detection.py 174.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
23
from ..framework import Variable, _non_static_mode, static_only
24
from .. import core
25
from .loss import softmax_with_cross_entropy
26 27
from . import tensor
from . import nn
28
from . import ops
M
minqiyang 已提交
29
from ... import compat as cpt
30
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
31
import math
M
minqiyang 已提交
32
import six
33
import numpy as np
34
from functools import reduce
35
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
36
from paddle.utils import deprecated
W
wanghuancoder 已提交
37
from paddle import _C_ops
38

C
chengduoZH 已提交
39
__all__ = [
40 41 42 43 44 45 46 47
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
48
    'retinanet_target_assign',
49
    'sigmoid_focal_loss',
50 51 52 53
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
54
    'generate_mask_labels',
55 56 57 58
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
59
    'yolo_box',
60
    'box_clip',
J
jerrywgz 已提交
61
    'multiclass_nms',
62
    'locality_aware_nms',
Y
Yang Zhang 已提交
63
    'matrix_nms',
64
    'retinanet_detection_output',
65
    'distribute_fpn_proposals',
66
    'box_decoder_and_assign',
67
    'collect_fpn_proposals',
C
chengduoZH 已提交
68
]
69 70


71 72 73 74 75 76 77 78 79 80 81
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
82
    r"""
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
107
    regression for each anchor, hence the target label for each positive(or negative)
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
122 123

    Args:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
165
            information of each image is a 3-vector which are the height and width
166 167 168 169 170 171 172 173 174 175 176 177
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
178 179

    Returns:
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
221 222 223 224 225

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
237
                            dtype='int32')
238
          is_crowd = fluid.data(name='is_crowd', shape=[1],
239
                            dtype='int32')
240
          im_info = fluid.data(name='im_info', shape=[1, 3],
241
                            dtype='float32')
242
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
243 244 245 246 247
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


312 313
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
314
                      anchor_box,
315
                      anchor_var,
316 317 318
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
319
                      rpn_batch_size_per_im=256,
320 321
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
322
                      rpn_positive_overlap=0.7,
323 324
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
325
    """
H
haowang101779990 已提交
326
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
344
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
345 346
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
347
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
348 349 350
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
351
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
352 353 354 355 356
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
357
            coordinate of the anchor box. The data type can be float32 or float64.
358
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
359
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
360
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
361
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
362
            bboxes of mini-batch input. The data type can be float32 or float64.
363
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
364
                             The data type must be int32.
365 366
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
367
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
368
                                    The data type must be int32.
369
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
370
            by straddle_thresh pixels. The data type must be float32.
371
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
372
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
373 374
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
375
            example. The data type must be float32.
Y
Yuan Gao 已提交
376 377
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
378
            examples. The data type must be float32.
Y
Yuan Gao 已提交
379 380

    Returns:
M
minqiyang 已提交
381
        tuple:
382 383 384 385 386 387 388 389 390 391 392 393 394
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
395 396 397 398

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
399
            import paddle.fluid as fluid
400 401 402 403 404 405 406
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
407 408
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
409

Y
Yuan Gao 已提交
410 411 412
    """

    helper = LayerHelper('rpn_target_assign', **locals())
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'rpn_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'rpn_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'rpn_target_assign')

429
    # Assign target label to anchors
J
jerrywgz 已提交
430 431 432 433 434 435 436
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
437 438
    helper.append_op(
        type="rpn_target_assign",
439 440 441 442 443 444
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
445 446 447
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
448
            'TargetLabel': target_label,
J
jerrywgz 已提交
449
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
450
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
451 452 453
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
454
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
455 456
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
457 458
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
459 460
        })

461 462 463 464
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
465
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
466

467 468 469 470
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
471

J
jerrywgz 已提交
472
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
473 474


475
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
476
    r"""
477 478 479
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss
S
swtkiwi 已提交
480

481 482
    **Sigmoid Focal Loss Operator.**

483 484 485 486 487
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

488 489 490
    The focal loss is given as followed:

    .. math::
491 492 493 494 495 496 497
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

498 499 500 501 502 503 504

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
520
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
521
            set to 2.0.
522
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
523 524 525
            is set to 0.25.

    Returns:
526 527 528
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
529 530 531 532

    Examples:
        .. code-block:: python

533
            import numpy as np
534
            import paddle.fluid as fluid
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            
            num_classes = 10  # exclude background
            image_width = 16
            image_height = 16
            batch_size = 32
            max_iter = 20
            
            
            def gen_train_data():
                x_data = np.random.uniform(0, 255, (batch_size, 3, image_height,
                                                    image_width)).astype('float64')
                label_data = np.random.randint(0, num_classes,
                                               (batch_size, 1)).astype('int32')
                return {"x": x_data, "label": label_data}
            
            
            def get_focal_loss(pred, label, fg_num, num_classes):
                pred = fluid.layers.reshape(pred, [-1, num_classes])
                label = fluid.layers.reshape(label, [-1, 1])
                label.stop_gradient = True
                loss = fluid.layers.sigmoid_focal_loss(
                    pred, label, fg_num, gamma=2.0, alpha=0.25)
                loss = fluid.layers.reduce_sum(loss)
                return loss
            
            
            def build_model(mode='train'):
                x = fluid.data(name="x", shape=[-1, 3, -1, -1], dtype='float64')
                output = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True)
                output = fluid.layers.fc(
                    input=output,
                    size=num_classes,
                    # Notice: size is set to be the number of target classes (excluding backgorund)
                    # because sigmoid activation will be done in the sigmoid_focal_loss op.
                    act=None)
                if mode == 'train':
                    label = fluid.data(name="label", shape=[-1, 1], dtype='int32')
                    # Obtain the fg_num needed by the sigmoid_focal_loss op:
                    # 0 in label represents background, >=1 in label represents foreground,
                    # find the elements in label which are greater or equal than 1, then
                    # computed the numbers of these elements.
                    data = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
                    fg_label = fluid.layers.greater_equal(label, data)
                    fg_label = fluid.layers.cast(fg_label, dtype='int32')
                    fg_num = fluid.layers.reduce_sum(fg_label)
                    fg_num.stop_gradient = True
                    avg_loss = get_focal_loss(output, label, fg_num, num_classes)
                    return avg_loss
                else:
                    # During evaluating or testing phase,
                    # output of the final fc layer should be connected to a sigmoid layer.
                    pred = fluid.layers.sigmoid(output)
                    return pred
            
            
            loss = build_model('train')
            moment_optimizer = fluid.optimizer.MomentumOptimizer(
                learning_rate=0.001, momentum=0.9)
            moment_optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for i in range(max_iter):
                outs = exe.run(feed=gen_train_data(), fetch_list=[loss.name])
                print(outs)
600 601
    """

602 603 604 605 606
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
622 623
def detection_output(loc,
                     scores,
624 625 626 627 628 629 630
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
631 632
                     nms_eta=1.0,
                     return_index=False):
633
    """
S
swtkiwi 已提交
634

Q
qingqing01 已提交
635 636
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
637

Q
qingqing01 已提交
638 639
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
640 641 642 643 644
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
645 646 647

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
648 649
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
650 651
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
652
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
653 654 655
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
656
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
657 658
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
659
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
660 661
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
662
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
663 664
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
665
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
666
            to the confidences after filtering detections based on
Q
qingqing01 已提交
667
            score_threshold and before NMS. Default: 400.
668
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
669
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
670 671
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
672 673 674
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
675
        return_index(bool): Whether return selected index. Default: False
676 677

    Returns:
M
minqiyang 已提交
678

679 680 681
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
682 683 684 685 686 687 688 689 690 691 692 693
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
694 695 696
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

697 698 699 700

    Examples:
        .. code-block:: python

701
            import paddle.fluid as fluid
702 703 704
            import paddle

            paddle.enable_static()
705

Q
qingqing01 已提交
706 707 708 709
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
710
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
711 712
                                       loc=loc,
                                       prior_box=pb,
713 714
                                       prior_box_var=pbv,
                                       return_index=True)
715 716
    """
    helper = LayerHelper("detection_output", **locals())
717 718 719 720 721
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
722
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
723
    scores = nn.transpose(scores, perm=[0, 2, 1])
724
    scores.stop_gradient = True
X
Xin Pan 已提交
725 726
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
758
    nmsed_outs.stop_gradient = True
759 760
    if return_index:
        return nmsed_outs, index
761
    return nmsed_outs
C
chengduoZH 已提交
762 763


X
Xin Pan 已提交
764
@templatedoc()
765
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
766
    """
767 768 769
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity
S
swtkiwi 已提交
770

X
Xin Pan 已提交
771 772 773
    ${comment}

    Args:
L
LielinJiang 已提交
774 775
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
776
        box_normalized(bool): Whether treat the priorbox as a normalized box.
777
            Set true by default.
X
Xin Pan 已提交
778
    Returns:
L
LielinJiang 已提交
779
        Variable: ${out_comment}.The data type is same with x.
780 781 782 783

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
784
            import numpy as np
785 786
            import paddle.fluid as fluid

L
LielinJiang 已提交
787 788 789 790 791 792
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
793
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
794 795 796 797 798 799 800 801 802 803 804

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
805 806
    """
    helper = LayerHelper("iou_similarity", **locals())
807
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
808 809 810 811 812

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
813
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
814 815 816 817 818 819 820 821 822 823
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
824 825
              name=None,
              axis=0):
826
    r"""
S
swtkiwi 已提交
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
866 867

    Args:
868
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
869 870 871 872 873 874 875 876 877 878
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
879
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
880 881 882 883 884 885 886 887
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
888
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
889 890 891 892
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
893
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
894 895 896 897
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
898 899

    Returns:
W
wangguanzhong 已提交
900 901
        Variable:

902
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
903 904 905
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
906
        and M represents the number of decoded boxes.
907 908 909 910 911

    Examples:
 
        .. code-block:: python
 
912
            import paddle.fluid as fluid
913 914
            import paddle
            paddle.enable_static()
W
wangguanzhong 已提交
915
            # For encode
916
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
917
                                  shape=[512, 4],
918 919 920 921
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
922 923 924 925 926
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
927
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
928
                                  shape=[512, 4],
929 930 931 932
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
933 934 935 936 937 938
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
939
    """
940 941 942 943
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
944 945
    helper = LayerHelper("box_coder", **locals())

946 947
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
948

949 950 951 952 953 954 955 956 957 958 959 960
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
961 962
    helper.append_op(
        type="box_coder",
963 964
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
965 966 967 968 969 970 971 972 973 974
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
975 976 977 978
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
979 980

    Returns:
981
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
982 983 984 985 986

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
987
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
988
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
989
    """
990 991
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
992
    helper = LayerHelper("polygon_box_transform", **locals())
993
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
994 995 996 997 998 999 1000 1001 1002

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


1003
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_loss")
D
dengkaipeng 已提交
1004 1005
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
1006 1007
                gt_box,
                gt_label,
D
dengkaipeng 已提交
1008
                anchors,
1009
                anchor_mask,
D
dengkaipeng 已提交
1010 1011
                class_num,
                ignore_thresh,
1012
                downsample_ratio,
1013
                gt_score=None,
D
dengkaipeng 已提交
1014
                use_label_smooth=True,
1015 1016
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
1017
    """
S
swtkiwi 已提交
1018

D
dengkaipeng 已提交
1019 1020 1021
    ${comment}

    Args:
X
xiaoting 已提交
1022
        x (Variable): ${x_comment}The data type is float32 or float64. 
1023
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
1024 1025
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
1026 1027
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
1028
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
1029
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
1030
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
1031
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
1032
        anchors (list|tuple): ${anchors_comment}
1033
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
1034 1035
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
1036
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1037 1038 1039
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
1040
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
1041
                            of [N, B]. Default None.
1042
        use_label_smooth (bool): ${use_label_smooth_comment}
1043
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
1044 1045

    Returns:
1046
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
1047 1048 1049

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
1050 1051
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
1052
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
1053 1054 1055
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
1056
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
1057 1058

    Examples:
1059 1060
      .. code-block:: python

1061
          import paddle.fluid as fluid
1062 1063
          import paddle
          paddle.enable_static()
X
xiaoting 已提交
1064 1065 1066 1067
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
1068 1069
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
1070 1071
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
1072 1073
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
1074 1075 1076 1077
    """

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1078
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1079
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1080
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1081
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1082
    if gt_score is not None and not isinstance(gt_score, Variable):
1083
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1084 1085
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1086 1087
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1088 1089 1090 1091 1092
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1093 1094 1095
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1096

1097 1098 1099 1100 1101 1102 1103
    if _non_static_mode():
        attrs = ("anchors", anchors, "anchor_mask", anchor_mask, "class_num",
                 class_num, "ignore_thresh", ignore_thresh, "downsample_ratio",
                 downsample_ratio, "use_label_smooth", use_label_smooth,
                 "scale_x_y", scale_x_y)
        loss, _, _ = _C_ops.yolov3_loss(x, gt_box, gt_label, gt_score, *attrs)
        return loss
D
dengkaipeng 已提交
1104

1105 1106
    helper = LayerHelper('yolov3_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1107 1108 1109
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1110 1111
    inputs = {
        "X": x,
1112 1113
        "GTBox": gt_box,
        "GTLabel": gt_label,
1114
    }
1115
    if gt_score is not None:
1116
        inputs["GTScore"] = gt_score
1117

D
dengkaipeng 已提交
1118 1119
    attrs = {
        "anchors": anchors,
1120
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1121 1122
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1123
        "downsample_ratio": downsample_ratio,
1124
        "use_label_smooth": use_label_smooth,
1125
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1126 1127 1128 1129
    }

    helper.append_op(
        type='yolov3_loss',
1130
        inputs=inputs,
1131 1132 1133 1134 1135
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1136 1137 1138 1139
        attrs=attrs)
    return loss


1140
@deprecated(since="2.0.0", update_to="paddle.vision.ops.yolo_box")
D
dengkaipeng 已提交
1141
@templatedoc(op_type="yolo_box")
1142 1143 1144 1145 1146 1147
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1148
             clip_bbox=True,
1149
             name=None,
1150 1151 1152
             scale_x_y=1.,
             iou_aware=False,
             iou_aware_factor=0.5):
D
dengkaipeng 已提交
1153
    """
S
swtkiwi 已提交
1154

D
dengkaipeng 已提交
1155 1156 1157
    ${comment}

    Args:
X
xiaoting 已提交
1158 1159
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1160 1161 1162 1163
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1164
        clip_bbox (bool): ${clip_bbox_comment}
1165
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1166 1167 1168
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
1169 1170
        iou_aware (bool): ${iou_aware_comment}
        iou_aware_factor (float): ${iou_aware_factor_comment}
D
dengkaipeng 已提交
1171 1172

    Returns:
D
dengkaipeng 已提交
1173
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1174 1175
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1176 1177 1178 1179 1180 1181 1182 1183

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1184

D
dengkaipeng 已提交
1185 1186
    .. code-block:: python

X
xiaoting 已提交
1187
        import paddle.fluid as fluid
1188 1189
        import paddle
        paddle.enable_static()
X
xiaoting 已提交
1190 1191
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1192
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1193
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1194 1195 1196 1197 1198
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1199 1200 1201
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1202
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1203
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1204
    if not isinstance(class_num, int):
1205
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1206
    if not isinstance(conf_thresh, float):
1207
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1208 1209 1210 1211 1212 1213 1214

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1215
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1216
        "downsample_ratio": downsample_ratio,
1217
        "clip_bbox": clip_bbox,
1218
        "scale_x_y": scale_x_y,
1219 1220
        "iou_aware": iou_aware,
        "iou_aware_factor": iou_aware_factor
D
dengkaipeng 已提交
1221 1222 1223 1224
    }

    helper.append_op(
        type='yolo_box',
1225 1226 1227 1228
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1229 1230 1231 1232 1233 1234 1235 1236
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1237
@templatedoc()
1238 1239
def detection_map(detect_res,
                  label,
1240 1241
                  class_num,
                  background_label=0,
1242 1243
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1244 1245 1246 1247
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1259 1260 1261 1262 1263 1264 1265 1266
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1276
            import paddle.fluid as fluid
1277
            from fluid.layers import detection
1278
            detect_res = fluid.data(
X
Xin Pan 已提交
1279 1280 1281
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1282
            label = fluid.data(
X
Xin Pan 已提交
1283 1284 1285 1286
                name='label',
                shape=[10, 6],
                dtype='float32')

1287
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1288
    """
1289 1290
    helper = LayerHelper("detection_map", **locals())

1291
    def __create_var(type):
X
Xin Pan 已提交
1292
        return helper.create_variable_for_type_inference(dtype=type)
1293 1294

    map_out = __create_var('float32')
Z
zhongpu 已提交
1295 1296 1297 1298 1299 1300
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1301

Z
zhongpu 已提交
1302 1303 1304
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1305

1306 1307 1308 1309 1310
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1311
            'HasState': has_state,
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1325 1326
            'ap_type': ap_version,
            'class_num': class_num,
1327
        })
1328
    return map_out
1329 1330


1331 1332 1333 1334
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1335
    """
S
swtkiwi 已提交
1336

Y
yuyang18 已提交
1337 1338
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1339
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1340 1341 1342 1343
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1344
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1345 1346 1347

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1348 1349 1350
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1351

Y
yuyang18 已提交
1352
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1353 1354 1355
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1356 1357 1358
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1359 1360
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1372
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1373
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1374 1375 1376 1377
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1378
    Returns:
W
wangguanzhong 已提交
1379
        Tuple:
Y
yuyang18 已提交
1380

W
wangguanzhong 已提交
1381 1382
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1383 1384 1385 1386 1387
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1388 1389
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1390 1391 1392 1393 1394 1395 1396
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1397
        >>> import paddle.fluid as fluid
1398 1399
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1400 1401
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1402 1403
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1404 1405 1406
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1407 1408 1409
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1410 1411 1412 1413
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1427

1428 1429 1430 1431
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1432

1433 1434 1435 1436 1437
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1438

1439
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1440

1441 1442 1443
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1444

1445 1446
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1447

1448
        Otherwise,
C
chengduoZH 已提交
1449

1450 1451
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1452

Q
qingqing01 已提交
1453
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1454

Q
qingqing01 已提交
1455 1456
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1457

1458
    .. code-block:: text
C
chengduoZH 已提交
1459

Q
qingqing01 已提交
1460 1461 1462
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1463 1464

    Args:
Q
qingqing01 已提交
1465 1466 1467
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1468 1469 1470
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1471 1472
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1473
           the total number of negative example indices.
Q
qingqing01 已提交
1474 1475 1476 1477 1478
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1479 1480

    Returns:
Q
qingqing01 已提交
1481 1482 1483 1484 1485 1486 1487 1488
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1489 1490 1491 1492 1493

    Examples:

        .. code-block:: python

1494
            import paddle.fluid as fluid
1495 1496
            import paddle
            paddle.enable_static()
Q
qingqing01 已提交
1497
            x = fluid.data(
1498 1499 1500
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1501 1502
                lod_level=1)
            matched_id = fluid.data(
1503 1504
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1505
                dtype='int32')
1506 1507 1508 1509
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1510 1511
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1512 1513
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1541
             normalize=True,
1542
             sample_size=None):
1543
    r"""
1544 1545 1546
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss
S
swtkiwi 已提交
1547

Y
yuyang18 已提交
1548
    **Multi-box loss layer for object detection algorithm of SSD**
1549

翟飞跃 已提交
1550 1551
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1552 1553 1554 1555
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1556
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1557

1558
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1559

T
tianshuo78520a 已提交
1560
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1561

1562
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1563

1564
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1565

1566
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1567

1568 1569
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1570

1571
    4. Assign classification and regression targets
Y
yuyang18 已提交
1572

1573
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1574

1575
      4.2. Assign regression targets.
Y
yuyang18 已提交
1576

1577
      4.3. Assign classification targets.
Y
yuyang18 已提交
1578

1579
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1580

1581
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1582

1583
      5.2 Compute localization loss.
Y
yuyang18 已提交
1584

1585 1586 1587 1588 1589 1590
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1591 1592
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1593 1594
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1595 1596
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1597
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1598
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1599
            bboxes of mini-batch input.The data type is float32 or float64.
1600
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1601 1602 1603
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1604
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1605 1606
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1607
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1608
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1609 1610
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1611 1612
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1613
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1614
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1615
        neg_overlap (float): The negative overlap upper bound for the unmatched
1616
            predictions. Use only when mining_type is 'max_negative',
1617 1618 1619 1620
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1621
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1622 1623
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1624
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1625
            of output locations, True by default.
1626 1627
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1628 1629

    Returns:
1630 1631 1632
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1633 1634

    Raises:
Y
yuyang18 已提交
1635 1636
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1637 1638

    Examples:
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1658 1659 1660 1661 1662 1663 1664
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1665
    conf_shape = nn.shape(confidence)
1666 1667

    def __reshape_to_2d(var):
1668
        return nn.flatten(x=var, axis=2)
1669

T
tianshuo78520a 已提交
1670
    # 1. Find matched bounding box by prior box.
1671 1672
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1673
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1674 1675
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1676 1677 1678

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1679 1680
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1681
    gt_label.stop_gradient = True
1682 1683 1684 1685 1686 1687 1688
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1689
    target_label.stop_gradient = True
1690
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1691
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1692
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1693
    actual_shape.stop_gradient = True
1694 1695
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1696
    conf_loss = nn.reshape(
1697
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1698
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1699
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1700
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1701 1702
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1717
            'neg_dist_threshold': neg_overlap,
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1743

1744
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1745 1746 1747
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1748 1749 1750 1751
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1752 1753 1754 1755 1756 1757 1758 1759
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1760 1761 1762 1763
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1764 1765
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1766
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1767 1768 1769
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1770 1771 1772 1773 1774
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1775
    return loss
C
chengduoZH 已提交
1776 1777


1778 1779 1780 1781
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1782
              aspect_ratios=[1.],
1783 1784 1785 1786 1787
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1788 1789
              name=None,
              min_max_aspect_ratios_order=False):
1790
    """
S
swtkiwi 已提交
1791

R
ruri 已提交
1792
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1793 1794 1795 1796 1797
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1798
    Parameters:
T
tianshuo78520a 已提交
1799
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1800 1801 1802 1803
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1804
            Default: None.
R
ruri 已提交
1805
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1806
            prior boxes. Default: [1.].
1807 1808 1809 1810
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1811
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1812 1813
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1814
            Default: [0., 0.]
1815
       offset(float): Prior boxes center offset. Default: 0.5
1816
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1817
            in order of [min, max, aspect_ratios], which is consistent with
1818 1819 1820
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1821
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1822 1823

    Returns:
R
ruri 已提交
1824
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1825

R
ruri 已提交
1826 1827
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1828
        H is the height of input, W is the width of input,
R
ruri 已提交
1829
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1830

R
ruri 已提交
1831 1832
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1833
        H is the height of input, W is the width of input
R
ruri 已提交
1834
        num_priors is the total box count of each position of input
1835 1836 1837

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1838

R
ruri 已提交
1839 1840 1841
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
1842 1843
        import paddle
        paddle.enable_static()
R
ruri 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1888 1889 1890
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1891 1892
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1909 1910 1911 1912 1913 1914 1915 1916
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1917 1918
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1919 1920
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1921 1922
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1923 1924
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1925 1926
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1948
                      flatten_to_2d=False,
R
ruri 已提交
1949
                      name=None):
1950
    r"""
R
ruri 已提交
1951

R
ruri 已提交
1952
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1953 1954 1955 1956 1957 1958
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1959
    
R
ruri 已提交
1960
    For densities_i in densities:
R
ruri 已提交
1961 1962
    
    .. math::
R
ruri 已提交
1963

R
ruri 已提交
1964 1965 1966 1967 1968 1969 1970
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1971
            the layout is NCHW.
R
ruri 已提交
1972
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1973 1974
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1975
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1976 1977
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1978
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1979 1980 1981
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1982
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1983
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1984
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1985
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1986 1987
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1988 1989
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1990 1991
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1992 1993
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1994
    Returns:
R
ruri 已提交
1995
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1996 1997

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1998 1999 2000
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2001 2002

        variances: the expanded variances of PriorBox.
R
ruri 已提交
2003 2004 2005
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
2006 2007 2008


    Examples:
R
ruri 已提交
2009

R
ruri 已提交
2010 2011
        .. code-block:: python

R
ruri 已提交
2012
            #declarative mode
R
ruri 已提交
2013

R
ruri 已提交
2014 2015
            import paddle.fluid as fluid
            import numpy as np
2016 2017
            import paddle
            paddle.enable_static()
R
ruri 已提交
2018

R
ruri 已提交
2019 2020 2021
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
2022 2023 2024 2025 2026 2027 2028 2029
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
2030 2031 2032
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
2033
 
R
ruri 已提交
2034 2035 2036 2037 2038 2039
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
2040
                feed={"input":input_data,
R
ruri 已提交
2041
                      "image":image_data},
R
ruri 已提交
2042 2043 2044
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
2045 2046 2047 2048
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
2049 2050


R
ruri 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
2069

R
ruri 已提交
2070 2071 2072
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
2073 2074
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
2075 2076 2077 2078

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

2079 2080 2081
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2082 2083
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2084

R
ruri 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2100 2101 2102 2103
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


2119
@static_only
C
chengduoZH 已提交
2120
def multi_box_head(inputs,
C
chengduoZH 已提交
2121 2122
                   image,
                   base_size,
C
chengduoZH 已提交
2123
                   num_classes,
C
chengduoZH 已提交
2124
                   aspect_ratios,
2125 2126
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2127 2128
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2129 2130 2131 2132
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2133 2134
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2135
                   clip=False,
C
chengduoZH 已提交
2136
                   kernel_size=1,
C
chengduoZH 已提交
2137
                   pad=0,
C
chengduoZH 已提交
2138
                   stride=1,
2139 2140
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2141
    """
2142
	:api_attr: Static Graph
S
swtkiwi 已提交
2143

Q
qingqing01 已提交
2144 2145 2146 2147
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2148
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2149 2150

    Args:
Q
qingqing01 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2172
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2173 2174
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2194
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2195 2196 2197 2198 2199
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2200 2201 2202
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2203
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2204
            in order of [min, max, aspect_ratios], which is consistent with
2205
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2206
            convolution layer followed by and does not affect the final
2207
            detection results. Default: False.
C
chengduoZH 已提交
2208 2209

    Returns:
Q
update  
qiaolongfei 已提交
2210 2211
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2212 2213 2214
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2215

Q
qingqing01 已提交
2216 2217 2218 2219
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2220

Q
qingqing01 已提交
2221 2222 2223
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2224

Q
qingqing01 已提交
2225 2226
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2227

Q
qingqing01 已提交
2228
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2229
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2230

2231 2232
          import paddle
          paddle.enable_static()
2233

2234 2235 2236 2237 2238 2239 2240
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2241

2242
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
2243
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2253 2254 2255 2256

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

2257 2258
          import paddle
          paddle.enable_static()
Q
qingqing01 已提交
2259

2260 2261 2262 2263 2264 2265 2266
          images = paddle.static.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = paddle.static.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = paddle.static.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = paddle.static.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = paddle.static.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = paddle.static.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = paddle.static.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
Q
qingqing01 已提交
2267

2268
          mbox_locs, mbox_confs, box, var = paddle.static.nn.multi_box_head(
Q
qingqing01 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2280 2281
    """

C
chengduoZH 已提交
2282
    def _reshape_with_axis_(input, axis=1):
2283
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2284
        return out
2285

2286 2287
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2288

C
chengduoZH 已提交
2289 2290 2291 2292
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2293 2294
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2295

C
chengduoZH 已提交
2296 2297 2298 2299 2300
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2301
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2302 2303 2304
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2305
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2306 2307 2308 2309 2310
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2311 2312 2313 2314 2315
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2316
    if step_h is not None:
C
chengduoZH 已提交
2317 2318 2319 2320
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2321
    if step_w is not None:
C
chengduoZH 已提交
2322 2323 2324 2325
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2326
    if steps is not None:
C
chengduoZH 已提交
2327 2328 2329 2330 2331 2332 2333
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2334 2335
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2336 2337
    box_results = []
    var_results = []
C
chengduoZH 已提交
2338 2339
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2340 2341
        max_size = max_sizes[i]

2342
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2343
            min_size = [min_size]
C
chengduoZH 已提交
2344 2345
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2346 2347 2348 2349

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2350
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2351
                aspect_ratio = [aspect_ratio]
2352
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2353

2354
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2355 2356
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2357 2358 2359 2360 2361

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2362

2363
        # get loc
Y
Yuan Gao 已提交
2364
        num_loc_output = num_boxes * 4
2365
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2366
            input=input,
2367 2368 2369 2370 2371
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2372
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2373
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2374
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2375

2376
        # get conf
C
chengduoZH 已提交
2377
        num_conf_output = num_boxes * num_classes
2378
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2379
            input=input,
2380 2381 2382 2383
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2384
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2385
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2386
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2387

C
chengduoZH 已提交
2388 2389 2390
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2391 2392
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2402
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2403
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2404
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2405 2406
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2407

2408 2409
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2410
    return mbox_locs_concat, mbox_confs_concat, box, var
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2421

2422 2423 2424 2425 2426 2427 2428 2429
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2446 2447

    Returns:
W
wangguanzhong 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2460 2461 2462 2463 2464 2465


    Examples:

        .. code-block:: python

2466
            import paddle.fluid as fluid
2467 2468 2469
            import paddle

            paddle.enable_static()
2470
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2471
            anchor, var = fluid.layers.anchor_generator(
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2505 2506
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2507 2508 2509 2510 2511 2512 2513 2514 2515
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2516 2517


W
whs 已提交
2518 2519 2520 2521
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2522 2523
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2524
    """
S
SunGaofeng 已提交
2525
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2526

S
SunGaofeng 已提交
2527 2528 2529 2530 2531
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2532 2533
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2534 2535 2536
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2537 2538 2539
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2540 2541 2542 2543
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2544
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2545 2546 2547
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2548 2549

    Returns:
S
SunGaofeng 已提交
2550
            A tuple with three Variables. (out, mask, transform_matrix)
2551 2552

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2553
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2554 2555

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2556
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2557 2558

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2559 2560 2561 2562
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2563 2564 2565 2566

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2567
            import paddle.fluid as fluid
2568

S
SunGaofeng 已提交
2569 2570
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2571
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2572
    """
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2584 2585
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2586
    out = helper.create_variable_for_type_inference(dtype)
2587 2588
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2589 2590
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2591 2592 2593 2594
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2595 2596 2597
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2598 2599 2600
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2601
        },
W
whs 已提交
2602 2603 2604 2605 2606
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2607
    return out, mask, transform_matrix
W
whs 已提交
2608 2609


2610 2611
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2612
                             is_crowd,
2613
                             gt_boxes,
2614
                             im_info,
2615 2616 2617 2618 2619 2620
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2621
                             class_nums=None,
2622 2623
                             use_random=True,
                             is_cls_agnostic=False,
2624 2625 2626
                             is_cascade_rcnn=False,
                             max_overlap=None,
                             return_max_overlap=False):
2627
    """
S
swtkiwi 已提交
2628

2629
    **Generate Proposal Labels of Faster-RCNN**
2630

B
buxingyuan 已提交
2631
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2632
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2633 2634 2635

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2636
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2637 2638
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2639
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2640
    then we apply random sampling to make sure
B
buxingyuan 已提交
2641
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2642 2643 2644 2645 2646

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2647 2648 2649
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2650 2651 2652
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2653 2654 2655 2656 2657 2658 2659
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2660
        use_random(bool): Use random sampling to choose foreground and background boxes.
2661 2662
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
2663 2664
        max_overlap(Variable): Maximum overlap between each proposal box and ground-truth.
        return_max_overlap(bool): Whether return the maximum overlap between each sampled RoI and ground-truth.
B
Bai Yifan 已提交
2665

2666 2667
    Returns:
        tuple:
2668
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap)``.
2669 2670 2671 2672 2673 2674

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.
2675
        - **max_overlap**: 1-D LoDTensor with shape ``[P]``. P is the number of output ``rois``. The maximum overlap between each sampled RoI and ground-truth.
2676

B
Bai Yifan 已提交
2677 2678 2679
    Examples:
        .. code-block:: python

2680
            import paddle
B
Bai Yifan 已提交
2681
            import paddle.fluid as fluid
2682
            paddle.enable_static()
2683
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
2684 2685
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='int32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='int32')
2686 2687
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2688
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2689 2690 2691
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2692 2693 2694 2695
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

2696 2697 2698 2699 2700 2701
    check_variable_and_dtype(rpn_rois, 'rpn_rois', ['float32', 'float64'],
                             'generate_proposal_labels')
    check_variable_and_dtype(gt_classes, 'gt_classes', ['int32'],
                             'generate_proposal_labels')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'generate_proposal_labels')
2702 2703
    if is_cascade_rcnn:
        assert max_overlap is not None, "Input max_overlap of generate_proposal_labels should not be None if is_cascade_rcnn is True"
2704

X
Xin Pan 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2714 2715
    max_overlap_with_gt = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725
    inputs = {
        'RpnRois': rpn_rois,
        'GtClasses': gt_classes,
        'IsCrowd': is_crowd,
        'GtBoxes': gt_boxes,
        'ImInfo': im_info,
    }
    if max_overlap is not None:
        inputs['MaxOverlap'] = max_overlap
2726 2727
    helper.append_op(
        type="generate_proposal_labels",
2728
        inputs=inputs,
2729 2730 2731 2732 2733
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
2734 2735
            'BboxOutsideWeights': bbox_outside_weights,
            'MaxOverlapWithGT': max_overlap_with_gt
2736 2737 2738 2739 2740 2741 2742 2743
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2744
            'class_nums': class_nums,
2745 2746 2747
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2748 2749 2750 2751 2752 2753 2754
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True
2755
    max_overlap_with_gt.stop_gradient = True
2756

2757 2758
    if return_max_overlap:
        return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, max_overlap_with_gt
2759 2760 2761
    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2762 2763
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
2764
    r"""
S
swtkiwi 已提交
2765

Q
qingqing01 已提交
2766
    **Generate Mask Labels for Mask-RCNN**
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2802 2803 2804 2805 2806 2807
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2808
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2809 2810 2811 2812 2813 2814 2815
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2816
            The users should return correct data format in reader.
Q
qingqing01 已提交
2817
            The LoD[0] represents the ground-truth objects number of
2818 2819 2820 2821
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2822 2823 2824 2825
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2826
            of int32. R is the same as it in `rois`. Each element represents
2827
            a class label of a RoI.
Q
qingqing01 已提交
2828 2829
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2830 2831

    Returns:
Q
qingqing01 已提交
2832 2833 2834
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2835
        original image size.
Q
qingqing01 已提交
2836 2837

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2838
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2839 2840 2841 2842
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2843
        predictions. Each element represents the binary mask targets.
2844 2845 2846 2847

    Examples:
        .. code-block:: python

2848 2849
          import paddle.fluid as fluid

Q
qingqing01 已提交
2850
          im_info = fluid.data(name="im_info", shape=[None, 3],
2851
              dtype="float32")
Q
qingqing01 已提交
2852
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2853
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2854
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2855
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2856
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2857
              dtype="float32", lod_level=3)
2858
          # rois, roi_labels can be the output of
2859
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2860
          rois = fluid.data(name="rois", shape=[None, 4],
2861
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2862
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2863
              dtype="int32", lod_level=1)
2864 2865 2866 2867 2868 2869
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2870
              labels_int32=roi_labels,
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
2918 2919
                       return_rois_num=False,
                       name=None):
2920
    """
S
swtkiwi 已提交
2921

H
haowang101779990 已提交
2922 2923
    **Generate proposal Faster-RCNN**

2924 2925 2926 2927
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2928 2929 2930 2931
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2932 2933
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2934 2935 2936 2937 2938 2939
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2940 2941 2942
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2943
            width of the feature map. The data type must be float32.
2944
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2945
            represents the difference between predicted box location and
2946
            anchor location. The data type must be float32.
2947
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2948 2949
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2950
            The data type can be float32 or float64.
2951 2952 2953
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2954 2955
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2956
            [H, W, num_priors, 4]. Each variance is in
2957
            (xcenter, ycenter, w, h) format. The data type must be float32.
2958
        pre_nms_top_n(float): Number of total bboxes to be kept per
2959
            image before NMS. The data type must be float32. `6000` by default.
2960
        post_nms_top_n(float): Number of total bboxes to be kept per
2961 2962
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2963
        min_size(float): Remove predicted boxes with either height or
2964 2965 2966
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2967 2968 2969 2970
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2971 2972 2973 2974
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

2975 2976 2977 2978 2979 2980
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2981 2982 2983 2984 2985

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2986 2987
            import paddle
            paddle.enable_static()
2988 2989 2990 2991 2992
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2993 2994 2995
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2996
    """
J
Jiabin Yang 已提交
2997
    if _non_static_mode():
2998 2999 3000
        assert return_rois_num, "return_rois_num should be True in dygraph mode."
        attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n,
                 'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta)
W
wanghuancoder 已提交
3001
        rpn_rois, rpn_roi_probs, rpn_rois_num = _C_ops.generate_proposals(
3002 3003 3004
            scores, bbox_deltas, im_info, anchors, variances, *attrs)
        return rpn_rois, rpn_roi_probs, rpn_rois_num

3005 3006
    helper = LayerHelper('generate_proposals', **locals())

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'generate_proposals')
    check_variable_and_dtype(anchors, 'anchors', ['float32'],
                             'generate_proposals')
    check_variable_and_dtype(variances, 'variances', ['float32'],
                             'generate_proposals')

X
Xin Pan 已提交
3018 3019 3020 3021
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
3022 3023 3024 3025 3026 3027 3028 3029
    outputs = {
        'RpnRois': rpn_rois,
        'RpnRoiProbs': rpn_roi_probs,
    }
    if return_rois_num:
        rpn_rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rpn_rois_num.stop_gradient = True
        outputs['RpnRoisNum'] = rpn_rois_num
F
FDInSky 已提交
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
3047
        outputs=outputs)
3048 3049 3050
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

F
FDInSky 已提交
3051
    if return_rois_num:
3052
        return rpn_rois, rpn_roi_probs, rpn_rois_num
F
FDInSky 已提交
3053 3054
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
3055 3056


J
jerrywgz 已提交
3057
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
3058
    """
S
swtkiwi 已提交
3059
	
J
jerrywgz 已提交
3060
    Clip the box into the size given by im_info
J
jerrywgz 已提交
3061
    For each input box, The formula is given as follows:
3062 3063 3064
        
    .. code-block:: text

J
jerrywgz 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
3076 3077

    Args:
W
wangguanzhong 已提交
3078 3079 3080
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
3081
            (height, width, scale) representing the information of image. 
3082
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
3083 3084 3085 3086
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3087 3088
    
    Returns:
W
wangguanzhong 已提交
3089 3090
        Variable:

T
tianshuo78520a 已提交
3091
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
3092 3093
        The shape is same as input.

3094
        
J
jerrywgz 已提交
3095 3096
    Examples:
        .. code-block:: python
3097
        
3098
            import paddle.fluid as fluid
3099 3100
            import paddle
            paddle.enable_static()
3101 3102 3103
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
3104
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
3105
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
3106 3107
    """

3108 3109 3110 3111
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
3112
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
3113
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
3114
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
3115
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
3116

3117 3118
    return output

J
jerrywgz 已提交
3119

3120 3121 3122 3123 3124 3125 3126 3127
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3128
                               nms_eta=1.0):
3129
    """
3130
    **Detection Output Layer for the detector RetinaNet.**
3131

3132 3133 3134 3135
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3136

3137 3138 3139
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3140 3141 3142 3143
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3161
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3162 3163 3164
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3165
            information of each image is a 3-vector which are the height and width
3166 3167
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3168
        score_threshold(float): Threshold to filter out bounding boxes
3169
            with a confidence score before NMS, default value is set to 0.05.
3170
        nms_top_k(int): Maximum number of detections per FPN layer to be
3171 3172
            kept according to the confidences before NMS, default value is set to
            1000.
3173
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3192
    :attr:`anchors` is required to be from the highest FPN level.
3193 3194

    Returns:
3195 3196
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3197
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3198 3199 3200
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3201 3202 3203 3204 3205 3206
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3224 3225 3226 3227 3228 3229 3230 3231 3232
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3233 3234
    """

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3276 3277 3278 3279 3280
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3281
                   nms_threshold=0.3,
J
jerrywgz 已提交
3282 3283
                   normalized=True,
                   nms_eta=1.,
3284 3285
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3286
    """
S
swtkiwi 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3316

3317 3318 3319 3320 3321 3322 3323

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3324 3325 3326 3327 3328 3329 3330 3331
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3332
                           The data type is float32 or float64.
3333 3334
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3335
                           class number. The data type is float32 or float64.   
3336 3337 3338 3339 3340 3341 3342
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3343
                           of BBoxes.The data type is float32 or float64. 
3344 3345 3346
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3347
                           case with shape [M, C, 4].The data type is float32 or float64. 
3348 3349 3350 3351 3352 3353 3354
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3355
                         the confidences after the filtering detections based
3356 3357 3358 3359 3360 3361 3362 3363 3364
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3365
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3366 3367 3368 3369 3370
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3371 3372 3373 3374
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3375

3376

3377 3378 3379
    Examples:
        .. code-block:: python

3380

3381
            import paddle.fluid as fluid
3382 3383
            import paddle
            paddle.enable_static()
X
xiaoting 已提交
3384
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3385
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3386
            scores = fluid.data(name='scores', shape=[None,81],
3387 3388 3389 3390 3391 3392 3393 3394 3395
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3396
    """
X
xiaoting 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3426 3427

    return output
3428 3429


3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3478
                         the confidences after the filtering detections based
3479 3480 3481
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3482 3483
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


Y
Yang Zhang 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
def matrix_nms(bboxes,
               scores,
               score_threshold,
               post_threshold,
               nms_top_k,
               keep_top_k,
               use_gaussian=False,
               gaussian_sigma=2.,
               background_label=0,
               normalized=True,
               return_index=False,
               name=None):
    """
    **Matrix NMS**

    This operator does matrix non maximum suppression (NMS).

    First selects a subset of candidate bounding boxes that have higher scores
    than score_threshold (if provided), then the top k candidate is selected if
    nms_top_k is larger than -1. Score of the remaining candidate are then
    decayed according to the Matrix NMS scheme.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes. The data type is float32 or float64.
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score.
        post_threshold (float): Threshold to filter out bounding boxes with
                                low confidence score AFTER decaying.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences after the filtering detections based
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        use_gaussian (bool): Use Gaussian as the decay function. Default: False
        gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the matrix nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, one Variable(Out) is returned.

        Out (Variable): A 2-D LoDTensor with shape [No, 6] containing the
             detection results.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1})

        Index (Variable): A 2-D LoDTensor with shape [No, 1] containing the
            selected indices, which are absolute values cross batches.

    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.data(name='scores', shape=[None,81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.matrix_nms(bboxes=boxes,
                                          scores=scores,
                                          background_label=0,
                                          score_threshold=0.5,
                                          post_threshold=0.1,
                                          nms_top_k=400,
                                          keep_top_k=200,
                                          normalized=False)
    """
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'matrix_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'matrix_nms')
    check_type(score_threshold, 'score_threshold', float, 'matrix_nms')
    check_type(post_threshold, 'post_threshold', float, 'matrix_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms')
    check_type(normalized, 'normalized', bool, 'matrix_nms')
    check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms')
    check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms')
    check_type(background_label, 'background_label', int, 'matrix_nms')

    helper = LayerHelper('matrix_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="matrix_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'post_threshold': post_threshold,
            'nms_top_k': nms_top_k,
            'gaussian_sigma': gaussian_sigma,
            'use_gaussian': use_gaussian,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True

    if return_index:
        return output, index
    else:
        return output


3687 3688 3689 3690 3691
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
3692
                             rois_num=None,
3693
                             name=None):
3694
    r"""
S
swtkiwi 已提交
3695
	
W
wangguanzhong 已提交
3696 3697 3698 3699 3700 3701
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3702
    
J
jerrywgz 已提交
3703
    .. math::
3704

J
jerrywgz 已提交
3705
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3706

J
jerrywgz 已提交
3707 3708 3709
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3710 3711

    Args:
W
wangguanzhong 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
3721 3722 3723 3724 3725
        rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. 
            The shape is [B] and data type is int32. B is the number of images.
            If it is not None then return a list of 1-D Tensor. Each element 
            is the output RoIs' number of each image on the corresponding level
            and the shape is [B]. None by default.
W
wangguanzhong 已提交
3726 3727 3728
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3729

3730
    Returns:
W
wangguanzhong 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3741 3742 3743 3744
        rois_num_per_level(List): A list of 1-D Tensor and each Tensor is 
        the RoIs' number in each image on the corresponding level. The shape 
        is [B] and data type of int32. B is the number of images

3745 3746 3747 3748

    Examples:
        .. code-block:: python

3749
            import paddle.fluid as fluid
3750 3751
            import paddle
            paddle.enable_static()
3752 3753
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3754
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3755 3756 3757
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3758 3759 3760
                refer_level=4,
                refer_scale=224)
    """
3761 3762
    num_lvl = max_level - min_level + 1

J
Jiabin Yang 已提交
3763
    if _non_static_mode():
3764 3765 3766
        assert rois_num is not None, "rois_num should not be None in dygraph mode."
        attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
                 refer_level, 'refer_scale', refer_scale)
W
wanghuancoder 已提交
3767
        multi_rois, restore_ind, rois_num_per_level = _C_ops.distribute_fpn_proposals(
3768 3769 3770
            fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
        return multi_rois, restore_ind, rois_num_per_level

3771 3772
    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
3773
    helper = LayerHelper('distribute_fpn_proposals', **locals())
3774
    dtype = helper.input_dtype('fpn_rois')
3775 3776 3777
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
3778

3779
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

    inputs = {'FpnRois': fpn_rois}
    outputs = {
        'MultiFpnRois': multi_rois,
        'RestoreIndex': restore_ind,
    }

    if rois_num is not None:
        inputs['RoisNum'] = rois_num
        rois_num_per_level = [
            helper.create_variable_for_type_inference(dtype='int32')
            for i in range(num_lvl)
        ]
        outputs['MultiLevelRoIsNum'] = rois_num_per_level

3795 3796
    helper.append_op(
        type='distribute_fpn_proposals',
3797 3798
        inputs=inputs,
        outputs=outputs,
3799 3800 3801 3802 3803 3804
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
3805 3806
    if rois_num is not None:
        return multi_rois, restore_ind, rois_num_per_level
3807
    return multi_rois, restore_ind
3808 3809


3810
@templatedoc()
J
jerrywgz 已提交
3811 3812 3813 3814 3815 3816
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3817
    """
S
swtkiwi 已提交
3818
	
3819 3820 3821 3822 3823 3824
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3825
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3826 3827 3828 3829
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3830
    Returns:
W
wangguanzhong 已提交
3831
        Tuple:
J
jerrywgz 已提交
3832

W
wangguanzhong 已提交
3833 3834 3835
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3836 3837


3838 3839 3840
    Examples:
        .. code-block:: python

3841
            import paddle.fluid as fluid
3842 3843
            import paddle
            paddle.enable_static()
3844 3845 3846 3847 3848 3849 3850 3851
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3852
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3853
                pb, pbv, loc, scores, 4.135)
3854 3855

    """
3856 3857 3858 3859 3860 3861
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3862 3863
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3864
    decoded_box = helper.create_variable_for_type_inference(
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3879
            "DecodeBox": decoded_box,
3880 3881
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3882
    return decoded_box, output_assign_box
3883 3884 3885 3886 3887 3888 3889


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
3890
                          rois_num_per_level=None,
3891 3892
                          name=None):
    """
S
swtkiwi 已提交
3893
	
W
wangguanzhong 已提交
3894 3895 3896
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3897 3898 3899 3900 3901 3902 3903 3904

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3905 3906 3907 3908 3909 3910
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3911 3912 3913
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
3914 3915 3916 3917 3918 3919
        rois_num_per_level(list, optional): The List of RoIs' numbers. 
            Each element is 1-D Tensor which contains the RoIs' number of each 
            image on each level and the shape is [B] and data type is 
            int32, B is the number of images. If it is not None then return 
            a 1-D Tensor contains the output RoIs' number of each image and 
            the shape is [B]. Default: None
W
wangguanzhong 已提交
3920 3921 3922 3923
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3924
    Returns:
W
wangguanzhong 已提交
3925 3926 3927 3928 3929
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3930 3931 3932
        rois_num(Tensor): 1-D Tensor contains the RoIs's number of each 
        image. The shape is [B] and data type is int32. B is the number of 
        images. 
3933 3934 3935 3936

    Examples:
        .. code-block:: python
           
3937
            import paddle.fluid as fluid
3938 3939
            import paddle
            paddle.enable_static()
3940 3941 3942
            multi_rois = []
            multi_scores = []
            for i in range(4):
3943 3944
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3945
            for i in range(4):
3946 3947
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3948 3949 3950 3951 3952 3953 3954 3955

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3956 3957 3958 3959
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]

J
Jiabin Yang 已提交
3960
    if _non_static_mode():
3961 3962
        assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode."
        attrs = ('post_nms_topN', post_nms_top_n)
W
wanghuancoder 已提交
3963
        output_rois, rois_num = _C_ops.collect_fpn_proposals(
3964 3965
            input_rois, input_scores, rois_num_per_level, *attrs)

3966 3967
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3968 3969
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3970 3971
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3972 3973
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

    inputs = {
        'MultiLevelRois': input_rois,
        'MultiLevelScores': input_scores,
    }
    outputs = {'FpnRois': output_rois}
    if rois_num_per_level is not None:
        inputs['MultiLevelRoIsNum'] = rois_num_per_level
        rois_num = helper.create_variable_for_type_inference(dtype='int32')
        rois_num.stop_gradient = True
        outputs['RoisNum'] = rois_num
3985 3986
    helper.append_op(
        type='collect_fpn_proposals',
3987 3988
        inputs=inputs,
        outputs=outputs,
3989
        attrs={'post_nms_topN': post_nms_top_n})
3990 3991
    if rois_num_per_level is not None:
        return output_rois, rois_num
3992
    return output_rois