S
swtkiwi 已提交
1812

R
ruri 已提交
1813
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1814 1815 1816 1817 1818
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1819
    Parameters:
T
tianshuo78520a 已提交
1820
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1821 1822 1823 1824
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1825
            Default: None.
R
ruri 已提交
1826
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1827
            prior boxes. Default: [1.].
1828 1829 1830 1831
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1832
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1833 1834
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1835
            Default: [0., 0.]
1836
       offset(float): Prior boxes center offset. Default: 0.5
1837
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1838
            in order of [min, max, aspect_ratios], which is consistent with
1839 1840 1841
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1842
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1843 1844

    Returns:
R
ruri 已提交
1845
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1846

R
ruri 已提交
1847 1848
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1849
        H is the height of input, W is the width of input,
R
ruri 已提交
1850
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1851

R
ruri 已提交
1852 1853
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1854
        H is the height of input, W is the width of input
R
ruri 已提交
1855
        num_priors is the total box count of each position of input
1856 1857 1858

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1859

R
ruri 已提交
1860 1861 1862
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
1863 1864
        import paddle
        paddle.enable_static()
R
ruri 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1909
    """
Z
zhiboniu 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918

    if in_dygraph_mode():
        step_w, step_h = steps
        if max_sizes == None:
            max_sizes = []
        return _C_ops.final_state_prior_box(input, image, min_sizes,
                                            aspect_ratios, variance, max_sizes,
                                            flip, clip, step_w, step_h, offset,
                                            min_max_aspect_ratios_order)
1919 1920
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1921 1922 1923
    check_variable_and_dtype(input, 'input',
                             ['uint8', 'int8', 'float32', 'float64'],
                             'prior_box')
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1940 1941 1942 1943 1944 1945 1946 1947
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1948 1949
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1950 1951
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1952 1953
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1954 1955
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1956 1957
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1958 1959
    helper.append_op(
        type="prior_box",
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
1970 1971 1972 1973 1974
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1984
                      flatten_to_2d=False,
R
ruri 已提交
1985
                      name=None):
1986
    r"""
R
ruri 已提交
1987

R
ruri 已提交
1988
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1989 1990 1991 1992 1993 1994
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1995
    
R
ruri 已提交
1996
    For densities_i in densities:
R
ruri 已提交
1997 1998
    
    .. math::
R
ruri 已提交
1999

R
ruri 已提交
2000 2001 2002 2003 2004 2005 2006
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
2007
            the layout is NCHW.
R
ruri 已提交
2008
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
2009 2010
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
2011
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
2012 2013
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
2014
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
2015 2016 2017
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
2018
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
2019
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
2020
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
2021
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
2022 2023
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
2024 2025
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
2026 2027
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
2028 2029
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
2030
    Returns:
R
ruri 已提交
2031
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
2032 2033

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
2034 2035 2036
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2037 2038

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2039 2040 2041
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2042 2043 2044


    Examples:
R
ruri 已提交
2045

R
ruri 已提交
2046 2047
        .. code-block:: python

R
ruri 已提交
2048
            #declarative mode
R
ruri 已提交
2049

R
ruri 已提交
2050 2051
            import paddle.fluid as fluid
            import numpy as np
2052 2053
            import paddle
            paddle.enable_static()
R
ruri 已提交
2054

R
ruri 已提交
2055 2056 2057
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2058 2059 2060 2061 2062 2063 2064 2065
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2066 2067 2068
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2069
 
R
ruri 已提交
2070 2071 2072 2073 2074 2075
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2076
                feed={"input":input_data,
R
ruri 已提交
2077
                      "image":image_data},
R
ruri 已提交
2078 2079 2080
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2081 2082 2083 2084
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2085 2086


R
ruri 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2105

R
ruri 已提交
2106 2107 2108
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2109 2110
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2111 2112 2113 2114

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2115 2116 2117
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2118 2119
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2120

R
ruri 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2136 2137 2138 2139
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2140 2141 2142 2143 2144
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
R
ruri 已提交
2155 2156 2157 2158 2159
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2160
@static_only
C
chengduoZH 已提交
2161
def multi_box_head(inputs,
C
chengduoZH 已提交
2162 2163
                   image,
                   base_size,
C
chengduoZH 已提交
2164
                   num_classes,
C
chengduoZH 已提交
2165
                   aspect_ratios,
2166 2167
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2168 2169
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2170 2171 2172 2173
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2174 2175
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2176
                   clip=False,
C
chengduoZH 已提交
2177
                   kernel_size=1,
C
chengduoZH 已提交
2178
                   pad=0,
C
chengduoZH 已提交
2179
                   stride=1,
2180 2181
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2182
    """
2183
	:api_attr: Static Graph
S
swtkiwi 已提交
2184

