detection.py 154.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24
from .loss import softmax_with_cross_entropy
25 26
from . import tensor
from . import nn
27
from . import ops
M
minqiyang 已提交
28
from ... import compat as cpt
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
M
minqiyang 已提交
31
import six
32
import numpy as np
33
from functools import reduce
34
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
35

C
chengduoZH 已提交
36
__all__ = [
37 38 39 40 41 42 43 44
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
45
    'retinanet_target_assign',
46
    'sigmoid_focal_loss',
47 48 49 50
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
51
    'generate_mask_labels',
52 53 54 55
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
56
    'yolo_box',
57
    'box_clip',
J
jerrywgz 已提交
58
    'multiclass_nms',
59
    'locality_aware_nms',
60
    'retinanet_detection_output',
61
    'distribute_fpn_proposals',
62
    'box_decoder_and_assign',
63
    'collect_fpn_proposals',
C
chengduoZH 已提交
64
]
65 66


67 68 69 70 71 72 73 74 75 76 77 78
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
103
    regression for each anchor, hence the target label for each positive(or negative)
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
161
            information of each image is a 3-vector which are the height and width
162 163 164 165 166 167 168 169 170 171 172 173
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
217 218 219 220 221

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
          im_info = fluid.data(name='im_infoss', shape=[1, 3],
                            dtype='float32')
238
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
239 240 241 242 243
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


308 309
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
310
                      anchor_box,
311
                      anchor_var,
312 313 314
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
315
                      rpn_batch_size_per_im=256,
316 317
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
318
                      rpn_positive_overlap=0.7,
319 320
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
321
    """
H
haowang101779990 已提交
322
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
340
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
341 342
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
343
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
344 345 346
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
347
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
348 349 350 351 352
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
353
            coordinate of the anchor box. The data type can be float32 or float64.
354
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
355
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
356
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
357
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
358
            bboxes of mini-batch input. The data type can be float32 or float64.
359
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
360
                             The data type must be int32.
361 362
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
363
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
364
                                    The data type must be int32.
365
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
366
            by straddle_thresh pixels. The data type must be float32.
367
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
368
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
369 370
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
371
            example. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
374
            examples. The data type must be float32.
Y
Yuan Gao 已提交
375 376

    Returns:
M
minqiyang 已提交
377
        tuple:
378 379 380 381 382 383 384 385 386 387 388 389 390
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
391 392 393 394

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
395
            import paddle.fluid as fluid
396 397 398 399 400 401 402
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
403 404
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
405

Y
Yuan Gao 已提交
406 407 408
    """

    helper = LayerHelper('rpn_target_assign', **locals())
409
    # Assign target label to anchors
J
jerrywgz 已提交
410 411 412 413 414 415 416
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
417 418
    helper.append_op(
        type="rpn_target_assign",
419 420 421 422 423 424
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
425 426 427
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
428
            'TargetLabel': target_label,
J
jerrywgz 已提交
429
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
430
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
431 432 433
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
434
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
435 436
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
437 438
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
439 440
        })

441 442 443 444
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
445
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
446

447 448 449 450
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
451

J
jerrywgz 已提交
452
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
453 454


455 456 457 458
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

459 460 461 462 463
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

464 465 466
    The focal loss is given as followed:

    .. math::
467 468 469 470 471 472 473
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

474 475 476 477 478 479 480

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
496 497 498 499 500 501
        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
502 503 504
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
505 506 507 508 509 510

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

511 512 513
            input = fluid.data(name='data', shape=[10,80], dtype='float32')
            label = fluid.data(name='label', shape=[10,1], dtype='int32')
            fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32')
514 515 516 517 518 519 520
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

521 522 523 524 525
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
541 542
def detection_output(loc,
                     scores,
543 544 545 546 547 548 549
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
550 551
                     nms_eta=1.0,
                     return_index=False):
552
    """
Q
qingqing01 已提交
553 554
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
555

Q
qingqing01 已提交
556 557
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
558 559 560 561 562
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
563 564 565

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
566 567
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
568 569
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
570
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
571 572 573
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
574
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
575 576
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
577
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
578 579
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
580
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
581 582
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
583
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
584
            to the confidences after filtering detections based on
Q
qingqing01 已提交
585
            score_threshold and before NMS. Default: 400.
586
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
587
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
588 589
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
590 591 592
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
593
        return_index(bool): Whether return selected index. Default: False
594 595

