detection.py 102.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'detection_map',
    'rpn_target_assign',
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
47
    'generate_mask_labels',
48 49 50 51
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
52
    'yolo_box',
53
    'box_clip',
J
jerrywgz 已提交
54
    'multiclass_nms',
55
    'distribute_fpn_proposals',
56
    'box_decoder_and_assign',
C
chengduoZH 已提交
57
]
58 59


60 61
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
62
                      anchor_box,
63
                      anchor_var,
64 65 66
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
67
                      rpn_batch_size_per_im=256,
68 69
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
70
                      rpn_positive_overlap=0.7,
71 72
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
73
    """
H
haowang101779990 已提交
74
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
92
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
93 94 95
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
96 97 98
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
99 100 101 102 103 104
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
105 106
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
107
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
108 109
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
110 111 112
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
113
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
114 115 116
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
117 118 119 120 121 122 123 124 125
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
126
        tuple:
Y
Yuan Gao 已提交
127
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
128 129
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
130 131 132 133 134 135 136
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
137
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
138 139
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
140 141 142 143

    Examples:
        .. code-block:: python

H
haowang101779990 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
            bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
                              append_batch_size=False, dtype='float32')
            cls_logits = layers.data(name='cls_logits', shape=[100, 1],
                              append_batch_size=False, dtype='float32')
            anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                              append_batch_size=False, dtype='float32')
            gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                             append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
                fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                              cls_logits=cls_logits,
                                              anchor_box=anchor_box,
                                              gt_boxes=gt_boxes)

Y
Yuan Gao 已提交
158 159 160
    """

    helper = LayerHelper('rpn_target_assign', **locals())
161
    # Assign target label to anchors
J
jerrywgz 已提交
162 163 164 165 166 167 168
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
169 170
    helper.append_op(
        type="rpn_target_assign",
171 172 173 174 175 176
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
177 178 179
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
180
            'TargetLabel': target_label,
J
jerrywgz 已提交
181
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
182
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
183 184 185
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
186
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
187 188
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
189 190
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
191 192
        })

193 194 195 196
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
197
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
198

199 200 201 202
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
203

J
jerrywgz 已提交
204
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
205 206


Y
Yuan Gao 已提交
207 208
def detection_output(loc,
                     scores,
209 210 211 212 213 214 215 216 217
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
218
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
219

220 221
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
222

223 224 225 226 227 228
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
229 230 231 232 233 234

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
235 236 237 238
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
261 262
        Variable:

263
            The detection outputs is a LoDTensor with shape [No, 6].
264 265 266 267 268 269
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
270
            LoD will be set to {1}, and output tensor only contains one
271
            value, which is -1.
J
jerrywgz 已提交
272 273
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
274 275 276 277

    Examples:
        .. code-block:: python

278 279 280
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
281
                         append_batch_size=False, dtype='float32')
282
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
283
                          append_batch_size=False, dtype='float32')
284
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
285
                          append_batch_size=False, dtype='float32')
286
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
287
                          append_batch_size=False, dtype='float32')
288
            nmsed_outs = fluid.layers.detection_output(scores=scores,
289 290 291 292 293
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
294 295 296 297 298
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
299
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
300
    scores = nn.transpose(scores, perm=[0, 2, 1])
301
    scores.stop_gradient = True
X
Xin Pan 已提交
302 303
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
304 305 306 307 308 309 310 311 312 313 314 315 316
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
317
    nmsed_outs.stop_gradient = True
318
    return nmsed_outs
C
chengduoZH 已提交
319 320


X
Xin Pan 已提交
321 322 323 324 325 326 327 328 329 330 331
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
332 333 334 335 336 337 338 339 340

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            iou = fluid.layers.iou_similarity(x=x, y=y)
X
Xin Pan 已提交
341 342 343
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
344
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
364 365
              name=None,
              axis=0):
X
Xin Pan 已提交
366
    """
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
405 406

    Args:
407 408 409 410 411 412 413
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
414 415 416 417
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
436 437

    Returns:
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
465 466 467 468
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
469 470
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
471 472 473 474
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

475 476 477 478 479 480 481 482 483 484 485 486
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
487 488
    helper.append_op(
        type="box_coder",
489 490
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
508
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
509 510 511 512 513 514 515 516 517 518 519 520
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
521 522
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
523 524
                gt_box,
                gt_label,
D
dengkaipeng 已提交
525
                anchors,
526
                anchor_mask,
D
dengkaipeng 已提交
527 528
                class_num,
                ignore_thresh,
529
                downsample_ratio,
530
                gt_score=None,
D
dengkaipeng 已提交
531
                use_label_smooth=True,
D
dengkaipeng 已提交
532 533 534 535 536 537
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
538
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
539 540 541 542
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
543 544
                          N is the batch number and B is the max box number in 
                          an image.
545
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
546
                            of [N, B].
D
dengkaipeng 已提交
547
        anchors (list|tuple): ${anchors_comment}
548
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
549 550
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
551
        downsample_ratio (int): ${downsample_ratio_comment}
552
        name (string): the name of yolov3 loss. Default None.
553
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
554
                            of [N, B]. Default None.
555
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
556 557

    Returns:
558
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
559 560 561

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
562 563
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
564
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
565 566 567
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
568
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
569 570

    Examples:
571 572 573
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
574 575 576
          gt_box = fluid.layers.data(name='gt_box', shape=[6, 4], dtype='float32')
          gt_label = fluid.layers.data(name='gt_label', shape=[6], dtype='int32')
          gt_score = fluid.layers.data(name='gt_score', shape=[6], dtype='float32')
577 578
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
579 580
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
581 582
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
583 584 585 586 587
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
588
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
589
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
590
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
591
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
592
    if gt_score is not None and not isinstance(gt_score, Variable):
593
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
594 595
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
596 597
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
598 599 600 601 602
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
603 604 605
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
606 607 608 609 610 611 612

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

613 614 615
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

616 617
    inputs = {
        "X": x,
618 619
        "GTBox": gt_box,
        "GTLabel": gt_label,
620
    }
621
    if gt_score:
622
        inputs["GTScore"] = gt_score
623

D
dengkaipeng 已提交
624 625
    attrs = {
        "anchors": anchors,
626
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
627 628
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
629
        "downsample_ratio": downsample_ratio,
630
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
631 632 633 634
    }

    helper.append_op(
        type='yolov3_loss',
635
        inputs=inputs,
636 637 638 639 640
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
641 642 643 644
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
645
@templatedoc(op_type="yolo_box")
646 647 648 649 650 651 652
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
653 654 655 656 657
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
658
        img_size (Variable): ${img_size_comment}
D
dengkaipeng 已提交
659 660 661 662
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
663
        name (string): the name of yolo box layer. Default None.
D
dengkaipeng 已提交
664 665

    Returns:
D
dengkaipeng 已提交
666
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
667 668
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
669 670 671 672 673 674 675 676

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
677

D
dengkaipeng 已提交
678 679
    .. code-block:: python

X
xiaoting 已提交
680
        import paddle.fluid as fluid
D
dengkaipeng 已提交
681 682
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
683
        loss = fluid.layers.yolo_box(x=x, img_size=608, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
684 685 686 687 688
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
689 690 691
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
692
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
693
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
694
    if not isinstance(class_num, int):
695
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
696
    if not isinstance(conf_thresh, float):
697
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
698 699 700 701 702 703 704

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
705
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
706 707 708 709 710
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
711 712 713 714
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
715 716 717 718 719 720 721 722
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
723
@templatedoc()
724 725
def detection_map(detect_res,
                  label,
726 727
                  class_num,
                  background_label=0,
728 729
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
730 731 732 733
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
775 776
    helper = LayerHelper("detection_map", **locals())

777
    def __create_var(type):
X
Xin Pan 已提交
778
        return helper.create_variable_for_type_inference(dtype=type)
779 780 781 782 783 784 785 786 787 788 789 790

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

791 792 793 794 795
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
796
            'HasState': has_state,
797 798 799 800 801 802 803 804 805 806 807 808 809
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
810 811
            'ap_type': ap_version,
            'class_num': class_num,
812
        })
813
    return map_out
814 815


816 817 818 819
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
820
    """
Y
yuyang18 已提交
821 822
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
823
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
824 825 826 827 828 829 830 831
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
832 833 834
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
835

Y
yuyang18 已提交
836
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
837 838 839
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
840 841 842
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

843 844 845 846 847
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
848 849 850 851 852 853
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
854
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
855
           'bipartite' or 'per_prediction'. [default 'bipartite'].
856 857
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
858
            on the maximum distance, 0.5 by default.
859
    Returns:
Y
yuyang18 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
883 884
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
885 886 887
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
888 889 890
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
891 892 893 894
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
912

913 914 915 916 917
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
918

919
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
920

921 922 923
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
924

925 926
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
927

928
        Otherwise,
C
chengduoZH 已提交
929

930 931
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
932

933
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
934

935 936
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
937

938
    .. code-block:: text
C
chengduoZH 已提交
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
955 956 957 958 959
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
960 961 962 963 964 965
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
982 983
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
984 985
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1013
             normalize=True,
1014 1015
             sample_size=None):
    """
Y
yuyang18 已提交
1016
    **Multi-box loss layer for object detection algorithm of SSD**
1017 1018 1019 1020 1021 1022 1023

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1024
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1025

1026
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1027

1028
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1029

1030
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1031

1032
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1033

1034
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1035

1036 1037
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1038

1039
    4. Assign classification and regression targets
Y
yuyang18 已提交
1040

1041
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1042

1043
      4.2. Assign regression targets.
Y
yuyang18 已提交
1044

1045
      4.3. Assign classification targets.
Y
yuyang18 已提交
1046

1047
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1048

1049
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1050

1051
      5.1 Compute localization loss.
Y
yuyang18 已提交
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
1076
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
1077
        neg_overlap (float): The negative overlap upper bound for the unmatched
1078
            predictions. Use only when mining_type is 'max_negative',
1079 1080 1081 1082
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
1083
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
1084 1085
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1086
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1087
            of output locations, True by default.
1088 1089
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1090 1091

    Returns:
Y
yuyang18 已提交
1092 1093
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1094 1095

    Raises:
Y
yuyang18 已提交
1096 1097
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1117 1118 1119 1120 1121 1122 1123
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1124
    conf_shape = nn.shape(confidence)
1125 1126

    def __reshape_to_2d(var):
1127
        return nn.flatten(x=var, axis=2)
1128 1129 1130 1131 1132

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1133 1134
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1135 1136 1137

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1138 1139
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1140
    gt_label.stop_gradient = True
1141 1142 1143 1144 1145 1146 1147
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1148
    target_label.stop_gradient = True
1149 1150
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1151
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1152
    actual_shape.stop_gradient = True
1153
    conf_loss = nn.reshape(
1154
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1155
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1156
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1157
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1158 1159
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1174
            'neg_dist_threshold': neg_overlap,
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1200

1201 1202 1203 1204
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1205 1206 1207 1208
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1209 1210 1211 1212 1213 1214 1215 1216
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1217 1218 1219 1220
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1221 1222
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1223
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1224
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1225 1226 1227 1228 1229
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1230
    return loss
C
chengduoZH 已提交
1231 1232


1233 1234 1235 1236
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1237
              aspect_ratios=[1.],
1238 1239 1240 1241 1242
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1243 1244
              name=None,
              min_max_aspect_ratios_order=False):
1245
    """
Q
update  
qiaolongfei 已提交
1246
    **Prior Box Operator**
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1258
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1259 1260
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1261 1262
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1263 1264 1265 1266
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1267
       step(list|turple): Prior boxes step across width and height, If
1268
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1269 1270
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1271 1272
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1273
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1274
            in order of [min, max, aspect_ratios], which is consistent with
1275 1276 1277
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1278 1279

    Returns:
Q
update  
qiaolongfei 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1293 1294 1295 1296


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1297

R
ruri 已提交
1298 1299
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1300
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1301
                input=input,
Q
update  
qiaolongfei 已提交
1302 1303 1304 1305
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1306 1307 1308 1309
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1325 1326 1327 1328 1329 1330 1331 1332
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1333 1334
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1335 1336
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1337 1338
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1339 1340
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1341 1342
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1364
                      flatten_to_2d=False,
R
ruri 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1401 1402
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1403 1404 1405 1406 1407 1408
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1409 1410 1411 1412
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1413 1414

        variances: the expanded variances of PriorBox.
1415 1416 1417 1418
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1419 1420 1421 1422 1423


    Examples:
        .. code-block:: python

R
ruri 已提交
1424 1425
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1426
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1427
                input=input,
R
ruri 已提交
1428
                image=images,
1429 1430 1431 1432 1433
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1464 1465 1466 1467
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1483
def multi_box_head(inputs,
C
chengduoZH 已提交
1484 1485
                   image,
                   base_size,
C
chengduoZH 已提交
1486
                   num_classes,
C
chengduoZH 已提交
1487
                   aspect_ratios,
1488 1489
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1490 1491
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1492 1493 1494 1495
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1496 1497
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1498
                   clip=False,
C
chengduoZH 已提交
1499
                   kernel_size=1,
C
chengduoZH 已提交
1500
                   pad=0,
C
chengduoZH 已提交
1501
                   stride=1,
1502 1503
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1504
    """
C
chengduoZH 已提交
1505 1506
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1507
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1508
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1509 1510

    Args:
1511
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1512
            of all Variables is NCHW.
C
chengduoZH 已提交
1513 1514
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1515 1516
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1539
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1540 1541 1542 1543 1544 1545
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1546
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1547
            in order of [min, max, aspect_ratios], which is consistent with
1548 1549 1550
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1551 1552

    Returns:
Q
update  
qiaolongfei 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1568

C
chengduoZH 已提交
1569 1570 1571

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1583
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1584
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1594 1595
    """

C
chengduoZH 已提交
1596
    def _reshape_with_axis_(input, axis=1):
1597
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1598
        return out
1599

1600 1601
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1602

C
chengduoZH 已提交
1603 1604 1605 1606
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1607 1608
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1609

C
chengduoZH 已提交
1610 1611 1612 1613 1614
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1615
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1616 1617 1618
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1619
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1620 1621 1622 1623 1624
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1648 1649
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1650 1651
    box_results = []
    var_results = []
C
chengduoZH 已提交
1652 1653
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1654 1655
        max_size = max_sizes[i]

1656
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1657
            min_size = [min_size]
C
chengduoZH 已提交
1658 1659
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1660 1661 1662 1663

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1664
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1665
                aspect_ratio = [aspect_ratio]
1666
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1667

1668
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1669 1670
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1671 1672 1673 1674 1675

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1676

1677
        # get loc
Y
Yuan Gao 已提交
1678
        num_loc_output = num_boxes * 4
1679
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1680
            input=input,
1681 1682 1683 1684 1685
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1686
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1687
        compile_shape = [
1688
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1689
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1690
        ]
1691 1692 1693
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1694
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1695

1696
        # get conf
C
chengduoZH 已提交
1697
        num_conf_output = num_boxes * num_classes
1698
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1699
            input=input,
1700 1701 1702 1703
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1704
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1705 1706
        new_shape = [0, -1, num_classes]
        compile_shape = [
1707 1708 1709
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1710
        ]
1711 1712 1713 1714
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1715
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1716

C
chengduoZH 已提交
1717 1718 1719
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1720 1721
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1731 1732
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1733

1734 1735
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1736
    return mbox_locs_concat, mbox_confs_concat, box, var
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1757 1758
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1759
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1760
                                        anchors, e.g. [0.5, 1.0, 2.0].
1761
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1762 1763
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1764 1765 1766 1767
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1781 1782 1783 1784 1785 1786


    Examples:

        .. code-block:: python

J
jerrywgz 已提交
1787 1788
            conv1 = fluid.layers.data(name='conv1', shape=[48, 16, 16], dtype='float32')
            anchor, var = fluid.layers.anchor_generator(
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1822 1823
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1824 1825 1826 1827 1828 1829 1830 1831 1832
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1833 1834


W
whs 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
1855
        transformed_width (integer): The width of transformed output.
W
whs 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1865
            import paddle.fluid as fluid
1866

S
SunGaofeng 已提交
1867 1868 1869
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
            out = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
1870 1871 1872
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1873
    out = helper.create_variable_for_type_inference(dtype)
1874 1875
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1876 1877 1878 1879
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
1880 1881 1882 1883 1884
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
            "Out2InWeights": out2in_w
        },
W
whs 已提交
1885 1886 1887 1888 1889 1890 1891 1892
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1893 1894
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1895
                             is_crowd,
1896
                             gt_boxes,
1897
                             im_info,
1898 1899 1900 1901 1902 1903
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1904 1905
                             class_nums=None,
                             use_random=True):
1906
    """
1907
    ** Generate Proposal Labels of Faster-RCNN **
B
buxingyuan 已提交
1908
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1909
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1910 1911 1912

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1913
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1914 1915
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1916
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1917
    then we apply random sampling to make sure
B
buxingyuan 已提交
1918
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1938 1939 1940 1941
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1951 1952 1953 1954 1955 1956

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1957
            'IsCrowd': is_crowd,
1958
            'GtBoxes': gt_boxes,
1959
            'ImInfo': im_info
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1975 1976
            'class_nums': class_nums,
            'use_random': use_random
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2068 2069
          import paddle.fluid as fluid

2070 2071 2072 2073 2074 2075 2076 2077
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2078
          # rois, roi_labels can be the output of
2079
          # fluid.layers.generate_proposal_labels.
2080 2081 2082 2083
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2084 2085 2086 2087 2088 2089
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2090
              labels_int32=roi_labels,
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2140 2141
    **Generate proposal Faster-RCNN**

2142 2143 2144 2145
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2146 2147 2148 2149
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2150 2151
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2152 2153 2154 2155 2156 2157
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2158 2159 2160 2161 2162 2163 2164 2165 2166
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2167
            between origin image size and the size of feature map.
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2179
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2180 2181 2182 2183
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
2184 2185 2186
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2187 2188 2189 2190
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2213 2214


J
jerrywgz 已提交
2215
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2216 2217
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2218
    For each input box, The formula is given as follows:
2219 2220 2221
        
    .. code-block:: text

J
jerrywgz 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2233 2234

    Args:
J
jerrywgz 已提交
2235
        input(variable): The input box, the last dimension is 4.
2236 2237 2238 2239
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2240 2241 2242 2243
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2244
        
J
jerrywgz 已提交
2245 2246
    Examples:
        .. code-block:: python
2247
        
J
jerrywgz 已提交
2248
            boxes = fluid.layers.data(
J
jerrywgz 已提交
2249
                name='boxes', shape=[8, 4], dtype='float32', lod_level=1)
J
jerrywgz 已提交
2250 2251
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2252
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2253 2254 2255
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2256
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2257
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2258
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2259

2260 2261
    return output

J
jerrywgz 已提交
2262

J
jerrywgz 已提交
2263 2264 2265 2266 2267
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2268
                   nms_threshold=0.3,
J
jerrywgz 已提交
2269 2270
                   normalized=True,
                   nms_eta=1.,
2271 2272
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2273
    """
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2335 2336 2337 2338
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2339

2340

2341 2342 2343
    Examples:
        .. code-block:: python

2344

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2377 2378

    return output
2379 2380 2381 2382 2383 2384 2385 2386 2387


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2388 2389 2390 2391 2392 2393
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2394
    
J
jerrywgz 已提交
2395
    .. math::
2396

J
jerrywgz 已提交
2397
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2398

J
jerrywgz 已提交
2399 2400 2401
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2402 2403

    Args:
J
jerrywgz 已提交
2404
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2405 2406 2407 2408 2409 2410
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2411 2412
        name(str|None): The name of this operator.        

2413
    Returns:
J
jerrywgz 已提交
2414 2415 2416 2417 2418
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2419 2420 2421 2422 2423 2424 2425

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2426 2427 2428
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2429 2430 2431 2432 2433
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
2434
    dtype = helper.input_dtype('fpn_rois')
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2452 2453


2454
@templatedoc()
J
jerrywgz 已提交
2455 2456 2457 2458 2459 2460
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2461 2462 2463 2464 2465 2466 2467
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2468
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2469
        name(str|None): The name of this operator
2470
    Returns:
J
jerrywgz 已提交
2471 2472 2473 2474 2475 2476 2477
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2478 2479 2480
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2481
            pb = fluid.layers.data(
J
jerrywgz 已提交
2482
                name='prior_box', shape=[4], dtype='float32')
J
jerrywgz 已提交
2483
            pbv = fluid.layers.data(
J
jerrywgz 已提交
2484 2485
                name='prior_box_var', shape=[4], 
                dtype='float32', append_batch_size=False)
J
jerrywgz 已提交
2486
            loc = fluid.layers.data(
J
jerrywgz 已提交
2487
                name='target_box', shape=[4*81], dtype='float32')
J
jerrywgz 已提交
2488
            scores = fluid.layers.data(
J
jerrywgz 已提交
2489
                name='scores', shape=[81], dtype='float32')
J
jerrywgz 已提交
2490
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2491
                pb, pbv, loc, scores, 4.135)
2492 2493 2494 2495

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2496
    decoded_box = helper.create_variable_for_type_inference(
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2511
            "DecodeBox": decoded_box,
2512 2513
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2514
    return decoded_box, output_assign_box