Q
qingqing01 已提交
2185 2186 2187 2188
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2189
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2190 2191

    Args:
Q
qingqing01 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2213
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2214 2215
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2235
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2236 2237 2238 2239 2240
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2241 2242 2243
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2244
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2245
            in order of [min, max, aspect_ratios], which is consistent with
2246
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2247
            convolution layer followed by and does not affect the final
2248
            detection results. Default: False.
C
chengduoZH 已提交
2249 2250

    Returns:
Q
update  
qiaolongfei 已提交
2251 2252
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2253 2254 2255
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2256

Q
qingqing01 已提交
2257 2258 2259 2260
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2261

Q
qingqing01 已提交
2262 2263 2264
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2265

Q
qingqing01 已提交
2266 2267
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2268

Q
qingqing01 已提交
2269
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2270
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2271

2272 2273
          import paddle
          paddle.enable_static()
2274

2275 2276 2277 2278 2279 2280 2281
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2282

2283
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2284
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2294 2295 2296 2297

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2298 2299
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2300

2301 2302 2303 2304 2305 2306 2307
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2308

2309
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2321 2322
    """

C
chengduoZH 已提交
2323
    def _reshape_with_axis_(input, axis=1):
2324
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2325
        return out
2326

2327 2328
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2329

C
chengduoZH 已提交
2330 2331 2332 2333
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2334 2335
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2336

C
chengduoZH 已提交
2337 2338 2339 2340 2341
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2342
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2343 2344 2345
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2346
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2347 2348 2349 2350 2351
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2352 2353 2354 2355 2356
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2357
    if step_h is not None:
C
chengduoZH 已提交
2358 2359 2360 2361
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2362
    if step_w is not None:
C
chengduoZH 已提交
2363 2364 2365 2366
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2367
    if steps is not None:
C
chengduoZH 已提交
2368 2369 2370 2371 2372 2373 2374
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2375 2376
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2377 2378
    box_results = []
    var_results = []
C
chengduoZH 已提交
2379 2380
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2381 2382
        max_size = max_sizes[i]

2383
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2384
            min_size = [min_size]
C
chengduoZH 已提交
2385 2386
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2387 2388 2389 2390

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2391
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2392
                aspect_ratio = [aspect_ratio]
2393
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2394

2395
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2396 2397
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2398 2399 2400 2401 2402

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2403

2404
        # get loc
Y
Yuan Gao 已提交
2405
        num_loc_output = num_boxes * 4
2406 2407 2408 2409 2410
        mbox_loc = nn.conv2d(input=input,
                             num_filters=num_loc_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2411

2412
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2413
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2414
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2415

2416
        # get conf
C
chengduoZH 已提交
2417
        num_conf_output = num_boxes * num_classes
2418 2419 2420 2421 2422
        conf_loc = nn.conv2d(input=input,
                             num_filters=num_conf_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2423
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2424
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2425
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2426

C
chengduoZH 已提交
2427 2428 2429
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2430 2431
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2441
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2442
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2443
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2444 2445
        mbox_confs_concat = nn.reshape(mbox_confs_concat,
                                       shape=[0, -1, num_classes])
C
chengduoZH 已提交
2446

2447 2448
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2449
    return mbox_locs_concat, mbox_confs_concat, box, var
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2460

2461 2462 2463 2464 2465 2466 2467 2468
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2485 2486

    Returns:
W
wangguanzhong 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2499 2500 2501 2502 2503 2504


    Examples:

        .. code-block:: python

2505
            import paddle.fluid as fluid
2506 2507 2508
            import paddle

            paddle.enable_static()
2509
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2510
            anchor, var = fluid.layers.anchor_generator(
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2544 2545
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2546 2547 2548
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
2549 2550 2551 2552 2553 2554
        outputs={
            "Anchors": anchor,
            "Variances": var
        },
        attrs=attrs,
    )
2555 2556 2557
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2558 2559


W
whs 已提交
2560 2561 2562 2563
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2564 2565
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2566
    """
S
SunGaofeng 已提交
2567
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2568

S
SunGaofeng 已提交
2569 2570 2571 2572 2573
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2574 2575
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2576 2577 2578
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2579 2580 2581
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2582 2583 2584 2585
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2586
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2587 2588 2589
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2590 2591

    Returns:
S
SunGaofeng 已提交
2592
            A tuple with three Variables. (out, mask, transform_matrix)
2593 2594

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2595
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2596 2597

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2598
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2599 2600

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2601 2602 2603 2604
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2605 2606 2607 2608

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2609
            import paddle.fluid as fluid
2610

S
SunGaofeng 已提交
2611 2612
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2613
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2614
    """
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2626 2627
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2628
    out = helper.create_variable_for_type_inference(dtype)
2629 2630
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2631 2632
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
    helper.append_op(type="roi_perspective_transform",
                     inputs={
                         "X": input,
                         "ROIs": rois
                     },
                     outputs={
                         "Out": out,
                         "Out2InIdx": out2in_idx,
                         "Out2InWeights": out2in_w,
                         "Mask": mask,
                         "TransformMatrix": transform_matrix
                     },
                     attrs={
                         "transformed_height": transformed_height,
                         "transformed_width": transformed_width,
                         "spatial_scale": spatial_scale
                     })
2650
    return out, mask, transform_matrix
W
whs 已提交
2651 2652


2653 2654
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2655
                             is_crowd,
2656
                             gt_boxes,
2657
                             im_info,
2658 2659 2660 2661 2662 2663
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2664
                             class_nums=None,
2665 2666
                             use_random=True,
                             is_cls_agnostic=False,
2667 2668 2669
                             is_cascade_rcnn=False,
                             max_overlap=None,
                             return_max_overlap=False):
2670
    """
S
swtkiwi 已提交
2671

2672
    **Generate Proposal Labels of Faster-RCNN**
2673

B
buxingyuan 已提交
2674
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2675
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2676 2677 2678

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2679
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2680 2681
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2682
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2683
    then we apply random sampling to make sure
B
buxingyuan 已提交
2684
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2685 2686 2687 2688 2689

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2690 2691 2692
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2693 2694 2695
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2696 2697 2698 2699 2700 2701 2702
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2703
        use_random(bool): Use random sampling to choose foreground and background boxes.
2704 2705
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2706 2707
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2708

2709 2710
    Returns:
        tuple:
2711
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2712 2713 2714 2715 2716 2717

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2718
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2719

B
Bai Yifan 已提交
2720 2721 2722
    Examples:
        .. code-block:: python

2723
            import paddle
B
Bai Yifan 已提交
2724
            import paddle.fluid as fluid
2725
            paddle.enable_static()
2726
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2727 2728
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2729 2730
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2731
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2732 2733 2734
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2735 2736 2737 2738
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2739 2740 2741 2742 2743 2744
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')
2745 2746
    if is_cascade_rcnn:
        assert max_overlap is not None, "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2747

X
Xin Pan 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2757 2758
    max_overlap_with_gt = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    helper.append_op(type="generate_proposal_labels",
                     inputs=inputs,
                     outputs={
                         'Rois': rois,
                         'LabelsInt32': labels_int32,
                         'BboxTargets': bbox_targets,
                         'BboxInsideWeights': bbox_inside_weights,
                         'BboxOutsideWeights': bbox_outside_weights,
                         'MaxOverlapWithGT': max_overlap_with_gt
                     },
                     attrs={
                         'batch_size_per_im': batch_size_per_im,
                         'fg_fraction': fg_fraction,
                         'fg_thresh': fg_thresh,
                         'bg_thresh_hi': bg_thresh_hi,
                         'bg_thresh_lo': bg_thresh_lo,
                         'bbox_reg_weights': bbox_reg_weights,
                         'class_nums': class_nums,
                         'use_random': use_random,
                         'is_cls_agnostic': is_cls_agnostic,
                         'is_cascade_rcnn': is_cascade_rcnn
                     })
2791 2792 2793 2794 2795 2796

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2797
    max_overlap_with_gt.stop_gradient = True
2798

2799 2800
    if return_max_overlap:
        return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap_with_gt
2801 2802 2803
    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2804 2805
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
2806
    r"""
S
swtkiwi 已提交
2807

Q
qingqing01 已提交
2808
    **Generate Mask Labels for Mask-RCNN**
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2844 2845 2846 2847 2848 2849
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2850
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2851 2852 2853 2854 2855 2856 2857
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2858
            The users should return correct data format in reader.
Q
qingqing01 已提交
2859
            The LoD[0] represents the ground-truth objects number of
2860 2861 2862 2863
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2864 2865 2866 2867
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2868
            of int32. R is the same as it in `rois`. Each element represents
2869
            a class label of a RoI.
Q
qingqing01 已提交
2870 2871
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2872 2873

