detection.py 53.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
23 24
from . import tensor
from . import nn
25
from . import ops
M
minqiyang 已提交
26
from ... import compat as cpt
C
chengduoZH 已提交
27
import math
M
minqiyang 已提交
28
import six
29
import numpy
30
from functools import reduce
31

C
chengduoZH 已提交
32
__all__ = [
33
    'prior_box',
C
chengduoZH 已提交
34
    'multi_box_head',
35 36 37 38
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
39
    'detection_map',
Y
Yuan Gao 已提交
40
    'rpn_target_assign',
41
    'anchor_generator',
42
    'generate_proposals',
C
chengduoZH 已提交
43
]
44

45 46 47
__auto__ = [
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
48
    'polygon_box_transform',
C
chengduoZH 已提交
49
]
50

51 52 53 54 55
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

56

Y
Yuan Gao 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def rpn_target_assign(loc,
                      scores,
                      anchor_box,
                      gt_box,
                      rpn_batch_size_per_im=256,
                      fg_fraction=0.25,
                      rpn_positive_overlap=0.7,
                      rpn_negative_overlap=0.3):
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
        fg_fraction(float): Target fraction of RoI minibatch that is labeled
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
112
        tuple:
Y
Yuan Gao 已提交
113 114 115 116 117 118 119 120 121 122
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox) is returned. The predicted_scores and
               predicted_location is the predicted result of the RPN.
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
123
               anchors, the F and B is depends on the input of this operator.
Y
Yuan Gao 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

        loc = layers.data(name='location', shape=[2, 80],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 40],
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
        gt_box = layers.data(name='gt_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        loc_pred, score_pred, loc_target, score_target =
            fluid.layers.detection_output(loc=location,
                                          scores=scores,
                                          anchor_box=anchor_box,
                                          gt_box=gt_box)
    """

    helper = LayerHelper('rpn_target_assign', **locals())
    # 1. Compute the regression target bboxes
    target_bbox = box_coder(
        prior_box=anchor_box,
        target_box=gt_box,
        code_type='encode_center_size',
        box_normalized=False)

    # 2. Compute overlaps between the prior boxes and the gt boxes overlaps
    iou = iou_similarity(x=gt_box, y=anchor_box)

    # 3. Assign target label to anchors
    loc_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    score_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    target_label = helper.create_tmp_variable(dtype=anchor_box.dtype)
    helper.append_op(
        type="rpn_target_assign",
        inputs={'Overlap': iou, },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
            'fg_fraction': fg_fraction,
        })

    # 4. Reshape and gather the target entry
J
jerrywgz 已提交
174
    scores = nn.reshape(x=scores, shape=(-1, 2))
Y
Yuan Gao 已提交
175 176 177 178 179 180 181 182 183 184 185
    loc = nn.reshape(x=loc, shape=(-1, 4))
    target_label = nn.reshape(x=target_label, shape=(-1, 1))
    target_bbox = nn.reshape(x=target_bbox, shape=(-1, 4))

    predicted_scores = nn.gather(scores, score_index)
    predicted_location = nn.gather(loc, loc_index)
    target_label = nn.gather(target_label, score_index)
    target_bbox = nn.gather(target_bbox, loc_index)
    return predicted_scores, predicted_loc, target_label, target_bbox


Y
Yuan Gao 已提交
186 187
def detection_output(loc,
                     scores,
188 189 190 191 192 193 194 195 196
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
197
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
198

199 200
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
201

202 203 204 205 206 207
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
208 209 210 211 212 213

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
214 215 216 217
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
240 241
        Variable:

242
            The detection outputs is a LoDTensor with shape [No, 6].
243 244 245 246 247 248 249 250
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
251 252 253 254

    Examples:
        .. code-block:: python

255
            pb = layers.data(name='prior_box', shape=[10, 4],
256
                         append_batch_size=False, dtype='float32')
257
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
258
                          append_batch_size=False, dtype='float32')
259
            loc = layers.data(name='target_box', shape=[2, 21, 4],
260
                          append_batch_size=False, dtype='float32')
261
            scores = layers.data(name='scores', shape=[2, 21, 10],
262
                          append_batch_size=False, dtype='float32')
263
            nmsed_outs = fluid.layers.detection_output(scores=scores,
264 265 266 267 268
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
269 270 271 272 273
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
274 275 276
    compile_shape = scores.shape
    run_shape = ops.shape(scores)
    scores = nn.flatten(x=scores, axis=2)
277
    scores = nn.softmax(input=scores)
278
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
279
    scores = nn.transpose(scores, perm=[0, 2, 1])
280
    scores.stop_gradient = True
281
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
282 283 284 285 286 287 288 289 290 291 292 293 294
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
295
    nmsed_outs.stop_gradient = True
296
    return nmsed_outs
C
chengduoZH 已提交
297 298


