detection.py 178.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
23
from ..framework import Variable, _non_static_mode, static_only
24
from .. import core
25
from .loss import softmax_with_cross_entropy
26 27
from . import tensor
from . import nn
28
from . import ops
M
minqiyang 已提交
29
from ... import compat as cpt
30
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
31
import math
M
minqiyang 已提交
32
import six
33
import numpy as np
34
from functools import reduce
35
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
36
from paddle.utils import deprecated
W
wanghuancoder 已提交
37
from paddle import _C_ops
38

C
chengduoZH 已提交
39
__all__ = [
40 41 42 43 44 45 46 47
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
48
    'retinanet_target_assign',
49
    'sigmoid_focal_loss',
50 51 52 53
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
54
    'generate_mask_labels',
55 56 57 58
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
59
    'yolo_box',
60
    'box_clip',
J
jerrywgz 已提交
61
    'multiclass_nms',
62
    'locality_aware_nms',
Y
Yang Zhang 已提交
63
    'matrix_nms',
64
    'retinanet_detection_output',
65
    'distribute_fpn_proposals',
66
    'box_decoder_and_assign',
67
    'collect_fpn_proposals',
C
chengduoZH 已提交
68
]
69 70


71 72 73 74 75 76 77 78 79 80 81
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
82
    r"""
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
107
    regression for each anchor, hence the target label for each positive(or negative)
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
122 123

    Args:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
165
            information of each image is a 3-vector which are the height and width
166 167 168 169 170 171 172 173 174 175 176 177
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
178 179

    Returns:
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
221 222 223 224 225

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
237
                            dtype='int32')
238
          is_crowd = fluid.data(name='is_crowd', shape=[1],
239
                            dtype='int32')
240
          im_info = fluid.data(name='im_info', shape=[1, 3],
241
                            dtype='float32')
242
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
243 244 245 246 247
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

265 266 267 268 269 270 271 272 273 274
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    helper.append_op(type="retinanet_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'GtLabels': gt_labels,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight,
                         'ForegroundNumber': fg_num
                     },
                     attrs={
                         'positive_overlap': positive_overlap,
                         'negative_overlap': negative_overlap
                     })
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


311 312
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
313
                      anchor_box,
314
                      anchor_var,
315 316 317
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
318
                      rpn_batch_size_per_im=256,
319 320
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
321
                      rpn_positive_overlap=0.7,
322 323
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
324
    """
H
haowang101779990 已提交
325
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
343
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
344 345
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
346
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
347 348 349
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
350
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
351 352 353 354 355
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
356
            coordinate of the anchor box. The data type can be float32 or float64.
357
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
358
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
359
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
360
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
361
            bboxes of mini-batch input. The data type can be float32 or float64.
362
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
363
                             The data type must be int32.
364 365
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
366
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
367
                                    The data type must be int32.
368
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
369
            by straddle_thresh pixels. The data type must be float32.
370
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
371
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
374
            example. The data type must be float32.
Y
Yuan Gao 已提交
375 376
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
377
            examples. The data type must be float32.
Y
Yuan Gao 已提交
378 379

    Returns:
M
minqiyang 已提交
380
        tuple:
381 382 383 384 385 386 387 388 389 390 391 392 393
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
394 395 396 397

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
398
            import paddle.fluid as fluid
399 400 401 402 403 404 405
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
406 407
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
408

Y
Yuan Gao 已提交
409 410 411
    """

    helper = LayerHelper('rpn_target_assign', **locals())
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

428
    # Assign target label to anchors
J
jerrywgz 已提交
429 430 431 432 433 434 435
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    helper.append_op(type="rpn_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight
                     },
                     attrs={
                         'rpn_batch_size_per_im': rpn_batch_size_per_im,
                         'rpn_straddle_thresh': rpn_straddle_thresh,
                         'rpn_positive_overlap': rpn_positive_overlap,
                         'rpn_negative_overlap': rpn_negative_overlap,
                         'rpn_fg_fraction': rpn_fg_fraction,
                         'use_random': use_random
                     })
Y
Yuan Gao 已提交
458

459 460 461 462
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
463
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
464

465 466 467 468
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
469

J
jerrywgz 已提交
470
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
471 472


473
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
474
    r"""
475 476 477
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
478

479 480
    **Sigmoid Focal Loss Operator.**

481 482 483 484 485
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

486 487 488
    The focal loss is given as followed:

    .. math::
489 490 491 492 493 494 495
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

496 497 498 499 500 501 502

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
518
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
519
            set to 2.0.
520
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
521 522 523
            is set to 0.25.

    Returns:
524 525 526
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
527 528 529 530

    Examples:
        .. code-block:: python

531
            import numpy as np
532
            import paddle.fluid as fluid
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
598 599
    """

600 601 602 603 604
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

605 606 607 608
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

609 610 611 612 613 614 615 616 617 618 619
    helper.append_op(type="sigmoid_focal_loss",
                     inputs={
                         "X": x,
                         "Label": label,
                         "FgNum": fg_num
                     },
                     attrs={
                         "gamma": gamma,
                         'alpha': alpha
                     },
                     outputs={"Out": out})
620 621 622
    return out


Y
Yuan Gao 已提交
623 624
def detection_output(loc,
                     scores,
625 626 627 628 629 630 631
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
632 633
                     nms_eta=1.0,
                     return_index=False):
634
    """
S
swtkiwi 已提交
635

Q
qingqing01 已提交
636 637
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
638

Q
qingqing01 已提交
639 640
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
641 642 643 644 645
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
646 647 648

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
649 650
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
651 652
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
653
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
654 655 656
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
657
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
658 659
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
660
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
661 662
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
663
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
664 665
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
666
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
667
            to the confidences after filtering detections based on
Q
qingqing01 已提交
668
            score_threshold and before NMS. Default: 400.
669
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
670
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
671 672
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
673 674 675
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
676
        return_index(bool): Whether return selected index. Default: False
677 678

    Returns:
M
minqiyang 已提交
679

680 681 682
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
683 684 685 686 687 688 689 690 691 692 693 694
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
695 696 697
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

698 699 700 701

    Examples:
        .. code-block:: python

702
            import paddle.fluid as fluid
703 704 705
            import paddle

            paddle.enable_static()
706

Q
qingqing01 已提交
707 708 709 710
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
711
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
712 713
                                       loc=loc,
                                       prior_box=pb,
714 715
                                       prior_box_var=pbv,
                                       return_index=True)
716 717
    """
    helper = LayerHelper("detection_output", **locals())
718 719 720 721
    decoded_box = box_coder(prior_box=prior_box,
                            prior_box_var=prior_box_var,
                            target_box=loc,
                            code_type='decode_center_size')
722
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
723
    scores = nn.transpose(scores, perm=[0, 2, 1])
724
    scores.stop_gradient = True
X
Xin Pan 已提交
725 726
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
727 728
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        helper.append_op(type="multiclass_nms2",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={
                             'Out': nmsed_outs,
                             'Index': index
                         },
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
746 747
        index.stop_gradient = True
    else:
748 749 750 751 752 753 754 755 756 757 758 759 760 761
        helper.append_op(type="multiclass_nms",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={'Out': nmsed_outs},
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
762
    nmsed_outs.stop_gradient = True
763 764
    if return_index:
        return nmsed_outs, index
765
    return nmsed_outs
C
chengduoZH 已提交
766 767


X
Xin Pan 已提交
768
@templatedoc()
769
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
770
    """
771 772 773
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
774

X
Xin Pan 已提交
775 776 777
    ${comment}

    Args:
L
LielinJiang 已提交
778 779
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
780
        box_normalized(bool): Whether treat the priorbox as a normalized box.
781
            Set true by default.
X
Xin Pan 已提交
782
    Returns:
L
LielinJiang 已提交
783
        Variable: ${out_comment}.The data type is same with x.
784 785 786 787

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
788
            import numpy as np
789 790
            import paddle.fluid as fluid

L
LielinJiang 已提交
791 792 793 794 795 796
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
797
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
798 799 800 801 802 803 804 805 806 807 808

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
809 810
    """
    helper = LayerHelper("iou_similarity", **locals())
811
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
812

813 814 815 816 817 818 819
    helper.append_op(type="iou_similarity",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     attrs={"box_normalized": box_normalized},
                     outputs={"Out": out})
X
Xin Pan 已提交
820 821 822 823 824 825 826 827 828
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
829 830
              name=None,
              axis=0):
831
    r"""
S
swtkiwi 已提交
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
871 872

    Args:
873
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
874 875 876 877 878 879 880 881 882 883
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
884
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
885 886 887 888 889 890 891 892
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
893
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
894 895 896 897
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
898
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
899 900 901 902
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
903 904

    Returns:
W
wangguanzhong 已提交
905 906
        Variable:

907
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
908 909 910
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
911
        and M represents the number of decoded boxes.
912 913 914 915 916

    Examples:
 
        .. code-block:: python
 
917
            import paddle.fluid as fluid
918 919
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
920
            # For encode
921
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
922
                                  shape=[512, 4],
923 924 925 926
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
927 928 929 930 931
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
932
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
933
                                  shape=[512, 4],
934 935 936 937
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
938 939 940 941 942 943
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
944
    """
945 946 947 948
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
949 950
    helper = LayerHelper("box_coder", **locals())

951 952
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
953

954 955 956 957 958 959 960 961 962 963 964 965
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
966 967 968 969
    helper.append_op(type="box_coder",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"OutputBox": output_box})
X
Xin Pan 已提交
970 971 972 973 974 975 976 977 978
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
979 980 981 982
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
983 984

    Returns:
985
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
986 987 988 989 990

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
991
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
992
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
993
    """
994 995
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
996
    helper = LayerHelper("polygon_box_transform", **locals())
997
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
998

999 1000 1001 1002
    helper.append_op(type="polygon_box_transform",
                     inputs={"Input": input},
                     attrs={},
                     outputs={"Output": output})
X
Xin Pan 已提交
1003 1004 1005
    return output


1006
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1007 1008
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1009 1010
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1011
                anchors,
1012
                anchor_mask,
D
dengkaipeng 已提交
1013 1014
                class_num,
                ignore_thresh,
1015
                downsample_ratio,
1016
                gt_score=None,
D
dengkaipeng 已提交
1017
                use_label_smooth=True,
1018 1019
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1020
    """
S
swtkiwi 已提交
1021

D
dengkaipeng 已提交
1022 1023 1024
    ${comment}

    Args:
X
xiaoting 已提交
1025
        x (Variable): ${x_comment}The data type is float32 or float64. 
1026
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1027 1028
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1029 1030
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1031
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1032
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1033
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1034
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1035
        anchors (list|tuple): ${anchors_comment}
1036
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1037 1038
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1039
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1040 1041 1042
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1043
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1044
                            of [N, B]. Default None.
1045
        use_label_smooth (bool): ${use_label_smooth_comment}
1046
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1047 1048

    Returns:
1049
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1050 1051 1052

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1053 1054
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1055
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1056 1057 1058
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1059
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1060 1061

    Examples:
1062 1063
      .. code-block:: python

1064
          import paddle.fluid as fluid
1065 1066
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1067 1068 1069 1070
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1071 1072
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1073 1074
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1075 1076
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1077 1078 1079 1080
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1081
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1082
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1083
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1084
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1085
    if gt_score is not None and not isinstance(gt_score, Variable):
1086
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1087 1088
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1089 1090
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1091 1092 1093 1094 1095
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1096 1097 1098
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1099

1100 1101 1102 1103 1104 1105 1106
    if _non_static_mode():
        attrs = ("anchors", anchors, "anchor_mask", anchor_mask, "class_num",
                 class_num, "ignore_thresh", ignore_thresh, "downsample_ratio",
                 downsample_ratio, "use_label_smooth", use_label_smooth,
                 "scale_x_y", scale_x_y)
        loss, _, _ = _C_ops.yolov3_loss(x, gt_box, gt_label, gt_score, *attrs)
        return loss
D
dengkaipeng 已提交
1107

1108 1109
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1110 1111 1112
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1113 1114
    inputs = {
        "X": x,
1115 1116
        "GTBox": gt_box,
        "GTLabel": gt_label,
1117
    }
1118
    if gt_score is not None:
1119
        inputs["GTScore"] = gt_score
1120

D
dengkaipeng 已提交
1121 1122
    attrs = {
        "anchors": anchors,
1123
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1124 1125
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1126
        "downsample_ratio": downsample_ratio,
1127
        "use_label_smooth": use_label_smooth,
1128
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1129 1130
    }

1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(type='yolov3_loss',
                     inputs=inputs,
                     outputs={
                         'Loss': loss,
                         'ObjectnessMask': objectness_mask,
                         'GTMatchMask': gt_match_mask
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1139 1140 1141
    return loss