    Returns:
Q
qingqing01 已提交
2874 2875 2876
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2877
        original image size.
Q
qingqing01 已提交
2878 2879

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2880
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2881 2882 2883 2884
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2885
        predictions. Each element represents the binary mask targets.
2886 2887 2888 2889

    Examples:
        .. code-block:: python

2890 2891
          import paddle.fluid as fluid

Q
qingqing01 已提交
2892
          im_info = fluid.data(name="im_info", shape=[None, 3],
2893
              dtype="float32")
Q
qingqing01 已提交
2894
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2895
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2896
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2897
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2898
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2899
              dtype="float32", lod_level=3)
2900
          # rois, roi_labels can be the output of
2901
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2902
          rois = fluid.data(name="rois", shape=[None, 4],
2903
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2904
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2905
              dtype="int32", lod_level=1)
2906 2907 2908 2909 2910 2911
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2912
              labels_int32=roi_labels,
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    helper.append_op(type="generate_mask_labels",
                     inputs={
                         'ImInfo': im_info,
                         'GtClasses': gt_classes,
                         'IsCrowd': is_crowd,
                         'GtSegms': gt_segms,
                         'Rois': rois,
                         'LabelsInt32': labels_int32
                     },
                     outputs={
                         'MaskRois': mask_rois,
                         'RoiHasMaskInt32': roi_has_mask_int32,
                         'MaskInt32': mask_int32
                     },
                     attrs={
                         'num_classes': num_classes,
                         'resolution': resolution
                     })
2943 2944 2945 2946 2947 2948 2949 2950

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2961 2962
                       return_rois_num=False,
                       name=None):
2963
    """
S
swtkiwi 已提交
2964

H
haowang101779990 已提交
2965 2966
    **Generate proposal Faster-RCNN**

2967 2968 2969 2970
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2971 2972 2973 2974
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2975 2976
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2977 2978 2979 2980 2981 2982
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2983 2984 2985
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2986
            width of the feature map. The data type must be float32.
2987
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2988
            represents the difference between predicted box location and
2989
            anchor location. The data type must be float32.
2990
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2991 2992
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2993
            The data type can be float32 or float64.
2994 2995 2996
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2997 2998
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2999
            [H, W, num_priors, 4]. Each variance is in
3000
            (xcenter, ycenter, w, h) format. The data type must be float32.
3001
        pre_nms_top_n(float): Number of total bboxes to be kept per
3002
            image before NMS. The data type must be float32. `6000` by default.
3003
        post_nms_top_n(float): Number of total bboxes to be kept per
3004 3005
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
3006
        min_size(float): Remove predicted boxes with either height or
3007 3008 3009
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
3010 3011 3012 3013
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
3014 3015 3016 3017
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3018 3019 3020 3021 3022 3023
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
3024 3025 3026 3027 3028

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
3029 3030
            import paddle
            paddle.enable_static()
3031 3032 3033 3034 3035
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
3036 3037 3038
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

3039
    """
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    return paddle.vision.ops.generate_proposals(scores=scores,
                                                bbox_deltas=bbox_deltas,
                                                img_size=im_info[:2],
                                                anchors=anchors,
                                                variances=variances,
                                                pre_nms_top_n=pre_nms_top_n,
                                                post_nms_top_n=post_nms_top_n,
                                                nms_thresh=nms_thresh,
                                                min_size=min_size,
                                                eta=eta,
                                                return_rois_num=return_rois_num,
                                                name=name)
J
jerrywgz 已提交
3052 3053


J
jerrywgz 已提交
3054
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3055
    """
S
swtkiwi 已提交
3056
	
J
jerrywgz 已提交
3057
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3058
    For each input box, The formula is given as follows:
3059 3060 3061
        
    .. code-block:: text

J
jerrywgz 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3073 3074

    Args:
W
wangguanzhong 已提交
3075 3076 3077
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3078
            (height, width, scale) representing the information of image. 
3079
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3080 3081 3082 3083
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3084 3085
    
    Returns:
W
wangguanzhong 已提交
3086 3087
        Variable:

T
tianshuo78520a 已提交
3088
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3089 3090
        The shape is same as input.