    Returns:
M
minqiyang 已提交
596

597 598 599
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
600 601 602 603 604 605 606 607 608 609 610 611
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
612 613 614
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

615 616 617 618

    Examples:
        .. code-block:: python

619 620
            import paddle.fluid as fluid

Q
qingqing01 已提交
621 622 623 624
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
625
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
626 627
                                       loc=loc,
                                       prior_box=pb,
628 629
                                       prior_box_var=pbv,
                                       return_index=True)
630 631
    """
    helper = LayerHelper("detection_output", **locals())
632 633 634 635 636
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
637
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
638
    scores = nn.transpose(scores, perm=[0, 2, 1])
639
    scores.stop_gradient = True
X
Xin Pan 已提交
640 641
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
673
    nmsed_outs.stop_gradient = True
674 675
    if return_index:
        return nmsed_outs, index
676
    return nmsed_outs
C
chengduoZH 已提交
677 678


X
Xin Pan 已提交
679
@templatedoc()
680
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
681 682 683 684
    """
    ${comment}

    Args:
L
LielinJiang 已提交
685 686
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
687
        box_normalized(bool): Whether treat the priorbox as a normalized box.
688
            Set true by default.
X
Xin Pan 已提交
689
    Returns:
L
LielinJiang 已提交
690
        Variable: ${out_comment}.The data type is same with x.
691 692 693 694

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
695
            import numpy as np
696 697
            import paddle.fluid as fluid

L
LielinJiang 已提交
698 699 700 701 702 703
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
704
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
705 706 707 708 709 710 711 712 713 714 715

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
716 717
    """
    helper = LayerHelper("iou_similarity", **locals())
718
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
719 720 721 722 723

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
724
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
725 726 727 728 729 730 731 732 733 734
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
735 736
              name=None,
              axis=0):
X
Xin Pan 已提交
737
    """
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
776 777

    Args:
778
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
779 780 781 782 783 784 785 786 787 788
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
789
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
790 791 792 793 794 795 796 797
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
798
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
799 800 801 802
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
803
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
804 805 806 807
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
808 809

    Returns:
W
wangguanzhong 已提交
810 811
        Variable:

812
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
813 814 815
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
816
        and M represents the number of decoded boxes.
817 818 819 820 821

    Examples:
 
        .. code-block:: python
 
822
            import paddle.fluid as fluid
W
wangguanzhong 已提交
823
            # For encode
824
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
825
                                  shape=[512, 4],
826 827 828 829
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
830 831 832 833 834
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
835
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
836
                                  shape=[512, 4],
837 838 839 840
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
841 842 843 844 845 846
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
847 848 849
    """
    helper = LayerHelper("box_coder", **locals())

850 851
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
852

853 854 855 856 857 858 859 860 861 862 863 864
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
865 866
    helper.append_op(
        type="box_coder",
867 868
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
869 870 871 872 873 874 875 876 877 878
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
879 880 881 882
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
883 884

    Returns:
885
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
886 887 888 889 890

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
891
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
892
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
893 894
    """
    helper = LayerHelper("polygon_box_transform", **locals())
895
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
896 897 898 899 900 901 902 903 904

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
905 906
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
907 908
                gt_box,
                gt_label,
D
dengkaipeng 已提交
909
                anchors,
910
                anchor_mask,
D
dengkaipeng 已提交
911 912
                class_num,
                ignore_thresh,
913
                downsample_ratio,
914
                gt_score=None,
D
dengkaipeng 已提交
915
                use_label_smooth=True,
D
dengkaipeng 已提交
916 917 918 919 920
                name=None):
    """
    ${comment}

    Args:
X
xiaoting 已提交
921
        x (Variable): ${x_comment}The data type is float32 or float64. 
922
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
923 924
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
925 926
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
927
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
928
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
929
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
930
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
931
        anchors (list|tuple): ${anchors_comment}
932
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
933 934
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
935
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
936 937 938
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
939
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
940
                            of [N, B]. Default None.
941
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
942 943

    Returns:
944
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
945 946 947

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
948 949
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
950
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
951 952 953
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
954
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
955 956

    Examples:
957 958
      .. code-block:: python

959
          import paddle.fluid as fluid
X
xiaoting 已提交
960 961 962 963
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
964 965
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
966 967
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
968 969
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
970 971 972 973 974
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
975
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
976
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
977
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
978
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
979
    if gt_score is not None and not isinstance(gt_score, Variable):
980
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
981 982
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
983 984
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
985 986 987 988 989
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
990 991 992
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
993

994
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
D
dengkaipeng 已提交
995

996 997 998
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

999 1000
    inputs = {
        "X": x,
1001 1002
        "GTBox": gt_box,
        "GTLabel": gt_label,
1003
    }
1004
    if gt_score is not None:
1005
        inputs["GTScore"] = gt_score
1006

D
dengkaipeng 已提交
1007 1008
    attrs = {
        "anchors": anchors,
1009
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1010 1011
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1012
        "downsample_ratio": downsample_ratio,
1013
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
1014 1015 1016 1017
    }

    helper.append_op(
        type='yolov3_loss',
1018
        inputs=inputs,
1019 1020 1021 1022 1023
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1024 1025 1026 1027
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1028
@templatedoc(op_type="yolo_box")
1029 1030 1031 1032 1033 1034
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1035
             clip_bbox=True,
1036
             name=None):
D
dengkaipeng 已提交
1037 1038 1039 1040
    """
    ${comment}

    Args:
X
xiaoting 已提交
1041 1042
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1043 1044 1045 1046
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1047
        clip_bbox (bool): ${clip_bbox_comment}
X
xiaoting 已提交
1048 1049 1050
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1051 1052

    Returns:
D
dengkaipeng 已提交
1053
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1054 1055
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1056 1057 1058 1059 1060 1061 1062 1063

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1064

D
dengkaipeng 已提交
1065 1066
    .. code-block:: python

X
xiaoting 已提交
1067
        import paddle.fluid as fluid
X
xiaoting 已提交
1068 1069
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1070
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1071
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1072 1073 1074 1075 1076
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1077 1078 1079
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1080
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1081
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1082
    if not isinstance(class_num, int):
1083
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1084
    if not isinstance(conf_thresh, float):
1085
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1086 1087 1088 1089 1090 1091 1092

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1093
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1094
        "downsample_ratio": downsample_ratio,
1095
        "clip_bbox": clip_bbox,
D
dengkaipeng 已提交
1096 1097 1098 1099
    }

    helper.append_op(
        type='yolo_box',
1100 1101 1102 1103
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1104 1105 1106 1107 1108 1109 1110 1111
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1112
@templatedoc()
1113 1114
def detection_map(detect_res,
                  label,
1115 1116
                  class_num,
                  background_label=0,
1117 1118
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1119 1120 1121 1122
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1134 1135 1136 1137 1138 1139 1140 1141
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1151
            import paddle.fluid as fluid
1152
            from fluid.layers import detection
1153
            detect_res = fluid.data(
X
Xin Pan 已提交
1154 1155 1156
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1157
            label = fluid.data(
X
Xin Pan 已提交
1158 1159 1160 1161
                name='label',
                shape=[10, 6],
                dtype='float32')

1162
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1163
    """
1164 1165
    helper = LayerHelper("detection_map", **locals())

1166
    def __create_var(type):
X
Xin Pan 已提交
1167
        return helper.create_variable_for_type_inference(dtype=type)
1168 1169

    map_out = __create_var('float32')
Z
zhongpu 已提交
1170 1171 1172 1173 1174 1175
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1176

Z
zhongpu 已提交
1177 1178 1179
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1180

1181 1182 1183 1184 1185
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1186
            'HasState': has_state,
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1200 1201
            'ap_type': ap_version,
            'class_num': class_num,
1202
        })
1203
    return map_out
1204 1205


1206 1207 1208 1209
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1210
    """
Y
yuyang18 已提交
1211 1212
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1213
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1214 1215 1216 1217
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1218
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1219 1220 1221

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1222 1223 1224
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1225

Y
yuyang18 已提交
1226
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1227 1228 1229
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1230 1231 1232
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1233 1234
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1246
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1247
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1248 1249 1250 1251
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1252
    Returns:
W
wangguanzhong 已提交
1253
        Tuple:
Y
yuyang18 已提交
1254

W
wangguanzhong 已提交
1255 1256
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1257 1258 1259 1260 1261
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1262 1263
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1264 1265 1266 1267 1268 1269 1270
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1271
        >>> import paddle.fluid as fluid
1272 1273
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1274 1275
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1276 1277
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1278 1279 1280
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1281 1282 1283
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1284 1285 1286 1287
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1305

1306 1307 1308 1309 1310
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1311

1312
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1313

1314 1315 1316
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1317

1318 1319
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1320

1321
        Otherwise,
C
chengduoZH 已提交
1322

1323 1324
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1325

Q
qingqing01 已提交
1326
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1327

Q
qingqing01 已提交
1328 1329
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1330

1331
    .. code-block:: text
C
chengduoZH 已提交
1332

Q
qingqing01 已提交
1333 1334 1335
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1336 1337

    Args:
Q
qingqing01 已提交
1338 1339 1340
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1341 1342 1343
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1344 1345
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1346
           the total number of negative example indices.
Q
qingqing01 已提交
1347 1348 1349 1350 1351
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1352 1353

    Returns:
Q
qingqing01 已提交
1354 1355 1356 1357 1358 1359 1360 1361
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1362 1363 1364 1365 1366

    Examples:

        .. code-block:: python

1367
            import paddle.fluid as fluid
Q
qingqing01 已提交
1368
            x = fluid.data(
1369 1370 1371
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1372 1373
                lod_level=1)
            matched_id = fluid.data(
1374 1375
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1376
                dtype='int32')
1377 1378 1379 1380
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1381 1382
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1383 1384
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1412
             normalize=True,
1413 1414
             sample_size=None):
    """
Y
yuyang18 已提交
1415
    **Multi-box loss layer for object detection algorithm of SSD**
1416

翟飞跃 已提交
1417 1418
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1419 1420 1421 1422
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1423
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1424

1425
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1426

T
tianshuo78520a 已提交
1427
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1428

1429
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1430

1431
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1432

1433
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1434

1435 1436
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1437

1438
    4. Assign classification and regression targets
Y
yuyang18 已提交
1439

1440
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1441

1442
      4.2. Assign regression targets.
Y
yuyang18 已提交
1443

1444
      4.3. Assign classification targets.
Y
yuyang18 已提交
1445

1446
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1447

1448
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1449

1450
      5.2 Compute localization loss.
Y
yuyang18 已提交
1451

1452 1453 1454 1455 1456 1457
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1458 1459
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1460 1461
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1462 1463
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1464
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1465
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1466
            bboxes of mini-batch input.The data type is float32 or float64.
1467
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1468 1469 1470
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1471
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1472 1473
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1474
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1475
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1476 1477
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1478 1479
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1480
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1481
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1482
        neg_overlap (float): The negative overlap upper bound for the unmatched
1483
            predictions. Use only when mining_type is 'max_negative',
1484 1485 1486 1487
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1488
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1489 1490
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1491
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1492
            of output locations, True by default.
1493 1494
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1495 1496

    Returns:
1497 1498 1499
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1500 1501

    Raises:
Y
yuyang18 已提交
1502 1503
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1504 1505

    Examples:
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1525 1526 1527 1528 1529 1530 1531
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1532
    conf_shape = nn.shape(confidence)
1533 1534

    def __reshape_to_2d(var):
1535
        return nn.flatten(x=var, axis=2)
1536

T
tianshuo78520a 已提交
1537
    # 1. Find matched bounding box by prior box.
1538 1539
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1540
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1541 1542
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1543 1544 1545

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1546 1547
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1548
    gt_label.stop_gradient = True
1549 1550 1551 1552 1553 1554 1555
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1556
    target_label.stop_gradient = True
1557
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1558
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1559
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1560
    actual_shape.stop_gradient = True
1561 1562
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1563
    conf_loss = nn.reshape(
1564
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1565
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1566
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1567
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1568 1569
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1584
            'neg_dist_threshold': neg_overlap,
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1610

1611
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1612 1613 1614
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1615 1616 1617 1618
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1619 1620 1621 1622 1623 1624 1625 1626
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1627 1628 1629 1630
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1631 1632
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1633
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1634 1635 1636
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1637 1638 1639 1640 1641
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1642
    return loss
C
chengduoZH 已提交
1643 1644


1645 1646 1647 1648
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1649
              aspect_ratios=[1.],
1650 1651 1652 1653 1654
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1655 1656
              name=None,
              min_max_aspect_ratios_order=False):
1657
    """
R
ruri 已提交
1658
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1659 1660 1661 1662 1663
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1664
    Parameters:
T
tianshuo78520a 已提交
1665
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1666 1667 1668 1669
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1670
            Default: None.
R
ruri 已提交
1671
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1672
            prior boxes. Default: [1.].
1673 1674 1675 1676
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1677
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1678 1679
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1680
            Default: [0., 0.]
1681
       offset(float): Prior boxes center offset. Default: 0.5
1682
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1683
            in order of [min, max, aspect_ratios], which is consistent with
1684 1685 1686
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1687
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1688 1689

    Returns:
R
ruri 已提交
1690
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1691

R
ruri 已提交
1692 1693
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1694
        H is the height of input, W is the width of input,
R
ruri 已提交
1695
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1696

R
ruri 已提交
1697 1698
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1699
        H is the height of input, W is the width of input
R
ruri 已提交
1700
        num_priors is the total box count of each position of input
1701 1702 1703

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1704

R
ruri 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1752 1753 1754 1755
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1771 1772 1773 1774 1775 1776 1777 1778
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1779 1780
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1781 1782
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1783 1784
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1785 1786
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1787 1788
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1810
                      flatten_to_2d=False,
R
ruri 已提交
1811 1812 1813
                      name=None):
    """

R
ruri 已提交
1814
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1815 1816 1817 1818 1819 1820
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1821
    
R
ruri 已提交
1822
    For densities_i in densities:
R
ruri 已提交
1823 1824
    
    .. math::
R
ruri 已提交
1825

R
ruri 已提交
1826 1827 1828 1829 1830 1831 1832
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1833
            the layout is NCHW.
R
ruri 已提交
1834
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1835 1836
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1837
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1838 1839
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1840
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1841 1842 1843
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1844
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1845
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1846
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1847
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1848 1849
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1850 1851
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1852 1853
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1854 1855
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1856
    Returns:
R
ruri 已提交
1857
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1858 1859

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1860 1861 1862
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1863 1864

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1865 1866 1867
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1868 1869 1870


    Examples:
R
ruri 已提交
1871

R
ruri 已提交
1872 1873
        .. code-block:: python

R
ruri 已提交
1874
            #declarative mode
R
ruri 已提交
1875

R
ruri 已提交
1876 1877
            import paddle.fluid as fluid
            import numpy as np
R
ruri 已提交
1878

R
ruri 已提交
1879 1880 1881
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1882 1883 1884 1885 1886 1887 1888 1889
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
1890 1891 1892
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
1893
 
R
ruri 已提交
1894 1895 1896 1897 1898 1899
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
1900
                feed={"input":input_data,
R
ruri 已提交
1901
                      "image":image_data},
R
ruri 已提交
1902 1903 1904
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
1905 1906 1907 1908
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
1909 1910


R
ruri 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
1929

R
ruri 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1960 1961 1962 1963
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1979
def multi_box_head(inputs,
C
chengduoZH 已提交
1980 1981
                   image,
                   base_size,
C
chengduoZH 已提交
1982
                   num_classes,
C
chengduoZH 已提交
1983
                   aspect_ratios,
1984 1985
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1986 1987
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1988 1989 1990 1991
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1992 1993
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1994
                   clip=False,
C
chengduoZH 已提交
1995
                   kernel_size=1,
C
chengduoZH 已提交
1996
                   pad=0,
C
chengduoZH 已提交
1997
                   stride=1,
1998 1999
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2000
    """
Q
qingqing01 已提交
2001 2002 2003 2004
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2005
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2006 2007

    Args:
Q
qingqing01 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2029
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2030 2031
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2051
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2052 2053 2054 2055 2056
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2057 2058 2059
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2060
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2061
            in order of [min, max, aspect_ratios], which is consistent with
2062
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2063
            convolution layer followed by and does not affect the final
2064
            detection results. Default: False.
C
chengduoZH 已提交
2065 2066

    Returns:
Q
update  
qiaolongfei 已提交
2067 2068
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2069 2070 2071
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2072

Q
qingqing01 已提交
2073 2074 2075 2076
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2077

Q
qingqing01 已提交
2078 2079 2080
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2081

Q
qingqing01 已提交
2082 2083
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2084

Q
qingqing01 已提交
2085
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2086
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2087

2088 2089
          import paddle.fluid as fluid

Q
qingqing01 已提交
2090 2091 2092 2093 2094 2095 2096
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2097

Q
update  
qiaolongfei 已提交
2098
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2099
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2135 2136
    """

C
chengduoZH 已提交
2137
    def _reshape_with_axis_(input, axis=1):
2138
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2139
        return out
2140

2141 2142
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2143

C
chengduoZH 已提交
2144 2145 2146 2147
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2148 2149
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2150

C
chengduoZH 已提交
2151 2152 2153 2154 2155
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2156
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2157 2158 2159
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2160
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2161 2162 2163 2164 2165
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2166 2167 2168 2169 2170
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2171
    if step_h is not None:
C
chengduoZH 已提交
2172 2173 2174 2175
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2176
    if step_w is not None:
C
chengduoZH 已提交
2177 2178 2179 2180
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2181
    if steps is not None:
C
chengduoZH 已提交
2182 2183 2184 2185 2186 2187 2188
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2189 2190
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2191 2192
    box_results = []
    var_results = []
C
chengduoZH 已提交
2193 2194
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2195 2196
        max_size = max_sizes[i]

2197
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2198
            min_size = [min_size]
C
chengduoZH 已提交
2199 2200
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2201 2202 2203 2204

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2205
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2206
                aspect_ratio = [aspect_ratio]
2207
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2208

2209
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2210 2211
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2212 2213 2214 2215 2216

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2217

2218
        # get loc
Y
Yuan Gao 已提交
2219
        num_loc_output = num_boxes * 4
2220
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2221
            input=input,
2222 2223 2224 2225 2226
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2227
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2228
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2229
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2230

2231
        # get conf
C
chengduoZH 已提交
2232
        num_conf_output = num_boxes * num_classes
2233
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2234
            input=input,
2235 2236 2237 2238
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2239
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2240
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2241
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2242

C
chengduoZH 已提交
2243 2244 2245
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2246 2247
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2257
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2258
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2259
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2260 2261
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2262

2263 2264
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2265
    return mbox_locs_concat, mbox_confs_concat, box, var
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2300 2301

    Returns:
W
wangguanzhong 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2314 2315 2316 2317 2318 2319


    Examples:

        .. code-block:: python

2320
            import paddle.fluid as fluid
2321
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2322
            anchor, var = fluid.layers.anchor_generator(
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2356 2357
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2358 2359 2360 2361 2362 2363 2364 2365 2366
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2367 2368


W
whs 已提交
2369 2370 2371 2372
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2373 2374
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2375
    """
S
SunGaofeng 已提交
2376
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2377

S
SunGaofeng 已提交
2378 2379 2380 2381 2382
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2383 2384
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2385 2386 2387
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2388 2389 2390
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2391 2392 2393 2394
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2395
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2396 2397 2398
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2399 2400

    Returns:
S
SunGaofeng 已提交
2401
            A tuple with three Variables. (out, mask, transform_matrix)
2402 2403

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2404
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2405 2406

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2407
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2408 2409

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2410 2411 2412 2413
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2414 2415 2416 2417

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2418
            import paddle.fluid as fluid
2419

S
SunGaofeng 已提交
2420 2421
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2422
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2423
    """
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2435 2436
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2437
    out = helper.create_variable_for_type_inference(dtype)
2438 2439
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2440 2441
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2442 2443 2444 2445
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2446 2447 2448
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2449 2450 2451
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2452
        },
W
whs 已提交
2453 2454 2455 2456 2457
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2458
    return out, mask, transform_matrix
W
whs 已提交
2459 2460


2461 2462
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2463
                             is_crowd,
2464
                             gt_boxes,
2465
                             im_info,
2466 2467 2468 2469 2470 2471
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2472
                             class_nums=None,
2473 2474 2475
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2476
    """
2477
    **Generate Proposal Labels of Faster-RCNN**
2478

B
buxingyuan 已提交
2479
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2480
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2481 2482 2483

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2484
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2485 2486
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2487
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2488
    then we apply random sampling to make sure
B
buxingyuan 已提交
2489
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2490 2491 2492 2493 2494

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2495 2496 2497
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2498 2499 2500
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2501 2502 2503 2504 2505 2506 2507
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2508
        use_random(bool): Use random sampling to choose foreground and background boxes.
2509 2510
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2523 2524 2525 2526
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2527 2528 2529 2530 2531
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2532
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2533 2534 2535
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2536 2537 2538 2539
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2549 2550 2551 2552 2553 2554

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2555
            'IsCrowd': is_crowd,
2556
            'GtBoxes': gt_boxes,
2557
            'ImInfo': im_info
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2573
            'class_nums': class_nums,
2574 2575 2576
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2588 2589 2590
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
Q
qingqing01 已提交
2591
    **Generate Mask Labels for Mask-RCNN**
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2627 2628 2629 2630 2631 2632
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2633
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2634 2635 2636 2637 2638 2639 2640
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2641
            The users should return correct data format in reader.
Q
qingqing01 已提交
2642
            The LoD[0] represents the ground-truth objects number of
2643 2644 2645 2646
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2647 2648 2649 2650
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2651
            of int32. R is the same as it in `rois`. Each element represents
2652
            a class label of a RoI.
Q
qingqing01 已提交
2653 2654
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2655 2656

    Returns:
Q
qingqing01 已提交
2657 2658 2659
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2660
        original image size.
Q
qingqing01 已提交
2661 2662

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2663
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2664 2665 2666 2667
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2668
        predictions. Each element represents the binary mask targets.
2669 2670 2671 2672

    Examples:
        .. code-block:: python

2673 2674
          import paddle.fluid as fluid

Q
qingqing01 已提交
2675
          im_info = fluid.data(name="im_info", shape=[None, 3],
2676
              dtype="float32")
Q
qingqing01 已提交
2677
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2678
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2679
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2680
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2681
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2682
              dtype="float32", lod_level=3)
2683
          # rois, roi_labels can be the output of
2684
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2685
          rois = fluid.data(name="rois", shape=[None, 4],
2686
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2687
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2688
              dtype="int32", lod_level=1)
2689 2690 2691 2692 2693 2694
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2695
              labels_int32=roi_labels,
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2745 2746
    **Generate proposal Faster-RCNN**

2747 2748 2749 2750
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2751 2752 2753 2754
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2755 2756
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2757 2758 2759 2760 2761 2762
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2763 2764 2765
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2766
            width of the feature map. The data type must be float32.
2767
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2768
            represents the difference between predicted box location and
2769
            anchor location. The data type must be float32.
2770
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2771 2772
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2773
            The data type must be int32.
2774 2775 2776
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2777 2778
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2779
            [H, W, num_priors, 4]. Each variance is in
2780
            (xcenter, ycenter, w, h) format. The data type must be float32.
2781
        pre_nms_top_n(float): Number of total bboxes to be kept per
2782
            image before NMS. The data type must be float32. `6000` by default.
2783
        post_nms_top_n(float): Number of total bboxes to be kept per
2784 2785
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2786
        min_size(float): Remove predicted boxes with either height or
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.

    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2797 2798 2799 2800 2801

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2802 2803 2804 2805 2806
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2807 2808 2809
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2810 2811 2812
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2813 2814 2815 2816
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
F
FDInSky 已提交
2817 2818
    rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32')

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
F
FDInSky 已提交
2835 2836 2837 2838 2839
        outputs={
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
            'RpnRoisLod': rpn_rois_lod
        })
2840 2841
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
F
FDInSky 已提交
2842
    rpn_rois_lod.stop_gradient = True
2843

F
FDInSky 已提交
2844
    return rpn_rois, rpn_roi_probs, rpn_rois_lod
J
jerrywgz 已提交
2845 2846


J
jerrywgz 已提交
2847
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2848 2849
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2850
    For each input box, The formula is given as follows:
2851 2852 2853
        
    .. code-block:: text

J
jerrywgz 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2865 2866

    Args:
W
wangguanzhong 已提交
2867 2868 2869
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
2870
            (height, width, scale) representing the information of image. 
2871
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
2872 2873 2874 2875
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2876 2877
    
    Returns:
W
wangguanzhong 已提交
2878 2879
        Variable:

T
tianshuo78520a 已提交
2880
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
2881 2882
        The shape is same as input.

2883
        
J
jerrywgz 已提交
2884 2885
    Examples:
        .. code-block:: python
2886
        
2887
            import paddle.fluid as fluid
2888 2889 2890
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2891
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2892
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2893 2894
    """

2895 2896 2897 2898
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
2899
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2900
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2901
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2902
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2903

2904 2905
    return output

J
jerrywgz 已提交
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
2917
    **Detection Output Layer for the detector RetinaNet.**
2918

2919 2920 2921 2922
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
2923

2924 2925 2926
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
2927 2928 2929 2930
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
2948
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
2949 2950 2951
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
2952
            information of each image is a 3-vector which are the height and width
2953 2954
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
2955
        score_threshold(float): Threshold to filter out bounding boxes
2956
            with a confidence score before NMS, default value is set to 0.05.
2957
        nms_top_k(int): Maximum number of detections per FPN layer to be
2958 2959
            kept according to the confidences before NMS, default value is set to
            1000.
2960
        keep_top_k(int): Number of total bounding boxes to be kept per image after
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
2979
    :attr:`anchors` is required to be from the highest FPN level.
2980 2981

    Returns:
2982 2983
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
2984
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
2985 2986 2987
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
2988 2989 2990 2991 2992 2993
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
                                          bboxes=[bboxes_low, bboxes_high],
                                          scores=[scores_low, scores_high],
                                          anchors=[anchors_low, anchors_high],
                                          im_info=im_info,
                                          score_threshold=0.05,
                                          nms_top_k=1000,
                                          keep_top_k=100,
                                          nms_threshold=0.45,
                                          nms_eta=1.)
3020 3021
    """

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3063 3064 3065 3066 3067
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3068
                   nms_threshold=0.3,
J
jerrywgz 已提交
3069 3070
                   normalized=True,
                   nms_eta=1.,
3071 3072
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3073
    """
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3102

3103 3104 3105 3106 3107 3108 3109

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3110 3111 3112 3113 3114 3115 3116 3117
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3118
                           The data type is float32 or float64.
3119 3120
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3121
                           class number. The data type is float32 or float64.   
3122 3123 3124 3125 3126 3127 3128
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3129
                           of BBoxes.The data type is float32 or float64. 
3130 3131 3132
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3133
                           case with shape [M, C, 4].The data type is float32 or float64. 
3134 3135 3136 3137 3138 3139 3140
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3141
                         the confidences after the filtering detections based
3142 3143 3144 3145 3146 3147 3148 3149 3150
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3151
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3152 3153 3154 3155 3156
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3157 3158 3159 3160
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3161

3162

3163 3164 3165
    Examples:
        .. code-block:: python

3166

3167
            import paddle.fluid as fluid
X
xiaoting 已提交
3168
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3169
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3170
            scores = fluid.data(name='scores', shape=[None,81],
3171 3172 3173 3174 3175 3176 3177 3178 3179
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3180
    """
X
xiaoting 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3211 3212

    return output
3213 3214


3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3263
                         the confidences after the filtering detections based
3264 3265 3266
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3267 3268
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3345 3346 3347 3348 3349 3350 3351
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3352 3353 3354 3355 3356 3357
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3358
    
J
jerrywgz 已提交
3359
    .. math::
3360

J
jerrywgz 已提交
3361
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3362

J
jerrywgz 已提交
3363 3364 3365
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3366 3367

    Args:
W
wangguanzhong 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3380

3381
    Returns:
W
wangguanzhong 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3392 3393 3394 3395

    Examples:
        .. code-block:: python

3396
            import paddle.fluid as fluid
3397 3398
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3399
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3400 3401 3402
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3403 3404 3405 3406 3407
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3408
    dtype = helper.input_dtype('fpn_rois')
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3426 3427


3428
@templatedoc()
J
jerrywgz 已提交
3429 3430 3431 3432 3433 3434
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3435 3436 3437 3438 3439 3440 3441
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3442
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3443 3444 3445 3446
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3447
    Returns:
W
wangguanzhong 已提交
3448
        Tuple:
J
jerrywgz 已提交
3449

W
wangguanzhong 已提交
3450 3451 3452
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3453 3454


3455 3456 3457
    Examples:
        .. code-block:: python

3458
            import paddle.fluid as fluid
3459 3460 3461 3462 3463 3464 3465 3466
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3467
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3468
                pb, pbv, loc, scores, 4.135)
3469 3470 3471 3472

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3473
    decoded_box = helper.create_variable_for_type_inference(
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3488
            "DecodeBox": decoded_box,
3489 3490
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3491
    return decoded_box, output_assign_box
3492 3493 3494 3495 3496 3497 3498 3499 3500


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3501 3502 3503
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3504 3505 3506 3507 3508 3509 3510 3511

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3512 3513 3514 3515 3516 3517
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3518 3519 3520
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3521 3522 3523 3524
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3525
    Returns:
W
wangguanzhong 已提交
3526 3527 3528 3529 3530
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3531 3532 3533 3534

    Examples:
        .. code-block:: python
           
3535
            import paddle.fluid as fluid
3536 3537 3538
            multi_rois = []
            multi_scores = []
            for i in range(4):
3539 3540
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3541
            for i in range(4):
3542 3543
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois