detection.py 177.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
import paddle

22 23
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
24
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ..framework import Variable, _non_static_mode, static_only
26
from .. import core
27
from .loss import softmax_with_cross_entropy
28 29
from . import tensor
from . import nn
30
from . import ops
M
minqiyang 已提交
31
from ... import compat as cpt
32
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
33
import math
M
minqiyang 已提交
34
import six
35
import numpy as np
36
from functools import reduce
37
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
38
from paddle.utils import deprecated
W
wanghuancoder 已提交
39
from paddle import _C_ops
40

C
chengduoZH 已提交
41
__all__ = [
42 43 44 45 46 47 48 49
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
50
    'retinanet_target_assign',
51
    'sigmoid_focal_loss',
52 53 54 55
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
56
    'generate_mask_labels',
57 58 59 60
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
61
    'yolo_box',
62
    'box_clip',
J
jerrywgz 已提交
63
    'multiclass_nms',
64
    'locality_aware_nms',
Y
Yang Zhang 已提交
65
    'matrix_nms',
66
    'retinanet_detection_output',
67
    'distribute_fpn_proposals',
68
    'box_decoder_and_assign',
69
    'collect_fpn_proposals',
C
chengduoZH 已提交
70
]
71 72


73 74 75 76 77 78 79 80 81 82 83
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
84
    r"""
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
109
    regression for each anchor, hence the target label for each positive(or negative)
110 111 112 113 114 115 116 117 118 119 120 121 122 123
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
124 125

    Args:
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
167
            information of each image is a 3-vector which are the height and width
168 169 170 171 172 173 174 175 176 177 178 179
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
180 181

    Returns:
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
223 224 225 226 227

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
228 229 230 231 232 233 234 235 236 237 238
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
239
                            dtype='int32')
240
          is_crowd = fluid.data(name='is_crowd', shape=[1],
241
                            dtype='int32')
242
          im_info = fluid.data(name='im_info', shape=[1, 3],
243
                            dtype='float32')
244
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
245 246 247 248 249
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

267 268 269 270 271 272 273 274 275 276
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    helper.append_op(type="retinanet_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'GtLabels': gt_labels,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight,
                         'ForegroundNumber': fg_num
                     },
                     attrs={
                         'positive_overlap': positive_overlap,
                         'negative_overlap': negative_overlap
                     })
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


313 314
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
315
                      anchor_box,
316
                      anchor_var,
317 318 319
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
320
                      rpn_batch_size_per_im=256,
321 322
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
323
                      rpn_positive_overlap=0.7,
324 325
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
326
    """
H
haowang101779990 已提交
327
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
345
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
346 347
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
348
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
349 350 351
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
352
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
353 354 355 356 357
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
358
            coordinate of the anchor box. The data type can be float32 or float64.
359
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
360
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
361
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
362
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
363
            bboxes of mini-batch input. The data type can be float32 or float64.
364
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
365
                             The data type must be int32.
366 367
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
368
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
369
                                    The data type must be int32.
370
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
371
            by straddle_thresh pixels. The data type must be float32.
372
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
373
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
374 375
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
376
            example. The data type must be float32.
Y
Yuan Gao 已提交
377 378
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
379
            examples. The data type must be float32.
Y
Yuan Gao 已提交
380 381

    Returns:
M
minqiyang 已提交
382
        tuple:
383 384 385 386 387 388 389 390 391 392 393 394 395
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
396 397 398 399

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
400
            import paddle.fluid as fluid
401 402 403 404 405 406 407
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
408 409
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
410

Y
Yuan Gao 已提交
411 412 413
    """

    helper = LayerHelper('rpn_target_assign', **locals())
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

430
    # Assign target label to anchors
J
jerrywgz 已提交
431 432 433 434 435 436 437
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    helper.append_op(type="rpn_target_assign",
                     inputs={
                         'Anchor': anchor_box,
                         'GtBoxes': gt_boxes,
                         'IsCrowd': is_crowd,
                         'ImInfo': im_info
                     },
                     outputs={
                         'LocationIndex': loc_index,
                         'ScoreIndex': score_index,
                         'TargetLabel': target_label,
                         'TargetBBox': target_bbox,
                         'BBoxInsideWeight': bbox_inside_weight
                     },
                     attrs={
                         'rpn_batch_size_per_im': rpn_batch_size_per_im,
                         'rpn_straddle_thresh': rpn_straddle_thresh,
                         'rpn_positive_overlap': rpn_positive_overlap,
                         'rpn_negative_overlap': rpn_negative_overlap,
                         'rpn_fg_fraction': rpn_fg_fraction,
                         'use_random': use_random
                     })
Y
Yuan Gao 已提交
460

461 462 463 464
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
465
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
466

467 468 469 470
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
471

J
jerrywgz 已提交
472
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
473 474


475
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
476
    r"""
477 478 479
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
480

481 482
    **Sigmoid Focal Loss Operator.**

483 484 485 486 487
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

488 489 490
    The focal loss is given as followed:

    .. math::
491 492 493 494 495 496 497
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

498 499 500 501 502 503 504

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
520
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
521
            set to 2.0.
522
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
523 524 525
            is set to 0.25.

    Returns:
526 527 528
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
529 530 531 532

    Examples:
        .. code-block:: python

533
            import numpy as np
534
            import paddle.fluid as fluid
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
600 601
    """

602 603 604 605 606
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

607 608 609 610
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

611 612 613 614 615 616 617 618 619 620 621
    helper.append_op(type="sigmoid_focal_loss",
                     inputs={
                         "X": x,
                         "Label": label,
                         "FgNum": fg_num
                     },
                     attrs={
                         "gamma": gamma,
                         'alpha': alpha
                     },
                     outputs={"Out": out})
622 623 624
    return out


Y
Yuan Gao 已提交
625 626
def detection_output(loc,
                     scores,
627 628 629 630 631 632 633
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
634 635
                     nms_eta=1.0,
                     return_index=False):
636
    """
S
swtkiwi 已提交
637

Q
qingqing01 已提交
638 639
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
640

Q
qingqing01 已提交
641 642
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
643 644 645 646 647
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
648 649 650

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
651 652
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
653 654
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
655
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
656 657 658
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
659
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
660 661
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
662
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
663 664
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
665
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
666 667
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
668
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
669
            to the confidences after filtering detections based on
Q
qingqing01 已提交
670
            score_threshold and before NMS. Default: 400.
671
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
672
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
673 674
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
675 676 677
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
678
        return_index(bool): Whether return selected index. Default: False
679 680

    Returns:
M
minqiyang 已提交
681

682 683 684
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
685 686 687 688 689 690 691 692 693 694 695 696
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
697 698 699
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

700 701 702 703

    Examples:
        .. code-block:: python

704
            import paddle.fluid as fluid
705 706 707
            import paddle

            paddle.enable_static()
708

Q
qingqing01 已提交
709 710 711 712
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
713
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
714 715
                                       loc=loc,
                                       prior_box=pb,
716 717
                                       prior_box_var=pbv,
                                       return_index=True)
718 719
    """
    helper = LayerHelper("detection_output", **locals())
720 721 722 723
    decoded_box = box_coder(prior_box=prior_box,
                            prior_box_var=prior_box_var,
                            target_box=loc,
                            code_type='decode_center_size')
724
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
725
    scores = nn.transpose(scores, perm=[0, 2, 1])
726
    scores.stop_gradient = True
X
Xin Pan 已提交
727 728
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
729 730
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        helper.append_op(type="multiclass_nms2",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={
                             'Out': nmsed_outs,
                             'Index': index
                         },
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
748 749
        index.stop_gradient = True
    else:
750 751 752 753 754 755 756 757 758 759 760 761 762 763
        helper.append_op(type="multiclass_nms",
                         inputs={
                             'Scores': scores,
                             'BBoxes': decoded_box
                         },
                         outputs={'Out': nmsed_outs},
                         attrs={
                             'background_label': 0,
                             'nms_threshold': nms_threshold,
                             'nms_top_k': nms_top_k,
                             'keep_top_k': keep_top_k,
                             'score_threshold': score_threshold,
                             'nms_eta': 1.0,
                         })
764
    nmsed_outs.stop_gradient = True
765 766
    if return_index:
        return nmsed_outs, index
767
    return nmsed_outs
C
chengduoZH 已提交
768 769


X
Xin Pan 已提交
770
@templatedoc()
771
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
772
    """
773 774 775
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
776

X
Xin Pan 已提交
777 778 779
    ${comment}

    Args:
L
LielinJiang 已提交
780 781
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
782
        box_normalized(bool): Whether treat the priorbox as a normalized box.
783
            Set true by default.
X
Xin Pan 已提交
784
    Returns:
L
LielinJiang 已提交
785
        Variable: ${out_comment}.The data type is same with x.
786 787 788 789

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
790
            import numpy as np
791 792
            import paddle.fluid as fluid

L
LielinJiang 已提交
793 794 795 796 797 798
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
799
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
800 801 802 803 804 805 806 807 808 809 810

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
811 812
    """
    helper = LayerHelper("iou_similarity", **locals())
813
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
814

815 816 817 818 819 820 821
    helper.append_op(type="iou_similarity",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     attrs={"box_normalized": box_normalized},
                     outputs={"Out": out})
X
Xin Pan 已提交
822 823 824 825 826 827 828 829 830
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
831 832
              name=None,
              axis=0):
833
    r"""
S
swtkiwi 已提交
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
873 874

    Args:
875
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
876 877 878 879 880 881 882 883 884 885
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
886
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
887 888 889 890 891 892 893 894
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
895
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
896 897 898 899
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
900
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
901 902 903 904
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
905 906

    Returns:
W
wangguanzhong 已提交
907 908
        Variable:

909
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
910 911 912
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
913
        and M represents the number of decoded boxes.
914 915 916 917 918

    Examples:
 
        .. code-block:: python
 
919
            import paddle.fluid as fluid
920 921
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
922
            # For encode
923
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
924
                                  shape=[512, 4],
925 926 927 928
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
929 930 931 932 933
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
934
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
935
                                  shape=[512, 4],
936 937 938 939
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
940 941 942 943 944 945
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
946
    """
947 948 949 950
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
951 952
    helper = LayerHelper("box_coder", **locals())

953 954
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
955

956 957 958 959 960 961 962 963 964 965 966 967
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
968 969 970 971
    helper.append_op(type="box_coder",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"OutputBox": output_box})
X
Xin Pan 已提交
972 973 974 975 976 977 978 979 980
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
981 982 983 984
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
985 986

    Returns:
987
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
988 989 990 991 992

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
993
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
994
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
995
    """
996 997
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
998
    helper = LayerHelper("polygon_box_transform", **locals())
999
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
1000

1001 1002 1003 1004
    helper.append_op(type="polygon_box_transform",
                     inputs={"Input": input},
                     attrs={},
                     outputs={"Output": output})
X
Xin Pan 已提交
1005 1006 1007
    return output


1008
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1009 1010
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1011 1012
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1013
                anchors,
1014
                anchor_mask,
D
dengkaipeng 已提交
1015 1016
                class_num,
                ignore_thresh,
1017
                downsample_ratio,
1018
                gt_score=None,
D
dengkaipeng 已提交
1019
                use_label_smooth=True,
1020 1021
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1022
    """
S
swtkiwi 已提交
1023

D
dengkaipeng 已提交
1024 1025 1026
    ${comment}

    Args:
X
xiaoting 已提交
1027
        x (Variable): ${x_comment}The data type is float32 or float64. 
1028
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1029 1030
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1031 1032
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1033
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1034
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1035
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1036
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1037
        anchors (list|tuple): ${anchors_comment}
1038
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1039 1040
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1041
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1042 1043 1044
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1045
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1046
                            of [N, B]. Default None.
1047
        use_label_smooth (bool): ${use_label_smooth_comment}
1048
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1049 1050

    Returns:
1051
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1052 1053 1054

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1055 1056
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1057
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1058 1059 1060
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1061
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1062 1063

    Examples:
1064 1065
      .. code-block:: python

1066
          import paddle.fluid as fluid
1067 1068
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1069 1070 1071 1072
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1073 1074
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1075 1076
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1077 1078
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1079 1080 1081 1082
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1083
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1084
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1085
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1086
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1087
    if gt_score is not None and not isinstance(gt_score, Variable):
1088
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1089 1090
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1091 1092
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1093 1094 1095 1096 1097
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1098 1099 1100
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1101

1102 1103 1104 1105 1106 1107 1108
    if _non_static_mode():
        attrs = ("anchors", anchors, "anchor_mask", anchor_mask, "class_num",
                 class_num, "ignore_thresh", ignore_thresh, "downsample_ratio",
                 downsample_ratio, "use_label_smooth", use_label_smooth,
                 "scale_x_y", scale_x_y)
        loss, _, _ = _C_ops.yolov3_loss(x, gt_box, gt_label, gt_score, *attrs)
        return loss
D
dengkaipeng 已提交
1109

1110 1111
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1112 1113 1114
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1115 1116
    inputs = {
        "X": x,
1117 1118
        "GTBox": gt_box,
        "GTLabel": gt_label,
1119
    }
1120
    if gt_score is not None:
1121
        inputs["GTScore"] = gt_score
1122

D
dengkaipeng 已提交
1123 1124
    attrs = {
        "anchors": anchors,
1125
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1126 1127
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1128
        "downsample_ratio": downsample_ratio,
1129
        "use_label_smooth": use_label_smooth,
1130
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1131 1132
    }

1133 1134 1135 1136 1137 1138 1139 1140
    helper.append_op(type='yolov3_loss',
                     inputs=inputs,
                     outputs={
                         'Loss': loss,
                         'ObjectnessMask': objectness_mask,
                         'GTMatchMask': gt_match_mask
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1141 1142 1143
    return loss


1144
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1145
@templatedoc(op_type="yolo_box")
1146 1147 1148 1149 1150 1151
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1152
             clip_bbox=True,
1153
             name=None,
1154 1155 1156
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
D
dengkaipeng 已提交
1157
    """
S
swtkiwi 已提交
1158

D
dengkaipeng 已提交
1159 1160 1161
    ${comment}

    Args:
X
xiaoting 已提交
1162 1163
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1164 1165 1166 1167
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1168
        clip_bbox (bool): ${clip_bbox_comment}
1169
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1170 1171 1172
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
1173 1174
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1175 1176

    Returns:
D
dengkaipeng 已提交
1177
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1178 1179
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1180 1181 1182 1183 1184 1185 1186 1187

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1188

D
dengkaipeng 已提交
1189 1190
    .. code-block:: python

X
xiaoting 已提交
1191
        import paddle.fluid as fluid
1192 1193
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1194 1195
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1196
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1197
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1198 1199 1200 1201 1202
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1203 1204 1205
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1206
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1207
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1208
    if not isinstance(class_num, int):
1209
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1210
    if not isinstance(conf_thresh, float):
1211
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1212 1213 1214 1215 1216 1217 1218

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1219
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1220
        "downsample_ratio": downsample_ratio,
1221
        "clip_bbox": clip_bbox,
1222
        "scale_x_y": scale_x_y,
1223 1224
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
D
dengkaipeng 已提交
1225 1226
    }

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    helper.append_op(type='yolo_box',
                     inputs={
                         "X": x,
                         "ImgSize": img_size,
                     },
                     outputs={
                         'Boxes': boxes,
                         'Scores': scores,
                     },
                     attrs=attrs)
D
dengkaipeng 已提交
1237 1238 1239
    return boxes, scores


X
Xin Pan 已提交
1240
@templatedoc()
1241 1242
def detection_map(detect_res,
                  label,
1243 1244
                  class_num,
                  background_label=0,
1245 1246
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1247 1248 1249 1250
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1262 1263 1264 1265 1266 1267 1268 1269
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1279
            import paddle.fluid as fluid
1280
            from fluid.layers import detection
1281
            detect_res = fluid.data(
X
Xin Pan 已提交
1282 1283 1284
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1285
            label = fluid.data(
X
Xin Pan 已提交
1286 1287 1288 1289
                name='label',
                shape=[10, 6],
                dtype='float32')

1290
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1291
    """
1292 1293
    helper = LayerHelper("detection_map", **locals())

1294
    def __create_var(type):
X
Xin Pan 已提交
1295
        return helper.create_variable_for_type_inference(dtype=type)
1296 1297

    map_out = __create_var('float32')
Z
zhongpu 已提交
1298 1299 1300 1301 1302 1303
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1304

Z
zhongpu 已提交
1305 1306 1307
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    helper.append_op(type="detection_map",
                     inputs={
                         'Label': label,
                         'DetectRes': detect_res,
                         'HasState': has_state,
                         'PosCount': pos_count,
                         'TruePos': true_pos,
                         'FalsePos': false_pos
                     },
                     outputs={
                         'MAP': map_out,
                         'AccumPosCount': accum_pos_count_out,
                         'AccumTruePos': accum_true_pos_out,
                         'AccumFalsePos': accum_false_pos_out
                     },
                     attrs={
                         'overlap_threshold': overlap_threshold,
                         'evaluate_difficult': evaluate_difficult,
                         'ap_type': ap_version,
                         'class_num': class_num,
                     })
1330
    return map_out
1331 1332


1333 1334 1335 1336
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1337
    """
S
swtkiwi 已提交
1338

Y
yuyang18 已提交
1339 1340
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1341
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1342 1343 1344 1345
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1346
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1347 1348 1349

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1350 1351 1352
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1353

Y
yuyang18 已提交
1354
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1355 1356 1357
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1358 1359 1360
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1361 1362
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1374
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1375
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1376 1377 1378 1379
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1380
    Returns:
W
wangguanzhong 已提交
1381
        Tuple:
Y
yuyang18 已提交
1382

W
wangguanzhong 已提交
1383 1384
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1385 1386 1387 1388 1389
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1390 1391
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1392 1393 1394 1395 1396 1397 1398
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1399
        >>> import paddle.fluid as fluid
1400 1401
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1402 1403
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1404 1405
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1406 1407 1408
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    helper.append_op(type='bipartite_match',
                     inputs={'DistMat': dist_matrix},
                     attrs={
                         'match_type': match_type,
                         'dist_threshold': dist_threshold,
                     },
                     outputs={
                         'ColToRowMatchIndices': match_indices,
                         'ColToRowMatchDist': match_distance
                     })
1419 1420 1421 1422 1423 1424 1425 1426 1427
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1428

1429 1430 1431 1432
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1433

1434 1435 1436 1437 1438
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1439

1440
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1441

1442 1443 1444
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1445

1446 1447
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1448

1449
        Otherwise,
C
chengduoZH 已提交
1450

1451 1452
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1453

Q
qingqing01 已提交
1454
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1455

Q
qingqing01 已提交
1456 1457
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1458

1459
    .. code-block:: text
C
chengduoZH 已提交
1460

Q
qingqing01 已提交
1461 1462 1463
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1464 1465

    Args:
Q
qingqing01 已提交
1466 1467 1468
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1469 1470 1471
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1472 1473
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1474
           the total number of negative example indices.
Q
qingqing01 已提交
1475 1476 1477 1478 1479
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1480 1481

    Returns:
Q
qingqing01 已提交
1482 1483 1484 1485 1486 1487 1488 1489
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1490 1491 1492 1493 1494

    Examples:

        .. code-block:: python

1495
            import paddle.fluid as fluid
1496 1497
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1498
            x = fluid.data(
1499 1500 1501
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1502 1503
                lod_level=1)
            matched_id = fluid.data(
1504 1505
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1506
                dtype='int32')
1507 1508 1509 1510
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1511 1512
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1513 1514
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    helper.append_op(type='target_assign',
                     inputs={
                         'X': input,
                         'MatchIndices': matched_indices,
                         'NegIndices': negative_indices
                     },
                     outputs={
                         'Out': out,
                         'OutWeight': out_weight
                     },
                     attrs={'mismatch_value': mismatch_value})
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1543
             normalize=True,
1544
             sample_size=None):
1545
    r"""
1546 1547 1548
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1549

Y
yuyang18 已提交
1550
    **Multi-box loss layer for object detection algorithm of SSD**
1551

翟飞跃 已提交
1552 1553
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1554 1555 1556 1557
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1558
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1559

1560
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1561

T
tianshuo78520a 已提交
1562
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1563

1564
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1565

1566
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1567

1568
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1569

1570 1571
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1572

1573
    4. Assign classification and regression targets
Y
yuyang18 已提交
1574

1575
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1576

1577
      4.2. Assign regression targets.
Y
yuyang18 已提交
1578

1579
      4.3. Assign classification targets.
Y
yuyang18 已提交
1580

1581
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1582

1583
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1584

1585
      5.2 Compute localization loss.
Y
yuyang18 已提交
1586

1587 1588 1589 1590 1591 1592
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1593 1594
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1595 1596
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1597 1598
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1599
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1600
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1601
            bboxes of mini-batch input.The data type is float32 or float64.
1602
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1603 1604 1605
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1606
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1607 1608
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1609
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1610
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1611 1612
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1613 1614
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1615
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1616
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1617
        neg_overlap (float): The negative overlap upper bound for the unmatched
1618
            predictions. Use only when mining_type is 'max_negative',
1619 1620 1621 1622
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1623
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1624 1625
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1626
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1627
            of output locations, True by default.
1628 1629
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1630 1631

    Returns:
1632 1633 1634
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1635 1636

    Raises:
Y
yuyang18 已提交
1637 1638
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1639 1640

    Examples:
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1660 1661 1662 1663 1664 1665 1666
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1667
    conf_shape = nn.shape(confidence)
1668 1669

    def __reshape_to_2d(var):
1670
        return nn.flatten(x=var, axis=2)
1671

T
tianshuo78520a 已提交
1672
    # 1. Find matched bounding box by prior box.
1673 1674
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1675
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1676 1677
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1678 1679 1680

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1681 1682
    gt_label = nn.reshape(x=gt_label,
                          shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1683
    gt_label.stop_gradient = True
1684 1685 1686
    target_label, _ = target_assign(gt_label,
                                    matched_indices,
                                    mismatch_value=background_label)
1687 1688 1689 1690 1691
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1692
    target_label.stop_gradient = True
1693
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1694
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1695
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1696
    actual_shape.stop_gradient = True
1697 1698
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1699 1700 1701
    conf_loss = nn.reshape(x=conf_loss,
                           shape=(-1, 0),
                           actual_shape=actual_shape)
1702
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1703
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1704
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1705 1706
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    helper.append_op(type='mine_hard_examples',
                     inputs={
                         'ClsLoss': conf_loss,
                         'LocLoss': None,
                         'MatchIndices': matched_indices,
                         'MatchDist': matched_dist,
                     },
                     outputs={
                         'NegIndices': neg_indices,
                         'UpdatedMatchIndices': updated_matched_indices
                     },
                     attrs={
                         'neg_pos_ratio': neg_pos_ratio,
                         'neg_dist_threshold': neg_overlap,
                         'mining_type': mining_type,
                         'sample_size': sample_size,
                     })
1724 1725 1726

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
1727 1728 1729 1730
    encoded_bbox = box_coder(prior_box=prior_box,
                             prior_box_var=prior_box_var,
                             target_box=gt_box,
                             code_type='encode_center_size')
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1745

1746
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1747 1748 1749
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1750 1751 1752 1753
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1754 1755 1756 1757 1758 1759 1760 1761
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1762 1763 1764 1765
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1766 1767
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1768
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1769 1770 1771
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1772 1773 1774 1775 1776
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1777
    return loss
C
chengduoZH 已提交
1778 1779


1780 1781 1782 1783
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1784
              aspect_ratios=[1.],
1785 1786 1787 1788 1789
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1790 1791
              name=None,
              min_max_aspect_ratios_order=False):
1792
    """
S
swtkiwi 已提交
1793

R
ruri 已提交
1794
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1795 1796 1797 1798 1799
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1800
    Parameters:
T
tianshuo78520a 已提交
1801
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1802 1803 1804 1805
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1806
            Default: None.
R
ruri 已提交
1807
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1808
            prior boxes. Default: [1.].
1809 1810 1811 1812
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1813
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1814 1815
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1816
            Default: [0., 0.]
1817
       offset(float): Prior boxes center offset. Default: 0.5
1818
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1819
            in order of [min, max, aspect_ratios], which is consistent with
1820 1821 1822
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1823
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1824 1825

    Returns:
R
ruri 已提交
1826
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1827

R
ruri 已提交
1828 1829
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1830
        H is the height of input, W is the width of input,
R
ruri 已提交
1831
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1832

R
ruri 已提交
1833 1834
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1835
        H is the height of input, W is the width of input
R
ruri 已提交
1836
        num_priors is the total box count of each position of input
1837 1838 1839

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1840

R
ruri 已提交
1841 1842 1843
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
1844 1845
        import paddle
        paddle.enable_static()
R
ruri 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1890 1891 1892
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1893 1894 1895
    check_variable_and_dtype(input, 'input',
                             ['uint8', 'int8', 'float32', 'float64'],
                             'prior_box')
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1912 1913 1914 1915 1916 1917 1918 1919
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1920 1921
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1922 1923
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1924 1925
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1926 1927
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1928 1929
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1930 1931
    helper.append_op(
        type="prior_box",
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
1942 1943 1944 1945 1946
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1956
                      flatten_to_2d=False,
R
ruri 已提交
1957
                      name=None):
1958
    r"""
R
ruri 已提交
1959

R
ruri 已提交
1960
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1961 1962 1963 1964 1965 1966
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1967
    
R
ruri 已提交
1968
    For densities_i in densities:
R
ruri 已提交
1969 1970
    
    .. math::
R
ruri 已提交
1971

R
ruri 已提交
1972 1973 1974 1975 1976 1977 1978
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1979
            the layout is NCHW.
R
ruri 已提交
1980
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1981 1982
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1983
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1984 1985
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1986
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1987 1988 1989
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1990
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1991
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1992
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1993
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1994 1995
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1996 1997
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1998 1999
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
2000 2001
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
2002
    Returns:
R
ruri 已提交
2003
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
2004 2005

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
2006 2007 2008
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2009 2010

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2011 2012 2013
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2014 2015 2016


    Examples:
R
ruri 已提交
2017

R
ruri 已提交
2018 2019
        .. code-block:: python

R
ruri 已提交
2020
            #declarative mode
R
ruri 已提交
2021

R
ruri 已提交
2022 2023
            import paddle.fluid as fluid
            import numpy as np
2024 2025
            import paddle
            paddle.enable_static()
R
ruri 已提交
2026

R
ruri 已提交
2027 2028 2029
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2030 2031 2032 2033 2034 2035 2036 2037
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2038 2039 2040
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2041
 
R
ruri 已提交
2042 2043 2044 2045 2046 2047
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2048
                feed={"input":input_data,
R
ruri 已提交
2049
                      "image":image_data},
R
ruri 已提交
2050 2051 2052
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2053 2054 2055 2056
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2057 2058


R
ruri 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2077

R
ruri 已提交
2078 2079 2080
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2081 2082
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2083 2084 2085 2086

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2087 2088 2089
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2090 2091
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2092

R
ruri 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2108 2109 2110 2111
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2112 2113 2114 2115 2116
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
        inputs={
            "Input": input,
            "Image": image
        },
        outputs={
            "Boxes": box,
            "Variances": var
        },
        attrs=attrs,
    )
R
ruri 已提交
2127 2128 2129 2130 2131
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2132
@static_only
C
chengduoZH 已提交
2133
def multi_box_head(inputs,
C
chengduoZH 已提交
2134 2135
                   image,
                   base_size,
C
chengduoZH 已提交
2136
                   num_classes,
C
chengduoZH 已提交
2137
                   aspect_ratios,
2138 2139
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2140 2141
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2142 2143 2144 2145
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2146 2147
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2148
                   clip=False,
C
chengduoZH 已提交
2149
                   kernel_size=1,
C
chengduoZH 已提交
2150
                   pad=0,
C
chengduoZH 已提交
2151
                   stride=1,
2152 2153
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2154
    """
2155
	:api_attr: Static Graph
S
swtkiwi 已提交
2156

Q
qingqing01 已提交
2157 2158 2159 2160
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2161
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2162 2163

    Args:
Q
qingqing01 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2185
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2186 2187
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2207
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2208 2209 2210 2211 2212
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2213 2214 2215
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2216
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2217
            in order of [min, max, aspect_ratios], which is consistent with
2218
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2219
            convolution layer followed by and does not affect the final
2220
            detection results. Default: False.
C
chengduoZH 已提交
2221 2222

    Returns:
Q
update  
qiaolongfei 已提交
2223 2224
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2225 2226 2227
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2228

Q
qingqing01 已提交
2229 2230 2231 2232
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2233

Q
qingqing01 已提交
2234 2235 2236
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2237

Q
qingqing01 已提交
2238 2239
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2240

Q
qingqing01 已提交
2241
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2242
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2243

2244 2245
          import paddle
          paddle.enable_static()
2246

2247 2248 2249 2250 2251 2252 2253
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2254

2255
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2256
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2266 2267 2268 2269

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2270 2271
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2272

2273 2274 2275 2276 2277 2278 2279
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2280

2281
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2293 2294
    """

C
chengduoZH 已提交
2295
    def _reshape_with_axis_(input, axis=1):
2296
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2297
        return out
2298

2299 2300
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2301

C
chengduoZH 已提交
2302 2303 2304 2305
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2306 2307
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2308

C
chengduoZH 已提交
2309 2310 2311 2312 2313
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2314
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2315 2316 2317
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2318
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2319 2320 2321 2322 2323
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2324 2325 2326 2327 2328
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2329
    if step_h is not None:
C
chengduoZH 已提交
2330 2331 2332 2333
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2334
    if step_w is not None:
C
chengduoZH 已提交
2335 2336 2337 2338
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2339
    if steps is not None:
C
chengduoZH 已提交
2340 2341 2342 2343 2344 2345 2346
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2347 2348
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2349 2350
    box_results = []
    var_results = []
C
chengduoZH 已提交
2351 2352
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2353 2354
        max_size = max_sizes[i]

2355
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2356
            min_size = [min_size]
C
chengduoZH 已提交
2357 2358
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2359 2360 2361 2362

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2363
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2364
                aspect_ratio = [aspect_ratio]
2365
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2366

2367
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2368 2369
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2370 2371 2372 2373 2374

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2375

2376
        # get loc
Y
Yuan Gao 已提交
2377
        num_loc_output = num_boxes * 4
2378 2379 2380 2381 2382
        mbox_loc = nn.conv2d(input=input,
                             num_filters=num_loc_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2383

2384
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2385
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2386
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2387

2388
        # get conf
C
chengduoZH 已提交
2389
        num_conf_output = num_boxes * num_classes
2390 2391 2392 2393 2394
        conf_loc = nn.conv2d(input=input,
                             num_filters=num_conf_output,
                             filter_size=kernel_size,
                             padding=pad,
                             stride=stride)
2395
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2396
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2397
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2398

C
chengduoZH 已提交
2399 2400 2401
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2402 2403
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2413
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2414
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2415
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2416 2417
        mbox_confs_concat = nn.reshape(mbox_confs_concat,
                                       shape=[0, -1, num_classes])
C
chengduoZH 已提交
2418

2419 2420
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2421
    return mbox_locs_concat, mbox_confs_concat, box, var
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2432

2433 2434 2435 2436 2437 2438 2439 2440
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2457 2458

    Returns:
W
wangguanzhong 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2471 2472 2473 2474 2475 2476


    Examples:

        .. code-block:: python

2477
            import paddle.fluid as fluid
2478 2479 2480
            import paddle

            paddle.enable_static()
2481
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2482
            anchor, var = fluid.layers.anchor_generator(
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2516 2517
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2518 2519 2520
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
2521 2522 2523 2524 2525 2526
        outputs={
            "Anchors": anchor,
            "Variances": var
        },
        attrs=attrs,
    )
2527 2528 2529
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2530 2531


W
whs 已提交
2532 2533 2534 2535
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2536 2537
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2538
    """
S
SunGaofeng 已提交
2539
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2540

S
SunGaofeng 已提交
2541 2542 2543 2544 2545
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2546 2547
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2548 2549 2550
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2551 2552 2553
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2554 2555 2556 2557
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2558
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2559 2560 2561
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2562 2563

    Returns:
S
SunGaofeng 已提交
2564
            A tuple with three Variables. (out, mask, transform_matrix)
2565 2566

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2567
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2568 2569

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2570
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2571 2572

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2573 2574 2575 2576
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2577 2578 2579 2580

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2581
            import paddle.fluid as fluid
2582

S
SunGaofeng 已提交
2583 2584
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2585
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2586
    """
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2598 2599
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2600
    out = helper.create_variable_for_type_inference(dtype)
2601 2602
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2603 2604
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
    helper.append_op(type="roi_perspective_transform",
                     inputs={
                         "X": input,
                         "ROIs": rois
                     },
                     outputs={
                         "Out": out,
                         "Out2InIdx": out2in_idx,
                         "Out2InWeights": out2in_w,
                         "Mask": mask,
                         "TransformMatrix": transform_matrix
                     },
                     attrs={
                         "transformed_height": transformed_height,
                         "transformed_width": transformed_width,
                         "spatial_scale": spatial_scale
                     })
2622
    return out, mask, transform_matrix
W
whs 已提交
2623 2624


2625 2626
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2627
                             is_crowd,
2628
                             gt_boxes,
2629
                             im_info,
2630 2631 2632 2633 2634 2635
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2636
                             class_nums=None,
2637 2638
                             use_random=True,
                             is_cls_agnostic=False,
2639 2640 2641
                             is_cascade_rcnn=False,
                             max_overlap=None,
                             return_max_overlap=False):
2642
    """
S
swtkiwi 已提交
2643

2644
    **Generate Proposal Labels of Faster-RCNN**
2645

B
buxingyuan 已提交
2646
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2647
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2648 2649 2650

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2651
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2652 2653
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2654
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2655
    then we apply random sampling to make sure
B
buxingyuan 已提交
2656
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2657 2658 2659 2660 2661

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2662 2663 2664
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2665 2666 2667
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2668 2669 2670 2671 2672 2673 2674
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2675
        use_random(bool): Use random sampling to choose foreground and background boxes.
2676 2677
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2678 2679
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2680

2681 2682
    Returns:
        tuple:
2683
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2684 2685 2686 2687 2688 2689

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2690
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2691

B
Bai Yifan 已提交
2692 2693 2694
    Examples:
        .. code-block:: python

2695
            import paddle
B
Bai Yifan 已提交
2696
            import paddle.fluid as fluid
2697
            paddle.enable_static()
2698
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2699 2700
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2701 2702
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2703
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2704 2705 2706
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2707 2708 2709 2710
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2711 2712 2713 2714 2715 2716
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')
2717 2718
    if is_cascade_rcnn:
        assert max_overlap is not None, "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2719

X
Xin Pan 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2729 2730
    max_overlap_with_gt = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2731

2732 2733 2734 2735 2736 2737 2738 2739 2740
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    helper.append_op(type="generate_proposal_labels",
                     inputs=inputs,
                     outputs={
                         'Rois': rois,
                         'LabelsInt32': labels_int32,
                         'BboxTargets': bbox_targets,
                         'BboxInsideWeights': bbox_inside_weights,
                         'BboxOutsideWeights': bbox_outside_weights,
                         'MaxOverlapWithGT': max_overlap_with_gt
                     },
                     attrs={
                         'batch_size_per_im': batch_size_per_im,
                         'fg_fraction': fg_fraction,
                         'fg_thresh': fg_thresh,
                         'bg_thresh_hi': bg_thresh_hi,
                         'bg_thresh_lo': bg_thresh_lo,
                         'bbox_reg_weights': bbox_reg_weights,
                         'class_nums': class_nums,
                         'use_random': use_random,
                         'is_cls_agnostic': is_cls_agnostic,
                         'is_cascade_rcnn': is_cascade_rcnn
                     })
2763 2764 2765 2766 2767 2768

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2769
    max_overlap_with_gt.stop_gradient = True
2770

2771 2772
    if return_max_overlap:
        return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap_with_gt
2773 2774 2775
    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2776 2777
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
2778
    r"""
S
swtkiwi 已提交
2779

Q
qingqing01 已提交
2780
    **Generate Mask Labels for Mask-RCNN**
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2816 2817 2818 2819 2820 2821
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2822
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2823 2824 2825 2826 2827 2828 2829
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2830
            The users should return correct data format in reader.
Q
qingqing01 已提交
2831
            The LoD[0] represents the ground-truth objects number of
2832 2833 2834 2835
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2836 2837 2838 2839
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2840
            of int32. R is the same as it in `rois`. Each element represents
2841
            a class label of a RoI.
Q
qingqing01 已提交
2842 2843
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2844 2845

    Returns:
Q
qingqing01 已提交
2846 2847 2848
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2849
        original image size.
Q
qingqing01 已提交
2850 2851

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2852
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2853 2854 2855 2856
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2857
        predictions. Each element represents the binary mask targets.
2858 2859 2860 2861

    Examples:
        .. code-block:: python

2862 2863
          import paddle.fluid as fluid

Q
qingqing01 已提交
2864
          im_info = fluid.data(name="im_info", shape=[None, 3],
2865
              dtype="float32")
Q
qingqing01 已提交
2866
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2867
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2868
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2869
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2870
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2871
              dtype="float32", lod_level=3)
2872
          # rois, roi_labels can be the output of
2873
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2874
          rois = fluid.data(name="rois", shape=[None, 4],
2875
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2876
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2877
              dtype="int32", lod_level=1)
2878 2879 2880 2881 2882 2883
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2884
              labels_int32=roi_labels,
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    helper.append_op(type="generate_mask_labels",
                     inputs={
                         'ImInfo': im_info,
                         'GtClasses': gt_classes,
                         'IsCrowd': is_crowd,
                         'GtSegms': gt_segms,
                         'Rois': rois,
                         'LabelsInt32': labels_int32
                     },
                     outputs={
                         'MaskRois': mask_rois,
                         'RoiHasMaskInt32': roi_has_mask_int32,
                         'MaskInt32': mask_int32
                     },
                     attrs={
                         'num_classes': num_classes,
                         'resolution': resolution
                     })
2915 2916 2917 2918 2919 2920 2921 2922

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2933 2934
                       return_rois_num=False,
                       name=None):
2935
    """
S
swtkiwi 已提交
2936

H
haowang101779990 已提交
2937 2938
    **Generate proposal Faster-RCNN**

2939 2940 2941 2942
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2943 2944 2945 2946
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2947 2948
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2949 2950 2951 2952 2953 2954
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2955 2956 2957
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2958
            width of the feature map. The data type must be float32.
2959
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2960
            represents the difference between predicted box location and
2961
            anchor location. The data type must be float32.
2962
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2963 2964
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2965
            The data type can be float32 or float64.
2966 2967 2968
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2969 2970
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2971
            [H, W, num_priors, 4]. Each variance is in
2972
            (xcenter, ycenter, w, h) format. The data type must be float32.
2973
        pre_nms_top_n(float): Number of total bboxes to be kept per
2974
            image before NMS. The data type must be float32. `6000` by default.
2975
        post_nms_top_n(float): Number of total bboxes to be kept per
2976 2977
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2978
        min_size(float): Remove predicted boxes with either height or
2979 2980 2981
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2982 2983 2984 2985
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2986 2987 2988 2989
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

2990 2991 2992 2993 2994 2995
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2996 2997 2998 2999 3000

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
3001 3002
            import paddle
            paddle.enable_static()
3003 3004 3005 3006 3007
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
3008 3009 3010
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

3011
    """
J
Jiabin Yang 已提交
3012
    if _non_static_mode():
3013 3014 3015
        assert return_rois_num, "return_rois_num should be True in dygraph mode."
        attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
                 'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta)
W
wanghuancoder 已提交
3016
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
3017 3018 3019
            scores, bbox_deltas, im_info, anchors, variances, *attrs)
        return rpn_rois, rpn_roi_probs, rpn_rois_num

3020 3021
    helper = LayerHelper('generate_proposals', **locals())

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'generate_proposals')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals')

X
Xin Pan 已提交
3033 3034 3035 3036
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
3037 3038 3039 3040 3041 3042 3043 3044
    outputs = {
        'RpnRois': rpn_rois,
        'RpnRoiProbs': rpn_roi_probs,
    }
    if return_rois_num:
        rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rpn_rois_num.stop_gradient = True
        outputs['RpnRoisNum'] = rpn_rois_num
F
FDInSky 已提交
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    helper.append_op(type="generate_proposals",
                     inputs={
                         'Scores': scores,
                         'BboxDeltas': bbox_deltas,
                         'ImInfo': im_info,
                         'Anchors': anchors,
                         'Variances': variances
                     },
                     attrs={
                         'pre_nms_topN': pre_nms_top_n,
                         'post_nms_topN': post_nms_top_n,
                         'nms_thresh': nms_thresh,
                         'min_size': min_size,
                         'eta': eta
                     },
                     outputs=outputs)
3062 3063 3064
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

F
FDInSky 已提交
3065
    if return_rois_num:
3066
        return rpn_rois, rpn_roi_probs, rpn_rois_num
F
FDInSky 已提交
3067 3068
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
3069 3070


J
jerrywgz 已提交
3071
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3072
    """
S
swtkiwi 已提交
3073
	
J
jerrywgz 已提交
3074
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3075
    For each input box, The formula is given as follows:
3076 3077 3078
        
    .. code-block:: text

J
jerrywgz 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3090 3091

    Args:
W
wangguanzhong 已提交
3092 3093 3094
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3095
            (height, width, scale) representing the information of image. 
3096
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3097 3098 3099 3100
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3101 3102
    
    Returns:
W
wangguanzhong 已提交
3103 3104
        Variable:

T
tianshuo78520a 已提交
3105
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3106 3107
        The shape is same as input.

3108
        
J
jerrywgz 已提交
3109 3110
    Examples:
        .. code-block:: python
3111
        
3112
            import paddle.fluid as fluid
3113 3114
            import paddle
            paddle.enable_static()
3115 3116 3117
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3118
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3119
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3120 3121
    """

3122 3123 3124 3125
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3126
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3127
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3128
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3129
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3130

3131 3132
    return output

J
jerrywgz 已提交
3133

3134 3135 3136 3137 3138 3139 3140 3141
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3142
                               nms_eta=1.0):
3143
    """
3144
    **Detection Output Layer for the detector RetinaNet.**
3145

3146 3147 3148 3149
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3150

3151 3152 3153
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3154 3155 3156 3157
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3175
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3176 3177 3178
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3179
            information of each image is a 3-vector which are the height and width
3180 3181
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3182
        score_threshold(float): Threshold to filter out bounding boxes
3183
            with a confidence score before NMS, default value is set to 0.05.
3184
        nms_top_k(int): Maximum number of detections per FPN layer to be
3185 3186
            kept according to the confidences before NMS, default value is set to
            1000.
3187
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3206
    :attr:`anchors` is required to be from the highest FPN level.
3207 3208

    Returns:
3209 3210
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3211
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3212 3213 3214
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3215 3216 3217 3218 3219 3220
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3238 3239 3240 3241 3242 3243 3244 3245 3246
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3247 3248
    """

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3267 3268 3269
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
    helper.append_op(type="retinanet_detection_output",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores,
                         'Anchors': anchors,
                         'ImInfo': im_info
                     },
                     attrs={
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'keep_top_k': keep_top_k,
                         'nms_eta': 1.,
                     },
                     outputs={'Out': output})
3285 3286 3287 3288
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3289 3290 3291 3292 3293
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3294
                   nms_threshold=0.3,
J
jerrywgz 已提交
3295 3296
                   normalized=True,
                   nms_eta=1.,
3297 3298
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3299
    """
S
swtkiwi 已提交
3300

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3329

3330 3331 3332 3333 3334 3335 3336

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3337 3338 3339 3340 3341 3342 3343 3344
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3345
                           The data type is float32 or float64.
3346 3347
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3348
                           class number. The data type is float32 or float64.   
3349 3350 3351 3352 3353 3354 3355
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3356
                           of BBoxes.The data type is float32 or float64. 
3357 3358 3359
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3360
                           case with shape [M, C, 4].The data type is float32 or float64. 
3361 3362 3363 3364 3365 3366 3367
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3368
                         the confidences after the filtering detections based
3369 3370 3371 3372 3373 3374 3375 3376 3377
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3378
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3379 3380 3381 3382 3383
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3384 3385 3386 3387
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3388

3389

3390 3391 3392
    Examples:
        .. code-block:: python

3393

3394
            import paddle.fluid as fluid
3395 3396
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3397
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3398
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3399
            scores = fluid.data(name='scores', shape=[None,81],
3400 3401 3402 3403 3404 3405 3406 3407 3408
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3409
    """
X
xiaoting 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3422 3423
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
    helper.append_op(type="multiclass_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
J
jerrywgz 已提交
3439
    output.stop_gradient = True
J
jerrywgz 已提交
3440 3441

    return output
3442 3443


3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3492
                         the confidences after the filtering detections based
3493 3494 3495
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3496 3497
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
    helper.append_op(type="locality_aware_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'nms_eta': nms_eta,
                         'keep_top_k': keep_top_k,
                         'nms_eta': nms_eta,
                         'normalized': normalized
                     },
                     outputs={'Out': output})
3570 3571 3572 3573 3574
    output.stop_gradient = True

    return output


Y
Yang Zhang 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               name=None):
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
    helper.append_op(type="matrix_nms",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'post_threshold': post_threshold,
                         'nms_top_k': nms_top_k,
                         'gaussian_sigma': gaussian_sigma,
                         'use_gaussian': use_gaussian,
                         'keep_top_k': keep_top_k,
                         'normalized': normalized
                     },
                     outputs={
                         'Out': output,
                         'Index': index
                     })
Y
Yang Zhang 已提交
3697 3698 3699 3700 3701 3702 3703 3704
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3705 3706 3707 3708 3709
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
3710
                             rois_num=None,
3711
                             name=None):
3712
    r"""
S
swtkiwi 已提交
3713
	
W
wangguanzhong 已提交
3714 3715 3716 3717 3718 3719
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3720
    
J
jerrywgz 已提交
3721
    .. math::
3722

J
jerrywgz 已提交
3723
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3724

J
jerrywgz 已提交
3725 3726 3727
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3728 3729

    Args:
W
wangguanzhong 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3739 3740 3741 3742 3743
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
W
wangguanzhong 已提交
3744 3745 3746
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3747

3748
    Returns:
W
wangguanzhong 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3759 3760 3761 3762
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is 
        the RoIs' number in each image on the corresponding level. The shape 
        is [B] and data type of int32. B is the number of images

3763 3764 3765 3766

    Examples:
        .. code-block:: python

3767
            import paddle.fluid as fluid
3768 3769
            import paddle
            paddle.enable_static()
3770 3771
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3772
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3773 3774 3775
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3776 3777 3778
                refer_level=4,
                refer_scale=224)
    """
3779 3780 3781 3782 3783 3784 3785
    return paddle.vision.ops.distribute_fpn_proposals(fpn_rois=fpn_rois,
                                                      min_level=min_level,
                                                      max_level=max_level,
                                                      refer_level=refer_level,
                                                      refer_scale=refer_scale,
                                                      rois_num=rois_num,
                                                      name=name)
3786 3787


3788
@templatedoc()
J
jerrywgz 已提交
3789 3790 3791 3792 3793 3794
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3795
    """
S
swtkiwi 已提交
3796
	
3797 3798 3799 3800 3801 3802
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3803
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3804 3805 3806 3807
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3808
    Returns:
W
wangguanzhong 已提交
3809
        Tuple:
J
jerrywgz 已提交
3810

W
wangguanzhong 已提交
3811 3812 3813
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3814 3815


3816 3817 3818
    Examples:
        .. code-block:: python

3819
            import paddle.fluid as fluid
3820 3821
            import paddle
            paddle.enable_static()
3822 3823 3824 3825 3826 3827 3828 3829
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3830
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3831
                pb, pbv, loc, scores, 4.135)
3832 3833

    """
3834 3835 3836 3837 3838 3839
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3840 3841
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3842
    decoded_box = helper.create_variable_for_type_inference(
3843 3844 3845 3846
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
    helper.append_op(type="box_decoder_and_assign",
                     inputs={
                         "PriorBox": prior_box,
                         "PriorBoxVar": prior_box_var,
                         "TargetBox": target_box,
                         "BoxScore": box_score
                     },
                     attrs={"box_clip": box_clip},
                     outputs={
                         "DecodeBox": decoded_box,
                         "OutputAssignBox": output_assign_box
                     })
J
jerrywgz 已提交
3859
    return decoded_box, output_assign_box
3860 3861 3862 3863 3864 3865 3866


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
3867
                          rois_num_per_level=None,
3868 3869
                          name=None):
    """
S
swtkiwi 已提交
3870
	
W
wangguanzhong 已提交
3871 3872 3873
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3874 3875 3876 3877 3878 3879 3880 3881

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3882 3883 3884 3885 3886 3887
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3888 3889 3890
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
3891 3892 3893 3894 3895 3896
        rois_num_per_level(list, optional): The List of RoIs' numbers. 
            Each element is 1-D Tensor which contains the RoIs' number of each 
            image on each level and the shape is [B] and data type is 
            int32, B is the number of images. If it is not None then return 
            a 1-D Tensor contains the output RoIs' number of each image and 
            the shape is [B]. Default: None
W
wangguanzhong 已提交
3897 3898 3899 3900
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3901
    Returns:
W
wangguanzhong 已提交
3902 3903 3904 3905 3906
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3907 3908 3909
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each 
        image. The shape is [B] and data type is int32. B is the number of 
        images. 
3910 3911 3912 3913

    Examples:
        .. code-block:: python
           
3914
            import paddle.fluid as fluid
3915 3916
            import paddle
            paddle.enable_static()
3917 3918 3919
            multi_rois = []
            multi_scores = []
            for i in range(4):
3920 3921
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3922
            for i in range(4):
3923 3924
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3925 3926 3927 3928 3929 3930 3931 3932

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3933 3934 3935 3936
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
3937
    if _non_static_mode():
3938 3939
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
W
wanghuancoder 已提交
3940
        output_rois, rois_num = _C_ops.collect_fpn_proposals(
3941 3942
            input_rois, input_scores, rois_num_per_level, *attrs)

3943 3944
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3945 3946
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3947 3948
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3949 3950
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
3962 3963 3964 3965
    helper.append_op(type='collect_fpn_proposals',
                     inputs=inputs,
                     outputs=outputs,
                     attrs={'post_nms_topN': post_nms_top_n})
3966 3967
    if rois_num_per_level is not None:
        return output_rois, rois_num
3968
    return output_rois