1142
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1143
@templatedoc(op_type="yolo_box")
1144 1145 1146 1147 1148 1149
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1150
             clip_bbox=True,
1151
             name=None,
1152 1153 1154
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
D
dengkaipeng 已提交
1155
    """
S
swtkiwi 已提交
1156

D
dengkaipeng 已提交
1157 1158 1159
    ${comment}

    Args:
X
xiaoting 已提交
1160 1161
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1162 1163 1164 1165
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1166
        clip_bbox (bool): ${clip_bbox_comment}
1167
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1168 1169 1170
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
1171 1172
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1173 1174

    Returns:
D
dengkaipeng 已提交
1175
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1176 1177
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1178 1179 1180 1181 1182 1183 1184 1185

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1186

D
dengkaipeng 已提交
1187 1188
    .. code-block:: python

X
xiaoting 已提交
1189
        import paddle.fluid as fluid
1190 1191
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1192 1193
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1194
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1195
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1196 1197 1198 1199 1200
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1201 1202 1203
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1204
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1205
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1206
    if not isinstance(class_num, int):
1207
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1208
    if not isinstance(conf_thresh, float):
1209
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1210 1211 1212 1213 1214 1215 1216

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1217
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1218
        "downsample_ratio": downsample_ratio,
1219
        "clip_bbox": clip_bbox,
1220
        "scale_x_y": scale_x_y,
1221 1222
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
D
dengkaipeng 已提交
1223 1224
    }

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    helper.append_op(type='yolo_box',
                     inputs={
                         "X": x,
                         "ImgSize": img_size,
                     },
                     outputs={
                         'Boxes': boxes,
                         'Scores': scores,
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1235 1236 1237
    return boxes, scores


X
Xin Pan 已提交
1238
@templatedoc()
1239 1240
def detection_map(detect_res,
                  label,
1241 1242
                  class_num,
                  background_label=0,
1243 1244
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1245 1246 1247 1248
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1260 1261 1262 1263 1264 1265 1266 1267
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1277
            import paddle.fluid as fluid
1278
            from fluid.layers import detection
1279
            detect_res = fluid.data(
X
Xin Pan 已提交
1280 1281 1282
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1283
            label = fluid.data(
X
Xin Pan 已提交
1284 1285 1286 1287
                name='label',
                shape=[10, 6],
                dtype='float32')

1288
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1289
    """
1290 1291
    helper = LayerHelper("detection_map", **locals())

1292
    def __create_var(type):
X
Xin Pan 已提交
1293
        return helper.create_variable_for_type_inference(dtype=type)
1294 1295

    map_out = __create_var('float32')
Z
zhongpu 已提交
1296 1297 1298 1299 1300 1301
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1302

Z
zhongpu 已提交
1303 1304 1305
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    helper.append_op(type="detection_map",
                     inputs={
                         'Label': label,
                         'DetectRes': detect_res,
                         'HasState': has_state,
                         'PosCount': pos_count,
                         'TruePos': true_pos,
                         'FalsePos': false_pos
                     },
                     outputs={
                         'MAP': map_out,
                         'AccumPosCount': accum_pos_count_out,
                         'AccumTruePos': accum_true_pos_out,
                         'AccumFalsePos': accum_false_pos_out
                     },
                     attrs={
                         'overlap_threshold': overlap_threshold,
                         'evaluate_difficult': evaluate_difficult,
                         'ap_type': ap_version,
                         'class_num': class_num,
                     })
1328
    return map_out
1329 1330


1331 1332 1333 1334
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1335
    """
S
swtkiwi 已提交
1336

Y
yuyang18 已提交
1337 1338
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1339
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1340 1341 1342 1343
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1344
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1345 1346 1347

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1348 1349 1350
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1351

Y
yuyang18 已提交
1352
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1353 1354 1355
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1356 1357 1358
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1359 1360
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1372
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1373
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1374 1375 1376 1377
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1378
    Returns:
W
wangguanzhong 已提交
1379
        Tuple:
Y
yuyang18 已提交
1380

W
wangguanzhong 已提交
1381 1382
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1383 1384 1385 1386 1387
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1388 1389
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1390 1391 1392 1393 1394 1395 1396
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1397
        >>> import paddle.fluid as fluid
1398 1399
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1400 1401
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1402 1403
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1404 1405 1406
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    helper.append_op(type='bipartite_match',
                     inputs={'DistMat': dist_matrix},
                     attrs={
                         'match_type': match_type,
                         'dist_threshold': dist_threshold,
                     },
                     outputs={
                         'ColToRowMatchIndices': match_indices,
                         'ColToRowMatchDist': match_distance
                     })
1417 1418 1419 1420 1421 1422 1423 1424 1425
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1426

1427 1428 1429 1430
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1431

1432 1433 1434 1435 1436
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1437

1438
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1439

1440 1441 1442
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1443

1444 1445
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1446

1447
        Otherwise,
C
chengduoZH 已提交
1448

1449 1450
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1451

Q
qingqing01 已提交
1452
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1453

Q
qingqing01 已提交
1454 1455
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1456

1457
    .. code-block:: text
C
chengduoZH 已提交
1458

Q
qingqing01 已提交
1459 1460 1461
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1462 1463

    Args:
Q
qingqing01 已提交
1464 1465 1466
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1467 1468 1469
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1470 1471
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1472
           the total number of negative example indices.
Q
qingqing01 已提交
1473 1474 1475 1476 1477
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1478 1479

    Returns:
Q
qingqing01 已提交
1480 1481 1482 1483 1484 1485 1486 1487
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1488 1489 1490 1491 1492

    Examples:

        .. code-block:: python

1493
            import paddle.fluid as fluid
1494 1495
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1496
            x = fluid.data(
1497 1498 1499
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1500 1501
                lod_level=1)
            matched_id = fluid.data(
1502 1503
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1504
                dtype='int32')
1505 1506 1507 1508
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1509 1510
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1511 1512
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    helper.append_op(type='target_assign',
                     inputs={
                         'X': input,
                         'MatchIndices': matched_indices,
                         'NegIndices': negative_indices
                     },
                     outputs={
                         'Out': out,
                         'OutWeight': out_weight
                     },
                     attrs={'mismatch_value': mismatch_value})
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1541
             normalize=True,
1542
             sample_size=None):
1543
    r"""
1544 1545 1546
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1547

Y
yuyang18 已提交
1548
    **Multi-box loss layer for object detection algorithm of SSD**
1549

翟飞跃 已提交
1550 1551
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1552 1553 1554 1555
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1556
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1557

1558
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1559

T
tianshuo78520a 已提交
1560
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1561

1562
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1563

1564
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1565

1566
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1567

1568 1569
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1570

1571
    4. Assign classification and regression targets
Y
yuyang18 已提交
1572

1573
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1574

1575
      4.2. Assign regression targets.
Y
yuyang18 已提交
1576

1577
      4.3. Assign classification targets.
Y
yuyang18 已提交
1578

1579
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1580

1581
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1582

1583
      5.2 Compute localization loss.
Y
yuyang18 已提交
1584

1585 1586 1587 1588 1589 1590
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1591 1592
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1593 1594
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1595 1596
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1597
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1598
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1599
            bboxes of mini-batch input.The data type is float32 or float64.
1600
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1601 1602 1603
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1604
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1605 1606
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1607
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1608
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1609 1610
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1611 1612
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1613
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1614
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1615
        neg_overlap (float): The negative overlap upper bound for the unmatched
1616
            predictions. Use only when mining_type is 'max_negative',
1617 1618 1619 1620
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1621
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1622 1623
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1624
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1625
            of output locations, True by default.
1626 1627
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1628 1629

    Returns:
1630 1631 1632
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1633 1634

    Raises:
Y
yuyang18 已提交
1635 1636
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1637 1638

    Examples:
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1658 1659 1660 1661 1662 1663 1664
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1665
    conf_shape = nn.shape(confidence)
1666 1667

    def __reshape_to_2d(var):
1668
        return nn.flatten(x=var, axis=2)
1669

T
tianshuo78520a 已提交
1670
    # 1. Find matched bounding box by prior box.
1671 1672
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1673
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1674 1675
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1676 1677 1678

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1679 1680
    gt_label = nn.reshape(x=gt_label,
                          shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1681
    gt_label.stop_gradient = True
1682 1683 1684
    target_label, _ = target_assign(gt_label,
                                    matched_indices,
                                    mismatch_value=background_label)
1685 1686 1687 1688 1689
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1690
    target_label.stop_gradient = True
1691
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1692
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1693
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1694
    actual_shape.stop_gradient = True
1695 1696
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1697 1698 1699
    conf_loss = nn.reshape(x=conf_loss,
                           shape=(-1, 0),
                           actual_shape=actual_shape)
1700
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1701
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1702
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1703 1704
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    helper.append_op(type='mine_hard_examples',
                     inputs={
                         'ClsLoss': conf_loss,
                         'LocLoss': None,
                         'MatchIndices': matched_indices,
                         'MatchDist': matched_dist,
                     },
                     outputs={
                         'NegIndices': neg_indices,
                         'UpdatedMatchIndices': updated_matched_indices
                     },
                     attrs={
                         'neg_pos_ratio': neg_pos_ratio,
                         'neg_dist_threshold': neg_overlap,
                         'mining_type': mining_type,
                         'sample_size': sample_size,
                     })
1722 1723 1724

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
1725 1726 1727 1728
    encoded_bbox = box_coder(prior_box=prior_box,
                             prior_box_var=prior_box_var,
                             target_box=gt_box,
                             code_type='encode_center_size')
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1743

1744
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1745 1746 1747
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1748 1749 1750 1751
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1752 1753 1754 1755 1756 1757 1758 1759
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1760 1761 1762 1763
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1764 1765
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1766
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1767 1768 1769
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1770 1771 1772 1773 1774
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1775
    return loss
C
chengduoZH 已提交
1776 1777


1778 1779 1780 1781
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1782
              aspect_ratios=[1.],
1783 1784 1785 1786 1787
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1788 1789
              name=None,
              min_max_aspect_ratios_order=False):
1790
    """
S
swtkiwi 已提交
1791

R
ruri 已提交
1792
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1793 1794 1795 1796 1797
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1798
    Parameters:
T
tianshuo78520a 已提交
1799
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1800 1801 1802 1803
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1804
            Default: None.
R
ruri 已提交
1805
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1806
            prior boxes. Default: [1.].
1807 1808 1809 1810
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1811
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1812 1813
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1814
            Default: [0., 0.]
1815
       offset(float): Prior boxes center offset. Default: 0.5
1816
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1817
            in order of [min, max, aspect_ratios], which is consistent with
1818 1819 1820
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1821
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1822 1823

    Returns:
R
ruri 已提交
1824
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1825

R
ruri 已提交
1826 1827
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1828
        H is the height of input, W is the width of input,
R
ruri 已提交
1829
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1830

R
ruri 已提交
1831 1832
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1833
        H is the height of input, W is the width of input
R
ruri 已提交
1834
        num_priors is the total box count of each position of input
1835 1836 1837

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1838

R
ruri 已提交
1839 1840 1841
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
1842 1843
        import paddle
        paddle.enable_static()
R
ruri 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1888 1889 1890
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1891 1892 1893
    check_variable_and_dtype(input, 'input',
                             ['uint8', 'int8', 'float32', 'float64'],
                             'prior_box')
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1910 1911 1912 1913 1914 1915 1916 1917
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1918 1919
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1920 1921
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1922 1923
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1924 1925
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1926 1927
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1928 1929
    helper.append_op(
        type="prior_box",
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
1940 1941 1942 1943 1944
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1954
                      flatten_to_2d=False,
R
ruri 已提交
1955
                      name=None):
1956
    r"""
R
ruri 已提交
1957

R
ruri 已提交
1958
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1959 1960 1961 1962 1963 1964
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1965
    
R
ruri 已提交
1966
    For densities_i in densities:
R
ruri 已提交
1967 1968
    
    .. math::
R
ruri 已提交
1969

R
ruri 已提交
1970 1971 1972 1973 1974 1975 1976
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1977
            the layout is NCHW.
R
ruri 已提交
1978
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1979 1980
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1981
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1982 1983
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1984
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1985 1986 1987
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1988
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1989
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1990
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1991
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1992 1993
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1994 1995
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1996 1997
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1998 1999
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
2000
    Returns:
R
ruri 已提交
2001
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
2002 2003

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
2004 2005 2006
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2007 2008

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2009 2010 2011
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2012 2013 2014


    Examples:
R
ruri 已提交
2015

R
ruri 已提交
2016 2017
        .. code-block:: python

R
ruri 已提交
2018
            #declarative mode
R
ruri 已提交
2019

R
ruri 已提交
2020 2021
            import paddle.fluid as fluid
            import numpy as np
2022 2023
            import paddle
            paddle.enable_static()
R
ruri 已提交
2024

R
ruri 已提交
2025 2026 2027
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2028 2029 2030 2031 2032 2033 2034 2035
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2036 2037 2038
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2039
 
R
ruri 已提交
2040 2041 2042 2043 2044 2045
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2046
                feed={"input":input_data,
R
ruri 已提交
2047
                      "image":image_data},
R
ruri 已提交
2048 2049 2050
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2051 2052 2053 2054
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2055 2056


R
ruri 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2075

R
ruri 已提交
2076 2077 2078
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2079 2080
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2081 2082 2083 2084

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2085 2086 2087
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2088 2089
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2090

R
ruri 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2106 2107 2108 2109
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2110 2111 2112 2113 2114
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
R
ruri 已提交
2125 2126 2127 2128 2129
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2130
@static_only
C
chengduoZH 已提交
2131
def multi_box_head(inputs,
C
chengduoZH 已提交
2132 2133
                   image,
                   base_size,
C
chengduoZH 已提交
2134
                   num_classes,
C
chengduoZH 已提交
2135
                   aspect_ratios,
2136 2137
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2138 2139
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2140 2141 2142 2143
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2144 2145
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2146
                   clip=False,
C
chengduoZH 已提交
2147
                   kernel_size=1,
C
chengduoZH 已提交
2148
                   pad=0,
C
chengduoZH 已提交
2149
                   stride=1,
2150 2151
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2152
    """
2153
	:api_attr: Static Graph
S
swtkiwi 已提交
2154

Q
qingqing01 已提交
2155 2156 2157 2158
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2159
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2160 2161

    Args:
Q
qingqing01 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2183
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2184 2185
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2205
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2206 2207 2208 2209 2210
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2211 2212 2213
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2214
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2215
            in order of [min, max, aspect_ratios], which is consistent with
2216
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2217
            convolution layer followed by and does not affect the final
2218
            detection results. Default: False.
C
chengduoZH 已提交
2219 2220

    Returns:
Q
update  
qiaolongfei 已提交
2221 2222
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2223 2224 2225
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2226

Q
qingqing01 已提交
2227 2228 2229 2230
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2231

Q
qingqing01 已提交
2232 2233 2234
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2235

Q
qingqing01 已提交
2236 2237
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2238

Q
qingqing01 已提交
2239
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2240
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2241

2242 2243
          import paddle
          paddle.enable_static()
2244

2245 2246 2247 2248 2249 2250 2251
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2252

2253
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2254
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2264 2265 2266 2267

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2268 2269
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2270

2271 2272 2273 2274 2275 2276 2277
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2278

2279
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2291 2292
    """

C
chengduoZH 已提交
2293
    def _reshape_with_axis_(input, axis=1):
2294
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2295
        return out
2296

2297 2298
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2299

C
chengduoZH 已提交
2300 2301 2302 2303
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2304 2305
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2306

C
chengduoZH 已提交
2307 2308 2309 2310 2311
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2312
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2313 2314 2315
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2316
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2317 2318 2319 2320 2321
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2322 2323 2324 2325 2326
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2327
    if step_h is not None:
C
chengduoZH 已提交
2328 2329 2330 2331
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2332
    if step_w is not None:
C
chengduoZH 已提交
2333 2334 2335 2336
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2337
    if steps is not None:
C
chengduoZH 已提交
2338 2339 2340 2341 2342 2343 2344
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2345 2346
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2347 2348
    box_results = []
    var_results = []
C
chengduoZH 已提交
2349 2350
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2351 2352
        max_size = max_sizes[i]

2353
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2354
            min_size = [min_size]
C
chengduoZH 已提交
2355 2356
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2357 2358 2359 2360

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2361
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2362
                aspect_ratio = [aspect_ratio]
2363
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2364

2365
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2366 2367
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2368 2369 2370 2371 2372

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2373

2374
        # get loc
Y
Yuan Gao 已提交
2375
        num_loc_output = num_boxes * 4
2376 2377 2378 2379 2380
        mbox_loc = nn.conv2d(input=input,
                             num_filters=num_loc_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2381

2382
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2383
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2384
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2385

2386
        # get conf
C
chengduoZH 已提交
2387
        num_conf_output = num_boxes * num_classes
2388 2389 2390 2391 2392
        conf_loc = nn.conv2d(input=input,
                             num_filters=num_conf_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2393
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2394
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2395
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2396

C
chengduoZH 已提交
2397 2398 2399
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2400 2401
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2411
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2412
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2413
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2414 2415
        mbox_confs_concat = nn.reshape(mbox_confs_concat,
                                       shape=[0, -1, num_classes])
C
chengduoZH 已提交
2416

2417 2418
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2419
    return mbox_locs_concat, mbox_confs_concat, box, var
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2430

2431 2432 2433 2434 2435 2436 2437 2438
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2455 2456

    Returns:
W
wangguanzhong 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2469 2470 2471 2472 2473 2474


    Examples:

        .. code-block:: python

2475
            import paddle.fluid as fluid
2476 2477 2478
            import paddle

            paddle.enable_static()
2479
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2480
            anchor, var = fluid.layers.anchor_generator(
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2514 2515
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2516 2517 2518
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
2519 2520 2521 2522 2523 2524
        outputs={
            "Anchors": anchor,
            "Variances": var
        },
        attrs=attrs,
    )
2525 2526 2527
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2528 2529


W
whs 已提交
2530 2531 2532 2533
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2534 2535
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2536
    """
S
SunGaofeng 已提交
2537
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2538

S
SunGaofeng 已提交
2539 2540 2541 2542 2543
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2544 2545
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2546 2547 2548
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2549 2550 2551
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2552 2553 2554 2555
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2556
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2557 2558 2559
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2560 2561

    Returns:
S
SunGaofeng 已提交
2562
            A tuple with three Variables. (out, mask, transform_matrix)
2563 2564

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2565
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2566 2567

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2568
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2569 2570

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2571 2572 2573 2574
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2575 2576 2577 2578

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2579
            import paddle.fluid as fluid
2580

S
SunGaofeng 已提交
2581 2582
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2583
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2584
    """
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2596 2597
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2598
    out = helper.create_variable_for_type_inference(dtype)
2599 2600
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2601 2602
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
    helper.append_op(type="roi_perspective_transform",
                     inputs={
                         "X": input,
                         "ROIs": rois
                     },
                     outputs={
                         "Out": out,
                         "Out2InIdx": out2in_idx,
                         "Out2InWeights": out2in_w,
                         "Mask": mask,
                         "TransformMatrix": transform_matrix
                     },
                     attrs={
                         "transformed_height": transformed_height,
                         "transformed_width": transformed_width,
                         "spatial_scale": spatial_scale
                     })
2620
    return out, mask, transform_matrix
W
whs 已提交
2621 2622


2623 2624
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2625
                             is_crowd,
2626
                             gt_boxes,
2627
                             im_info,
2628 2629 2630 2631 2632 2633
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2634
                             class_nums=None,
2635 2636
                             use_random=True,
                             is_cls_agnostic=False,
2637 2638 2639
                             is_cascade_rcnn=False,
                             max_overlap=None,
                             return_max_overlap=False):
2640
    """
S
swtkiwi 已提交
2641

2642
    **Generate Proposal Labels of Faster-RCNN**
2643

B
buxingyuan 已提交
2644
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2645
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2646 2647 2648

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2649
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2650 2651
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2652
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2653
    then we apply random sampling to make sure
B
buxingyuan 已提交
2654
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2655 2656 2657 2658 2659

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2660 2661 2662
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2663 2664 2665
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2666 2667 2668 2669 2670 2671 2672
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2673
        use_random(bool): Use random sampling to choose foreground and background boxes.
2674 2675
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2676 2677
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2678

2679 2680
    Returns:
        tuple:
2681
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2682 2683 2684 2685 2686 2687

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2688
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2689

B
Bai Yifan 已提交
2690 2691 2692
    Examples:
        .. code-block:: python

2693
            import paddle
B
Bai Yifan 已提交
2694
            import paddle.fluid as fluid
2695
            paddle.enable_static()
2696
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2697 2698
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2699 2700
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2701
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2702 2703 2704
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2705 2706 2707 2708
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2709 2710 2711 2712 2713 2714
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')
2715 2716
    if is_cascade_rcnn:
        assert max_overlap is not None, "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2717

X
Xin Pan 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2727 2728
    max_overlap_with_gt = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
    helper.append_op(type="generate_proposal_labels",
                     inputs=inputs,
                     outputs={
                         'Rois': rois,
                         'LabelsInt32': labels_int32,
                         'BboxTargets': bbox_targets,
                         'BboxInsideWeights': bbox_inside_weights,
                         'BboxOutsideWeights': bbox_outside_weights,
                         'MaxOverlapWithGT': max_overlap_with_gt
                     },
                     attrs={
                         'batch_size_per_im': batch_size_per_im,
                         'fg_fraction': fg_fraction,
                         'fg_thresh': fg_thresh,
                         'bg_thresh_hi': bg_thresh_hi,
                         'bg_thresh_lo': bg_thresh_lo,
                         'bbox_reg_weights': bbox_reg_weights,
                         'class_nums': class_nums,
                         'use_random': use_random,
                         'is_cls_agnostic': is_cls_agnostic,
                         'is_cascade_rcnn': is_cascade_rcnn
                     })
2761 2762 2763 2764 2765 2766

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2767
    max_overlap_with_gt.stop_gradient = True
2768

2769 2770
    if return_max_overlap:
        return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap_with_gt
2771 2772 2773
    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2774 2775
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
2776
    r"""
S
swtkiwi 已提交
2777

Q
qingqing01 已提交
2778
    **Generate Mask Labels for Mask-RCNN**
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2814 2815 2816 2817 2818 2819
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2820
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2821 2822 2823 2824 2825 2826 2827
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2828
            The users should return correct data format in reader.
Q
qingqing01 已提交
2829
            The LoD[0] represents the ground-truth objects number of
2830 2831 2832 2833
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2834 2835 2836 2837
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2838
            of int32. R is the same as it in `rois`. Each element represents
2839
            a class label of a RoI.
Q
qingqing01 已提交
2840 2841
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2842 2843

    Returns:
Q
qingqing01 已提交
2844 2845 2846
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2847
        original image size.
Q
qingqing01 已提交
2848 2849

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2850
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2851 2852 2853 2854
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2855
        predictions. Each element represents the binary mask targets.
2856 2857 2858 2859

    Examples:
        .. code-block:: python

2860 2861
          import paddle.fluid as fluid

Q
qingqing01 已提交
2862
          im_info = fluid.data(name="im_info", shape=[None, 3],
2863
              dtype="float32")
Q
qingqing01 已提交
2864
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2865
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2866
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2867
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2868
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2869
              dtype="float32", lod_level=3)
2870
          # rois, roi_labels can be the output of
2871
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2872
          rois = fluid.data(name="rois", shape=[None, 4],
2873
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2874
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2875
              dtype="int32", lod_level=1)
2876 2877 2878 2879 2880 2881
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2882
              labels_int32=roi_labels,
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
    helper.append_op(type="generate_mask_labels",
                     inputs={
                         'ImInfo': im_info,
                         'GtClasses': gt_classes,
                         'IsCrowd': is_crowd,
                         'GtSegms': gt_segms,
                         'Rois': rois,
                         'LabelsInt32': labels_int32
                     },
                     outputs={
                         'MaskRois': mask_rois,
                         'RoiHasMaskInt32': roi_has_mask_int32,
                         'MaskInt32': mask_int32
                     },
                     attrs={
                         'num_classes': num_classes,
                         'resolution': resolution
                     })
2913 2914 2915 2916 2917 2918 2919 2920

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2931 2932
                       return_rois_num=False,
                       name=None):
2933
    """
S
swtkiwi 已提交
2934

H
haowang101779990 已提交
2935 2936
    **Generate proposal Faster-RCNN**

2937 2938 2939 2940
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2941 2942 2943 2944
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2945 2946
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2947 2948 2949 2950 2951 2952
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2953 2954 2955
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2956
            width of the feature map. The data type must be float32.
2957
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2958
            represents the difference between predicted box location and
2959
            anchor location. The data type must be float32.
2960
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2961 2962
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2963
            The data type can be float32 or float64.
2964 2965 2966
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2967 2968
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2969
            [H, W, num_priors, 4]. Each variance is in
2970
            (xcenter, ycenter, w, h) format. The data type must be float32.
2971
        pre_nms_top_n(float): Number of total bboxes to be kept per
2972
            image before NMS. The data type must be float32. `6000` by default.
2973
        post_nms_top_n(float): Number of total bboxes to be kept per
2974 2975
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2976
        min_size(float): Remove predicted boxes with either height or
2977 2978 2979
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2980 2981 2982 2983
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2984 2985 2986 2987
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

2988 2989 2990 2991 2992 2993
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2994 2995 2996 2997 2998

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2999 3000
            import paddle
            paddle.enable_static()
3001 3002 3003 3004 3005
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
3006 3007 3008
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

3009
    """
J
Jiabin Yang 已提交
3010
    if _non_static_mode():
3011 3012 3013
        assert return_rois_num, "return_rois_num should be True in dygraph mode."
        attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
                 'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta)
W
wanghuancoder 已提交
3014
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
3015 3016 3017
            scores, bbox_deltas, im_info, anchors, variances, *attrs)
        return rpn_rois, rpn_roi_probs, rpn_rois_num

3018 3019
    helper = LayerHelper('generate_proposals', **locals())

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'generate_proposals')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals')

X
Xin Pan 已提交
3031 3032 3033 3034
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
3035 3036 3037 3038 3039 3040 3041 3042
    outputs = {
        'RpnRois': rpn_rois,
        'RpnRoiProbs': rpn_roi_probs,
    }
    if return_rois_num:
        rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rpn_rois_num.stop_gradient = True
        outputs['RpnRoisNum'] = rpn_rois_num
F
FDInSky 已提交
3043

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    helper.append_op(type="generate_proposals",
                     inputs={
                         'Scores': scores,
                         'BboxDeltas': bbox_deltas,
                         'ImInfo': im_info,
                         'Anchors': anchors,
                         'Variances': variances
                     },
                     attrs={
                         'pre_nms_topN': pre_nms_top_n,
                         'post_nms_topN': post_nms_top_n,
                         'nms_thresh': nms_thresh,
                         'min_size': min_size,
                         'eta': eta
                     },
                     outputs=outputs)
3060 3061 3062
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

F
FDInSky 已提交
3063
    if return_rois_num:
3064
        return rpn_rois, rpn_roi_probs, rpn_rois_num
F
FDInSky 已提交
3065 3066
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
3067 3068


J
jerrywgz 已提交
3069
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3070
    """
S
swtkiwi 已提交
3071
	
J
jerrywgz 已提交
3072
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3073
    For each input box, The formula is given as follows:
3074 3075 3076
        
    .. code-block:: text

J
jerrywgz 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3088 3089

    Args:
W
wangguanzhong 已提交
3090 3091 3092
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3093
            (height, width, scale) representing the information of image. 
3094
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3095 3096 3097 3098
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3099 3100
    
    Returns:
W
wangguanzhong 已提交
3101 3102
        Variable:

T
tianshuo78520a 已提交
3103
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3104 3105
        The shape is same as input.

3106
        
J
jerrywgz 已提交
3107 3108
    Examples:
        .. code-block:: python
3109
        
3110
            import paddle.fluid as fluid
3111 3112
            import paddle
            paddle.enable_static()
3113 3114 3115
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3116
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3117
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3118 3119
    """

3120 3121 3122 3123
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3124
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3125
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3126
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3127
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3128

3129 3130
    return output

J
jerrywgz 已提交
3131

3132 3133 3134 3135 3136 3137 3138 3139
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3140
                               nms_eta=1.0):
3141
    """
3142
    **Detection Output Layer for the detector RetinaNet.**
3143

3144 3145 3146 3147
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3148

3149 3150 3151
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3152 3153 3154 3155
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3173
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3174 3175 3176
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3177
            information of each image is a 3-vector which are the height and width
3178 3179
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3180
        score_threshold(float): Threshold to filter out bounding boxes
3181
            with a confidence score before NMS, default value is set to 0.05.
3182
        nms_top_k(int): Maximum number of detections per FPN layer to be
3183 3184
            kept according to the confidences before NMS, default value is set to
            1000.
3185
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3204
    :attr:`anchors` is required to be from the highest FPN level.
3205 3206

    Returns:
3207 3208
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3209
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3210 3211 3212
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3213 3214 3215 3216 3217 3218
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3236 3237 3238 3239 3240 3241 3242 3243 3244
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3245 3246
    """

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3265 3266 3267
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
    helper.append_op(type="retinanet_detection_output",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores,
                         'Anchors': anchors,
                         'ImInfo': im_info
                     },
                     attrs={
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'keep_top_k': keep_top_k,
                         'nms_eta': 1.,
                     },
                     outputs={'Out': output})
3283 3284 3285 3286
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3287 3288 3289 3290 3291
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3292
                   nms_threshold=0.3,
J
jerrywgz 已提交
3293 3294
                   normalized=True,
                   nms_eta=1.,
3295 3296
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3297
    """
S
swtkiwi 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3327

3328 3329 3330 3331 3332 3333 3334

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3335 3336 3337 3338 3339 3340 3341 3342
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3343
                           The data type is float32 or float64.
3344 3345
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3346
                           class number. The data type is float32 or float64.   
3347 3348 3349 3350 3351 3352 3353
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3354
                           of BBoxes.The data type is float32 or float64. 
3355 3356 3357
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3358
                           case with shape [M, C, 4].The data type is float32 or float64. 
3359 3360 3361 3362 3363 3364 3365
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3366
                         the confidences after the filtering detections based
3367 3368 3369 3370 3371 3372 3373 3374 3375
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3376
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3377 3378 3379 3380 3381
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3382 3383 3384 3385
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3386

3387

3388 3389 3390
    Examples:
        .. code-block:: python

3391

3392
            import paddle.fluid as fluid
3393 3394
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3395
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3396
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3397
            scores = fluid.data(name='scores', shape=[None,81],
3398 3399 3400 3401 3402 3403 3404 3405 3406
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3407
    """
X
xiaoting 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3420 3421
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
    helper.append_op(type="multiclass_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
J
jerrywgz 已提交
3437
    output.stop_gradient = True
J
jerrywgz 已提交
3438 3439

    return output
3440 3441


3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3490
                         the confidences after the filtering detections based
3491 3492 3493
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3494 3495
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
    helper.append_op(type="locality_aware_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'nms_eta': nms_eta,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
3568 3569 3570 3571 3572
    output.stop_gradient = True

    return output


Y
Yang Zhang 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               name=None):
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
    helper.append_op(type="matrix_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'post_threshold': post_threshold,
                         'nms_top_k': nms_top_k,
                         'gaussian_sigma': gaussian_sigma,
                         'use_gaussian': use_gaussian,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={
                         'Out': output,
                         'Index': index
                     })
Y
Yang Zhang 已提交
3695 3696 3697 3698 3699 3700 3701 3702
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3703 3704 3705 3706 3707
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
3708
                             rois_num=None,
3709
                             name=None):
3710
    r"""
S
swtkiwi 已提交
3711
	
W
wangguanzhong 已提交
3712 3713 3714 3715 3716 3717
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3718
    
J
jerrywgz 已提交
3719
    .. math::
3720

J
jerrywgz 已提交
3721
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3722

J
jerrywgz 已提交
3723 3724 3725
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3726 3727

    Args:
W
wangguanzhong 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3737 3738 3739 3740 3741
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
W
wangguanzhong 已提交
3742 3743 3744
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3745

3746
    Returns:
W
wangguanzhong 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3757 3758 3759 3760
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is 
        the RoIs' number in each image on the corresponding level. The shape 
        is [B] and data type of int32. B is the number of images

3761 3762 3763 3764

    Examples:
        .. code-block:: python

3765
            import paddle.fluid as fluid
3766 3767
            import paddle
            paddle.enable_static()
3768 3769
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3770
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3771 3772 3773
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3774 3775 3776
                refer_level=4,
                refer_scale=224)
    """
3777 3778
    num_lvl = max_level - min_level + 1

J
Jiabin Yang 已提交
3779
    if _non_static_mode():
3780 3781 3782
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
                 refer_level, 'refer_scale', refer_scale)
W
wanghuancoder 已提交
3783
        multi_rois, restore_ind, rois_num_per_level = _C_ops.distribute_fpn_proposals(
3784 3785 3786
            fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
        return multi_rois, restore_ind, rois_num_per_level

3787 3788
    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
3789
    helper = LayerHelper('distribute_fpn_proposals', **locals())
3790
    dtype = helper.input_dtype('fpn_rois')
3791 3792 3793
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
3794

3795
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

    inputs = {'FpnRois': fpn_rois}
    outputs = {
        'MultiFpnRois': multi_rois,
        'RestoreIndex': restore_ind,
    }

    if rois_num is not None:
        inputs['RoisNum'] = rois_num
        rois_num_per_level = [
            helper.create_variable_for_type_inference(dtype='int32')
            for i in range(num_lvl)
        ]
        outputs['MultiLevelRoIsNum'] = rois_num_per_level

3811 3812 3813 3814 3815 3816 3817 3818 3819
    helper.append_op(type='distribute_fpn_proposals',
                     inputs=inputs,
                     outputs=outputs,
                     attrs={
                         'min_level': min_level,
                         'max_level': max_level,
                         'refer_level': refer_level,
                         'refer_scale': refer_scale
                     })
3820 3821
    if rois_num is not None:
        return multi_rois, restore_ind, rois_num_per_level
3822
    return multi_rois, restore_ind
3823 3824


3825
@templatedoc()
J
jerrywgz 已提交
3826 3827 3828 3829 3830 3831
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3832
    """
S
swtkiwi 已提交
3833
	
3834 3835 3836 3837 3838 3839
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3840
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3841 3842 3843 3844
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3845
    Returns:
W
wangguanzhong 已提交
3846
        Tuple:
J
jerrywgz 已提交
3847

W
wangguanzhong 已提交
3848 3849 3850
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3851 3852


3853 3854 3855
    Examples:
        .. code-block:: python

3856
            import paddle.fluid as fluid
3857 3858
            import paddle
            paddle.enable_static()
3859 3860 3861 3862 3863 3864 3865 3866
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3867
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3868
                pb, pbv, loc, scores, 4.135)
3869 3870

    """
3871 3872 3873 3874 3875 3876
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3877 3878
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3879
    decoded_box = helper.create_variable_for_type_inference(
3880 3881 3882 3883
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    helper.append_op(type="box_decoder_and_assign",
                     inputs={
                         "PriorBox": prior_box,
                         "PriorBoxVar": prior_box_var,
                         "TargetBox": target_box,
                         "BoxScore": box_score
                     },
                     attrs={"box_clip": box_clip},
                     outputs={
                         "DecodeBox": decoded_box,
                         "OutputAssignBox": output_assign_box
                     })
J
jerrywgz 已提交
3896
    return decoded_box, output_assign_box
3897 3898 3899 3900 3901 3902 3903


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
3904
                          rois_num_per_level=None,
3905 3906
                          name=None):
    """
S
swtkiwi 已提交
3907
	
W
wangguanzhong 已提交
3908 3909 3910
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3911 3912 3913 3914 3915 3916 3917 3918

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3919 3920 3921 3922 3923 3924
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3925 3926 3927
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
3928 3929 3930 3931 3932 3933
        rois_num_per_level(list, optional): The List of RoIs' numbers. 
            Each element is 1-D Tensor which contains the RoIs' number of each 
            image on each level and the shape is [B] and data type is 
            int32, B is the number of images. If it is not None then return 
            a 1-D Tensor contains the output RoIs' number of each image and 
            the shape is [B]. Default: None
W
wangguanzhong 已提交
3934 3935 3936 3937
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3938
    Returns:
W
wangguanzhong 已提交
3939 3940 3941 3942 3943
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3944 3945 3946
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each 
        image. The shape is [B] and data type is int32. B is the number of 
        images. 
3947 3948 3949 3950

    Examples:
        .. code-block:: python
           
3951
            import paddle.fluid as fluid
3952 3953
            import paddle
            paddle.enable_static()
3954 3955 3956
            multi_rois = []
            multi_scores = []
            for i in range(4):
3957 3958
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3959
            for i in range(4):
3960 3961
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3962 3963 3964 3965 3966 3967 3968 3969

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3970 3971 3972 3973
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
3974
    if _non_static_mode():
3975 3976
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
W
wanghuancoder 已提交
3977
        output_rois, rois_num = _C_ops.collect_fpn_proposals(
3978 3979
            input_rois, input_scores, rois_num_per_level, *attrs)

3980 3981
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3982 3983
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3984 3985
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3986 3987
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
3999 4000 4001 4002
    helper.append_op(type='collect_fpn_proposals',
                     inputs=inputs,
                     outputs=outputs,
                     attrs={'post_nms_topN': post_nms_top_n})
4003 4004
    if rois_num_per_level is not None:
        return output_rois, rois_num
4005
    return output_rois