X
Xin Pan 已提交
299
@templatedoc()
300 301
def detection_map(detect_res,
                  label,
302 303
                  class_num,
                  background_label=0,
304 305
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
306 307 308 309
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
351 352
    helper = LayerHelper("detection_map", **locals())

353 354 355 356 357 358 359 360 361 362 363 364 365 366
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

367 368 369 370 371
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
372
            'HasState': has_state,
373 374 375 376 377 378 379 380 381 382 383 384 385
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
386 387
            'ap_type': ap_version,
            'class_num': class_num,
388
        })
389
    return map_out
390 391


392 393 394 395
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
396
    """
Y
yuyang18 已提交
397 398
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
399
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
400 401 402 403 404 405 406 407
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
408 409 410
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
411

Y
yuyang18 已提交
412
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
413 414 415
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
416 417 418
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

419 420 421 422 423
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
424 425 426 427 428 429
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
430
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
431
           'bipartite' or 'per_prediction'. [default 'bipartite'].
432 433
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
434
            on the maximum distance, 0.5 by default.
435
    Returns:
Y
yuyang18 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
459 460 461 462 463 464 465
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
466 467 468 469
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
487

488 489 490 491 492
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
493

494
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
495

496 497 498
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
499

500 501
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
502

503
        Otherwise,
C
chengduoZH 已提交
504

505 506
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
507

508
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
509

510 511
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
512

513
    .. code-block:: text
C
chengduoZH 已提交
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
530 531 532 533 534
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
535 536 537 538 539 540 541 542 543 544 545
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
577
             normalize=True,
578 579
             sample_size=None):
    """
Y
yuyang18 已提交
580
    **Multi-box loss layer for object detection algorithm of SSD**
581 582 583 584 585 586 587

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
588
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
589

590
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
591

592
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
593

594
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
595

596
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
597

598
      2.2. Compute confidence loss.
Y
yuyang18 已提交
599

600 601
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
602

603
    4. Assign classification and regression targets
Y
yuyang18 已提交
604

605
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
606

607
      4.2. Assign regression targets.
Y
yuyang18 已提交
608

609
      4.3. Assign classification targets.
Y
yuyang18 已提交
610

611
    5. Compute the overall objective loss.
Y
yuyang18 已提交
612

613
      5.1 Compute confidence loss.
Y
yuyang18 已提交
614

615
      5.1 Compute localization loss.
Y
yuyang18 已提交
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
640
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
641
        neg_overlap (float): The negative overlap upper bound for the unmatched
642
            predictions. Use only when mining_type is 'max_negative',
643 644 645 646
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
647
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
648 649
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
650
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
651
            of output locations, True by default.
652 653
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
654 655

    Returns:
Y
yuyang18 已提交
656 657
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
658 659

    Raises:
Y
yuyang18 已提交
660 661
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
681 682 683 684 685 686 687
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
688
    conf_shape = ops.shape(confidence)
689 690

    def __reshape_to_2d(var):
691
        return nn.flatten(x=var, axis=2)
692 693 694 695 696

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
697 698
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
699 700 701

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
702 703
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
704
    gt_label.stop_gradient = True
705 706 707 708 709 710 711
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
712
    target_label.stop_gradient = True
713 714
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
715 716 717 718 719
    conf_loss = nn.reshape(
        x=conf_loss,
        shape=(num, num_prior),
        actual_shape=ops.slice(
            conf_shape, axes=[0], starts=[0], ends=[2]))
720
    conf_loss.stop_gradient = True
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
738
            'neg_dist_threshold': neg_overlap,
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
764

765 766 767 768
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

769 770 771 772
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

773 774 775 776 777 778 779 780
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

781 782 783 784
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

785 786
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
787
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
788 789 790 791 792
    loss = nn.reshape(
        x=loss,
        shape=(num, num_prior),
        actual_shape=ops.slice(
            conf_shape, axes=[0], starts=[0], ends=[2]))
793 794 795 796 797
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