3091
        
J
jerrywgz 已提交
3092 3093
    Examples:
        .. code-block:: python
3094
        
3095
            import paddle.fluid as fluid
3096 3097
            import paddle
            paddle.enable_static()
3098 3099 3100
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3101
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3102
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3103 3104
    """

3105 3106 3107 3108
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3109
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3110
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3111
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3112
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3113

3114 3115
    return output

J
jerrywgz 已提交
3116

3117 3118 3119 3120 3121 3122 3123 3124
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3125
                               nms_eta=1.0):
3126
    """
3127
    **Detection Output Layer for the detector RetinaNet.**
3128

3129 3130 3131 3132
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3133

3134 3135 3136
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3137 3138 3139 3140
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3158
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3159 3160 3161
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3162
            information of each image is a 3-vector which are the height and width
3163 3164
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3165
        score_threshold(float): Threshold to filter out bounding boxes
3166
            with a confidence score before NMS, default value is set to 0.05.
3167
        nms_top_k(int): Maximum number of detections per FPN layer to be
3168 3169
            kept according to the confidences before NMS, default value is set to
            1000.
3170
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3189
    :attr:`anchors` is required to be from the highest FPN level.
3190 3191

    Returns:
3192 3193
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3194
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3195 3196 3197
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3198 3199 3200 3201 3202 3203
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3221 3222 3223 3224 3225 3226 3227 3228 3229
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3230 3231
    """

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3250 3251 3252
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    helper.append_op(type="retinanet_detection_output",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores,
                         'Anchors': anchors,
                         'ImInfo': im_info
                     },
                     attrs={
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'keep_top_k': keep_top_k,
                         'nms_eta': 1.,
                     },
                     outputs={'Out': output})
3268 3269 3270 3271
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3272 3273 3274 3275 3276
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3277
                   nms_threshold=0.3,
J
jerrywgz 已提交
3278 3279
                   normalized=True,
                   nms_eta=1.,
3280 3281
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3282
    """
S
swtkiwi 已提交
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3312

3313 3314 3315 3316 3317 3318 3319

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3320 3321 3322 3323 3324 3325 3326 3327
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3328
                           The data type is float32 or float64.
3329 3330
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3331
                           class number. The data type is float32 or float64.   
3332 3333 3334 3335 3336 3337 3338
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3339
                           of BBoxes.The data type is float32 or float64. 
3340 3341 3342
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3343
                           case with shape [M, C, 4].The data type is float32 or float64. 
3344 3345 3346 3347 3348 3349 3350
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3351
                         the confidences after the filtering detections based
3352 3353 3354 3355 3356 3357 3358 3359 3360
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3361
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3362 3363 3364 3365 3366
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3367 3368 3369 3370
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3371

3372

3373 3374 3375
    Examples:
        .. code-block:: python

3376

3377
            import paddle.fluid as fluid
3378 3379
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3380
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3381
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3382
            scores = fluid.data(name='scores', shape=[None,81],
3383 3384 3385 3386 3387 3388 3389 3390 3391
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3392
    """
X
xiaoting 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3405 3406
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    helper.append_op(type="multiclass_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
J
jerrywgz 已提交
3422
    output.stop_gradient = True
J
jerrywgz 已提交
3423 3424

    return output
3425 3426


3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3475
                         the confidences after the filtering detections based
3476 3477 3478
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3479 3480
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
    helper.append_op(type="locality_aware_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'nms_eta': nms_eta,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
3553 3554 3555 3556 3557
    output.stop_gradient = True

    return output


Y
Yang Zhang 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               name=None):
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
    helper.append_op(type="matrix_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'post_threshold': post_threshold,
                         'nms_top_k': nms_top_k,
                         'gaussian_sigma': gaussian_sigma,
                         'use_gaussian': use_gaussian,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={
                         'Out': output,
                         'Index': index
                     })
Y
Yang Zhang 已提交
3680 3681 3682 3683 3684 3685 3686 3687
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3688 3689 3690 3691 3692
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
3693
                             rois_num=None,
3694
                             name=None):
3695
    r"""
S
swtkiwi 已提交
3696
	
W
wangguanzhong 已提交
3697 3698 3699 3700 3701 3702
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3703
    
J
jerrywgz 已提交
3704
    .. math::
3705

J
jerrywgz 已提交
3706
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3707

J
jerrywgz 已提交
3708 3709 3710
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3711 3712

    Args:
W
wangguanzhong 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3722 3723 3724 3725 3726
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
W
wangguanzhong 已提交
3727 3728 3729
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3730

3731
    Returns:
W
wangguanzhong 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3742 3743 3744 3745
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is 
        the RoIs' number in each image on the corresponding level. The shape 
        is [B] and data type of int32. B is the number of images

3746 3747 3748 3749

    Examples:
        .. code-block:: python

3750
            import paddle.fluid as fluid
3751 3752
            import paddle
            paddle.enable_static()
3753 3754
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3755
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3756 3757 3758
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3759 3760 3761
                refer_level=4,
                refer_scale=224)
    """
3762 3763 3764 3765 3766 3767 3768
    return paddle.vision.ops.distribute_fpn_proposals(fpn_rois=fpn_rois,
                                                      min_level=min_level,
                                                      max_level=max_level,
                                                      refer_level=refer_level,
                                                      refer_scale=refer_scale,
                                                      rois_num=rois_num,
                                                      name=name)
3769 3770


3771
@templatedoc()
J
jerrywgz 已提交
3772 3773 3774 3775 3776 3777
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3778
    """
S
swtkiwi 已提交
3779
	
3780 3781 3782 3783 3784 3785
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3786
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3787 3788 3789 3790
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3791
    Returns:
W
wangguanzhong 已提交
3792
        Tuple:
J
jerrywgz 已提交
3793

W
wangguanzhong 已提交
3794 3795 3796
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3797 3798


3799 3800 3801
    Examples:
        .. code-block:: python

3802
            import paddle.fluid as fluid
3803 3804
            import paddle
            paddle.enable_static()
3805 3806 3807 3808 3809 3810 3811 3812
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3813
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3814
                pb, pbv, loc, scores, 4.135)
3815 3816

    """
3817 3818 3819 3820 3821 3822
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3823 3824
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3825
    decoded_box = helper.create_variable_for_type_inference(
3826 3827 3828 3829
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    helper.append_op(type="box_decoder_and_assign",
                     inputs={
                         "PriorBox": prior_box,
                         "PriorBoxVar": prior_box_var,
                         "TargetBox": target_box,
                         "BoxScore": box_score
                     },
                     attrs={"box_clip": box_clip},
                     outputs={
                         "DecodeBox": decoded_box,
                         "OutputAssignBox": output_assign_box
                     })
J
jerrywgz 已提交
3842
    return decoded_box, output_assign_box
3843 3844 3845 3846 3847 3848 3849


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
3850
                          rois_num_per_level=None,
3851 3852
                          name=None):
    """
S
swtkiwi 已提交
3853
	
W
wangguanzhong 已提交
3854 3855 3856
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3857 3858 3859 3860 3861 3862 3863 3864

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3865 3866 3867 3868 3869 3870
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3871 3872 3873
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
3874 3875 3876 3877 3878 3879
        rois_num_per_level(list, optional): The List of RoIs' numbers. 
            Each element is 1-D Tensor which contains the RoIs' number of each 
            image on each level and the shape is [B] and data type is 
            int32, B is the number of images. If it is not None then return 
            a 1-D Tensor contains the output RoIs' number of each image and 
            the shape is [B]. Default: None
W
wangguanzhong 已提交
3880 3881 3882 3883
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3884
    Returns:
W
wangguanzhong 已提交
3885 3886 3887 3888 3889
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3890 3891 3892
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each 
        image. The shape is [B] and data type is int32. B is the number of 
        images. 
3893 3894 3895 3896

    Examples:
        .. code-block:: python
           
3897
            import paddle.fluid as fluid
3898 3899
            import paddle
            paddle.enable_static()
3900 3901 3902
            multi_rois = []
            multi_scores = []
            for i in range(4):
3903 3904
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3905
            for i in range(4):
3906 3907
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3908 3909 3910 3911 3912 3913 3914 3915

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3916 3917 3918 3919
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
3920
    if _non_static_mode():
3921 3922
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
W
wanghuancoder 已提交
3923
        output_rois, rois_num = _C_ops.collect_fpn_proposals(
3924 3925
            input_rois, input_scores, rois_num_per_level, *attrs)

3926 3927
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3928 3929
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3930 3931
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3932 3933
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
3945 3946 3947 3948
    helper.append_op(type='collect_fpn_proposals',
                     inputs=inputs,
                     outputs=outputs,
                     attrs={'post_nms_topN': post_nms_top_n})
3949 3950
    if rois_num_per_level is not None:
        return output_rois, rois_num
3951
    return output_rois