未验证 提交 a9fe09f8 编写于 作者: X xiaoting 提交者: GitHub

polish error message (#23696)

* polish error message, test=develop
上级 ff0ab756
......@@ -26,12 +26,9 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
"Input(BBoxes) of MultiClassNMS should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Scores"),
"Input(Scores) of MultiClassNMS should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of MultiClassNMS should not be null.");
OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
auto box_dims = ctx->GetInputDim("BBoxes");
auto score_dims = ctx->GetInputDim("Scores");
......@@ -41,7 +38,10 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(score_size == 2 || score_size == 3,
"The rank of Input(Scores) must be 2 or 3");
PADDLE_ENFORCE_EQ(box_dims.size(), 3,
"The rank of Input(BBoxes) must be 3");
platform::errors::InvalidArgument(
"The rank of Input(BBoxes) must be 3"
"But receive box_dims size(%s)",
box_dims.size()));
if (score_size == 3) {
PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
box_dims[2] == 16 || box_dims[2] == 24 ||
......@@ -55,16 +55,26 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
"16 points: [xi, yi] i= 1,2,...,16");
PADDLE_ENFORCE_EQ(
box_dims[1], score_dims[2],
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes.");
platform::errors::InvalidArgument(
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes."
"But received box_dims[1](%s) != socre_dims[2](%s)",
box_dims[1], score_dims[2]));
} else {
PADDLE_ENFORCE(box_dims[2] == 4,
"The last dimension of Input(BBoxes) must be 4");
PADDLE_ENFORCE_EQ(box_dims[2], 4,
platform::errors::InvalidArgument(
"The last dimension of Input(BBoxes) must be 4"
"But received box_dims[2](%s).",
box_dims[2]));
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[1],
"The 2nd dimension of Input(BBoxes)"
"must be equal to the 2nd dimension"
" of Input(Scores)");
platform::errors::InvalidArgument(
"The 2nd dimension of Input(BBoxes)"
"must be equal to the 2nd dimension"
" of Input(Scores)"
"But received box_dims[1](%s) != "
"score_dims[1](%s)",
box_dims[1], score_dims[1]));
}
}
// Here the box_dims[0] is not the real dimension of output.
......
......@@ -21,14 +21,10 @@ class YoloBoxOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of YoloBoxOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("ImgSize"),
"Input(ImgSize) of YoloBoxOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Boxes"),
"Output(Boxes) of YoloBoxOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Scores"),
"Output(Scores) of YoloBoxOp should not be null.");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "YoloBoxOp");
OP_INOUT_CHECK(ctx->HasInput("ImgSize"), "Input", "ImgSize", "YoloBoxOp");
OP_INOUT_CHECK(ctx->HasOutput("Boxes"), "Output", "Boxes", "YoloBoxOp");
OP_INOUT_CHECK(ctx->HasOutput("Scores"), "Output", "Scores", "YoloBoxOp");
auto dim_x = ctx->GetInputDim("X");
auto dim_imgsize = ctx->GetInputDim("ImgSize");
......@@ -36,26 +32,49 @@ class YoloBoxOp : public framework::OperatorWithKernel {
int anchor_num = anchors.size() / 2;
auto class_num = ctx->Attrs().Get<int>("class_num");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, platform::errors::InvalidArgument(
"Input(X) should be a 4-D tensor."
"But received X dimension(%s)",
dim_x.size()));
PADDLE_ENFORCE_EQ(
dim_x[1], anchor_num * (5 + class_num),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num)).");
platform::errors::InvalidArgument(
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
"But received dim[1](%s) != (anchor_mask_number * "
"(5+class_num)(%s).",
dim_x[1], anchor_num * (5 + class_num)));
PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
"Input(ImgSize) should be a 2-D tensor.");
platform::errors::InvalidArgument(
"Input(ImgSize) should be a 2-D tensor."
"But received Imgsize size(%s)",
dim_imgsize.size()));
if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(
dim_imgsize[0], dim_x[0],
platform::errors::InvalidArgument(
"Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
}
PADDLE_ENFORCE_EQ(dim_imgsize[1], 2, "Input(ImgSize) dim[1] should be 2.");
PADDLE_ENFORCE_EQ(
dim_imgsize[1], 2,
platform::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
"But received imgsize dim[1](%s).",
dim_imgsize[1]));
PADDLE_ENFORCE_GT(anchors.size(), 0,
"Attr(anchors) length should be greater than 0.");
platform::errors::InvalidArgument(
"Attr(anchors) length should be greater than 0."
"But received anchors length(%s).",
anchors.size()));
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
"Attr(anchors) length should be even integer.");
platform::errors::InvalidArgument(
"Attr(anchors) length should be even integer."
"But received anchors length (%s)",
anchors.size()));
PADDLE_ENFORCE_GT(class_num, 0,
"Attr(class_num) should be an integer greater than 0.");
platform::errors::InvalidArgument(
"Attr(class_num) should be an integer greater than 0."
"But received class_num (%s)",
class_num));
int box_num = dim_x[2] * dim_x[3] * anchor_num;
std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
......
......@@ -23,19 +23,15 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("GTBox"),
"Input(GTBox) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
"Input(GTLabel) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
"Output(Loss) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("ObjectnessMask"),
"Output(ObjectnessMask) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
"Output(GTMatchMask) of Yolov3LossOp should not be null.");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Yolov3LossOp");
OP_INOUT_CHECK(ctx->HasInput("GTBox"), "Input", "GTBox", "Yolov3LossOp");
OP_INOUT_CHECK(ctx->HasInput("GTLabel"), "Input", "GTLabel",
"Yolov3LossOp");
OP_INOUT_CHECK(ctx->HasOutput("Loss"), "Output", "Loss", "Yolov3LossOp");
OP_INOUT_CHECK(ctx->HasOutput("ObjectnessMask"), "Output", "ObjectnessMask",
"Yolov3LossOp");
OP_INOUT_CHECK(ctx->HasOutput("GTMatchMask"), "Output", "GTMatchMask",
"Yolov3LossOp");
auto dim_x = ctx->GetInputDim("X");
auto dim_gtbox = ctx->GetInputDim("GTBox");
......@@ -46,44 +42,96 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
int mask_num = anchor_mask.size();
auto class_num = ctx->Attrs().Get<int>("class_num");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
PADDLE_ENFORCE_EQ(dim_x.size(), 4,
platform::errors::InvalidArgument(
"Input(X) should be a 4-D tensor. But received "
"X dimension size(%s)",
dim_x.size()));
PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
"Input(X) dim[3] and dim[4] should be euqal.");
platform::errors::InvalidArgument(
"Input(X) dim[3] and dim[4] should be euqal."
"But received dim[3](%s) != dim[4](%s)",
dim_x[2], dim_x[3]));
PADDLE_ENFORCE_EQ(
dim_x[1], mask_num * (5 + class_num),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num)).");
platform::errors::InvalidArgument(
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
"But received dim[1](%s) != (anchor_mask_number * "
"(5+class_num)(%s).",
dim_x[1], mask_num * (5 + class_num)));
PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
"Input(GTBox) should be a 3-D tensor");
PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
"Input(GTLabel) should be a 2-D tensor");
PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
"Input(GTBox) and Input(GTLabel) dim[0] should be same");
PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
"Input(GTBox) and Input(GTLabel) dim[1] should be same");
platform::errors::InvalidArgument(
"Input(GTBox) should be a 3-D tensor, but "
"received gtbox dimension size(%s)",
dim_gtbox.size()));
PADDLE_ENFORCE_EQ(dim_gtbox[2], 4,
platform::errors::InvalidArgument(
"Input(GTBox) dim[2] should be 4",
"But receive dim[2](%s) != 5. ", dim_gtbox[2]));
PADDLE_ENFORCE_EQ(
dim_gtlabel.size(), 2,
platform::errors::InvalidArgument(
"Input(GTLabel) should be a 2-D tensor,"
"But received Input(GTLabel) dimension size(%s) != 2.",
dim_gtlabel.size()));
PADDLE_ENFORCE_EQ(
dim_gtlabel[0], dim_gtbox[0],
platform::errors::InvalidArgument(
"Input(GTBox) dim[0] and Input(GTLabel) dim[0] should be same,"
"But received Input(GTLabel) dim[0](%s) != "
"Input(GTBox) dim[0](%s)",
dim_gtlabel[0], dim_gtbox[0]));
PADDLE_ENFORCE_EQ(
dim_gtlabel[1], dim_gtbox[1],
platform::errors::InvalidArgument(
"Input(GTBox) and Input(GTLabel) dim[1] should be same,"
"But received Input(GTBox) dim[1](%s) != Input(GTLabel) "
"dim[1](%s)",
dim_gtbox[1], dim_gtlabel[1]));
PADDLE_ENFORCE_GT(anchors.size(), 0,
"Attr(anchors) length should be greater then 0.");
platform::errors::InvalidArgument(
"Attr(anchors) length should be greater then 0."
"But received anchors length(%s)",
anchors.size()));
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
"Attr(anchors) length should be even integer.");
platform::errors::InvalidArgument(
"Attr(anchors) length should be even integer."
"But received anchors length(%s)",
anchors.size()));
for (size_t i = 0; i < anchor_mask.size(); i++) {
PADDLE_ENFORCE_LT(
anchor_mask[i], anchor_num,
"Attr(anchor_mask) should not crossover Attr(anchors).");
platform::errors::InvalidArgument(
"Attr(anchor_mask) should not crossover Attr(anchors)."
"But received anchor_mask[i](%s) > anchor_num(%s)",
anchor_mask[i], anchor_num));
}
PADDLE_ENFORCE_GT(class_num, 0,
"Attr(class_num) should be an integer greater then 0.");
platform::errors::InvalidArgument(
"Attr(class_num) should be an integer greater then 0."
"But received class_num(%s) < 0",
class_num));
if (ctx->HasInput("GTScore")) {
auto dim_gtscore = ctx->GetInputDim("GTScore");
PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
"Input(GTScore) should be a 2-D tensor");
platform::errors::InvalidArgument(
"Input(GTScore) should be a 2-D tensor"
"But received GTScore dimension(%s)",
dim_gtbox.size()));
PADDLE_ENFORCE_EQ(
dim_gtscore[0], dim_gtbox[0],
"Input(GTBox) and Input(GTScore) dim[0] should be same");
platform::errors::InvalidArgument(
"Input(GTBox) and Input(GTScore) dim[0] should be same"
"But received GTBox dim[0](%s) != GTScore dim[0](%s)",
dim_gtbox[0], dim_gtscore[0]));
PADDLE_ENFORCE_EQ(
dim_gtscore[1], dim_gtbox[1],
"Input(GTBox) and Input(GTScore) dim[1] should be same");
platform::errors::InvalidArgument(
"Input(GTBox) and Input(GTScore) dim[1] should be same"
"But received GTBox dim[1](%s) != GTScore dim[1](%s)",
dim_gtscore[1], dim_gtbox[1]));
}
std::vector<int64_t> dim_out({dim_x[0]});
......@@ -245,9 +293,12 @@ class Yolov3LossOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
"Input(Loss@GRAD) should not be null");
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Loss")), true,
platform::errors::NotFound("Input(Loss@GRAD) should not be null"));
auto dim_x = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
......
......@@ -3178,6 +3178,18 @@ def multiclass_nms(bboxes,
keep_top_k=200,
normalized=False)
"""
check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
'multiclass_nms')
check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
'multiclass_nms')
check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
check_type(normalized, 'normalized', bool, 'multiclass_nms')
check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
check_type(background_label, 'background_label', int, 'multiclass_nms')
helper = LayerHelper('multiclass_nms', **locals())
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
......@@ -3192,7 +3204,6 @@ def multiclass_nms(bboxes,
'nms_threshold': nms_threshold,
'nms_eta': nms_eta,
'keep_top_k': keep_top_k,
'nms_eta': nms_eta,
'normalized': normalized
},
outputs={'Out': output})
......
......@@ -17,6 +17,8 @@ import unittest
import numpy as np
import copy
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
def softmax(x):
......@@ -487,5 +489,36 @@ class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
self.score_threshold = 2.0
class TestMulticlassNMSError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
M = 1200
N = 7
C = 21
BOX_SIZE = 4
boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
scores = np.random.random((N * M, C)).astype('float32')
scores = np.apply_along_axis(softmax, 1, scores)
scores = np.reshape(scores, (N, M, C))
scores_np = np.transpose(scores, (0, 2, 1))
boxes_data = fluid.data(
name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32')
scores_data = fluid.data(
name='scores', shape=[N, C, M], dtype='float32')
def test_bboxes_Variable():
# the bboxes type must be Variable
fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)
def test_scores_Variable():
# the bboxes type must be Variable
fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)
self.assertRaises(TypeError, test_bboxes_Variable)
self.assertRaises(TypeError, test_scores_Variable)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册