798
    return loss
C
chengduoZH 已提交
799 800


801 802 803 804
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
805
              aspect_ratios=[1.],
806 807 808 809 810
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
811 812
              name=None,
              min_max_aspect_ratios_order=False):
813
    """
Q
update  
qiaolongfei 已提交
814
    **Prior Box Operator**
815 816 817 818 819 820 821 822 823 824 825

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
826
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
827 828
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
829 830
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
831 832 833 834
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
835
       step(list|turple): Prior boxes step across width and height, If
836
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
837 838
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
839 840
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
841
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
842
            in order of [min, max, aspect_ratios], which is consistent with
843 844 845
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
846 847

    Returns:
Q
update  
qiaolongfei 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
861 862 863 864


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
865 866 867 868 869 870 871

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
872 873 874 875
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

891 892 893 894 895 896 897 898
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
899 900
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
901 902
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
903 904
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
921
def multi_box_head(inputs,
C
chengduoZH 已提交
922 923
                   image,
                   base_size,
C
chengduoZH 已提交
924
                   num_classes,
C
chengduoZH 已提交
925
                   aspect_ratios,
926 927
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
928 929
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
930 931 932 933
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
934 935
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
936
                   clip=False,
C
chengduoZH 已提交
937
                   kernel_size=1,
C
chengduoZH 已提交
938
                   pad=0,
C
chengduoZH 已提交
939
                   stride=1,
940 941
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
942
    """
C
chengduoZH 已提交
943 944
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
945
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
946
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
947 948

    Args:
949
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
950
            of all Variables is NCHW.
C
chengduoZH 已提交
951 952
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
953 954
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
977
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
978 979 980 981 982 983
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
984
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
985
            in order of [min, max, aspect_ratios], which is consistent with
986 987 988
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
989 990

    Returns:
Q
update  
qiaolongfei 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1006

C
chengduoZH 已提交
1007 1008 1009

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1010 1011

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1022 1023
    """

C
chengduoZH 已提交
1024
    def _reshape_with_axis_(input, axis=1):
1025
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1026
        return out
1027

1028 1029
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1030

C
chengduoZH 已提交
1031 1032 1033 1034
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1035 1036
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1037

C
chengduoZH 已提交
1038 1039 1040 1041 1042
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1043
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1044 1045 1046
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1047
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1048 1049 1050 1051 1052
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1076 1077
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1078 1079
    box_results = []
    var_results = []
C
chengduoZH 已提交
1080 1081
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1082 1083
        max_size = max_sizes[i]

1084
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1085
            min_size = [min_size]
C
chengduoZH 已提交
1086 1087
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1088 1089 1090 1091

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1092
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1093
                aspect_ratio = [aspect_ratio]
1094
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1095

1096
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1097 1098
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1099 1100 1101 1102 1103

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1104

1105
        # get loc
Y
Yuan Gao 已提交
1106
        num_loc_output = num_boxes * 4
1107
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1108
            input=input,
1109 1110 1111 1112 1113
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1114
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1115
        compile_shape = [
1116
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1117
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1118
        ]
1119 1120 1121
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1122
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1123

1124
        # get conf
C
chengduoZH 已提交
1125
        num_conf_output = num_boxes * num_classes
1126
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1127
            input=input,
1128 1129 1130 1131
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1132
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1133 1134
        new_shape = [0, -1, num_classes]
        compile_shape = [
1135 1136 1137
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1138
        ]
1139 1140 1141 1142
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1143
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1144

C
chengduoZH 已提交
1145 1146 1147
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1148 1149
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1159 1160
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1161

1162 1163
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1164
    return mbox_locs_concat, mbox_confs_concat, box, var
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326


def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
    ** Generate proposal labels Faster-RCNN **
	
	This operation proposes RoIs according to each box with their probability to be a foreground object and 
	the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
	could be used to train detection net.

	For generating proposals, this operation performs following steps:

	1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
 	2. Calculate box locations as proposals candidates. 
	3. Clip boxes to image
	4. Remove predicted boxes with small area. 
	5. Apply NMS to get final proposals as output.
	
      
	Args:
		scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
			N is batch size, A is number of anchors, H and W are height and width of the feature map.
		bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. 
		im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
			between origin image size and the size of feature map.
		anchors(Variable):   A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
              		num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
		variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
		pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
		post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
		nms_thresh(float): Threshold in NMS, 0.5 by default.
		min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
		eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
    """
    helper = LayerHelper('generate_proposals', **locals())

    rpn_rois = helper.create_tmp_variable(dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_tmp_variable(dtype=scores.dtype)
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs