detection.py 58.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
23 24
from . import tensor
from . import nn
25
from . import ops
M
minqiyang 已提交
26
from ... import compat as cpt
C
chengduoZH 已提交
27
import math
M
minqiyang 已提交
28
import six
29
import numpy
30
from functools import reduce
31

C
chengduoZH 已提交
32
__all__ = [
33
    'prior_box',
C
chengduoZH 已提交
34
    'multi_box_head',
35 36 37 38
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
39
    'detection_map',
Y
Yuan Gao 已提交
40
    'rpn_target_assign',
41
    'anchor_generator',
W
whs 已提交
42
    'roi_perspective_transform',
43
    'generate_proposal_labels',
44
    'generate_proposals',
C
chengduoZH 已提交
45
]
46

47 48 49
__auto__ = [
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
50
    'polygon_box_transform',
C
chengduoZH 已提交
51
]
52

53 54 55 56 57
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

58

59 60
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
61
                      anchor_box,
62
                      anchor_var,
63 64 65
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
66
                      rpn_batch_size_per_im=256,
67 68
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
69
                      rpn_positive_overlap=0.7,
70 71
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
91
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
92 93 94
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
95 96 97
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
98 99 100 101 102 103
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
104 105
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
106
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
107 108
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
109 110 111
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
112
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
113 114 115
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
116 117 118 119 120 121 122 123 124
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
125
        tuple:
Y
Yuan Gao 已提交
126 127 128 129 130 131 132 133 134 135
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox) is returned. The predicted_scores and
               predicted_location is the predicted result of the RPN.
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
136
               anchors, the F and B is depends on the input of this operator.
Y
Yuan Gao 已提交
137 138 139 140

    Examples:
        .. code-block:: python

141
        bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
Y
Yuan Gao 已提交
142
                          append_batch_size=False, dtype='float32')
143
        cls_logits = layers.data(name='cls_logits', shape=[100, 1],
Y
Yuan Gao 已提交
144 145 146
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
147
        gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
Y
Yuan Gao 已提交
148 149
                         append_batch_size=False, dtype='float32')
        loc_pred, score_pred, loc_target, score_target =
150 151
            fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                          cls_logits=cls_logits,
Y
Yuan Gao 已提交
152
                                          anchor_box=anchor_box,
153
                                          gt_boxes=gt_boxes)
Y
Yuan Gao 已提交
154 155 156
    """

    helper = LayerHelper('rpn_target_assign', **locals())
157 158 159
    # Assign target label to anchors
    loc_index = helper.create_tmp_variable(dtype='int32')
    score_index = helper.create_tmp_variable(dtype='int32')
160
    target_label = helper.create_tmp_variable(dtype='int32')
161
    target_bbox = helper.create_tmp_variable(dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
162 163
    helper.append_op(
        type="rpn_target_assign",
164 165 166 167 168 169
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
170 171 172
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
173
            'TargetLabel': target_label,
174
            'TargetBBox': target_bbox
Y
Yuan Gao 已提交
175 176 177
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
178
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
179 180
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
181 182
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
183 184
        })

185 186 187 188
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
Y
Yuan Gao 已提交
189

190 191 192 193
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
194

195
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox
Y
Yuan Gao 已提交
196 197


Y
Yuan Gao 已提交
198 199
def detection_output(loc,
                     scores,
200 201 202 203 204 205 206 207 208
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
209
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
210

211 212
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
213

214 215 216 217 218 219
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
220 221 222 223 224 225

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
226 227 228 229
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
252 253
        Variable:

254
            The detection outputs is a LoDTensor with shape [No, 6].
255 256 257 258 259 260 261 262
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
263 264 265 266

    Examples:
        .. code-block:: python

267
            pb = layers.data(name='prior_box', shape=[10, 4],
268
                         append_batch_size=False, dtype='float32')
269
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
270
                          append_batch_size=False, dtype='float32')
271
            loc = layers.data(name='target_box', shape=[2, 21, 4],
272
                          append_batch_size=False, dtype='float32')
273
            scores = layers.data(name='scores', shape=[2, 21, 10],
274
                          append_batch_size=False, dtype='float32')
275
            nmsed_outs = fluid.layers.detection_output(scores=scores,
276 277 278 279 280
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
281 282 283 284 285
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
286 287 288
    compile_shape = scores.shape
    run_shape = ops.shape(scores)
    scores = nn.flatten(x=scores, axis=2)
289
    scores = nn.softmax(input=scores)
290
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
291
    scores = nn.transpose(scores, perm=[0, 2, 1])
292
    scores.stop_gradient = True
293
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
294 295 296 297 298 299 300 301 302 303 304 305 306
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
307
    nmsed_outs.stop_gradient = True
308
    return nmsed_outs
C
chengduoZH 已提交
309 310


X
Xin Pan 已提交
311
@templatedoc()
312 313
def detection_map(detect_res,
                  label,
314 315
                  class_num,
                  background_label=0,
316 317
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
318 319 320 321
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
363 364
    helper = LayerHelper("detection_map", **locals())

365 366 367 368 369 370 371 372 373 374 375 376 377 378
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

379 380 381 382 383
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
384
            'HasState': has_state,
385 386 387 388 389 390 391 392 393 394 395 396 397
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
398 399
            'ap_type': ap_version,
            'class_num': class_num,
400
        })
401
    return map_out
402 403


404 405 406 407
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
408
    """
Y
yuyang18 已提交
409 410
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
411
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
412 413 414 415 416 417 418 419
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
420 421 422
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
423

Y
yuyang18 已提交
424
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
425 426 427
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
428 429 430
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

431 432 433 434 435
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
436 437 438 439 440 441
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
442
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
443
           'bipartite' or 'per_prediction'. [default 'bipartite'].
444 445
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
446
            on the maximum distance, 0.5 by default.
447
    Returns:
Y
yuyang18 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
471 472 473 474 475 476 477
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
478 479 480 481
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
499

500 501 502 503 504
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
505

506
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
507

508 509 510
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
511

512 513
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
514

515
        Otherwise,
C
chengduoZH 已提交
516

517 518
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
519

520
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
521

522 523
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
524

525
    .. code-block:: text
C
chengduoZH 已提交
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
542 543 544 545 546
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
547 548 549 550 551 552 553 554 555 556 557
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
589
             normalize=True,
590 591
             sample_size=None):
    """
Y
yuyang18 已提交
592
    **Multi-box loss layer for object detection algorithm of SSD**
593 594 595 596 597 598 599

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
600
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
601

602
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
603

604
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
605

606
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
607

608
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
609

610
      2.2. Compute confidence loss.
Y
yuyang18 已提交
611

612 613
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
614

615
    4. Assign classification and regression targets
Y
yuyang18 已提交
616

617
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
618

619
      4.2. Assign regression targets.
Y
yuyang18 已提交
620

621
      4.3. Assign classification targets.
Y
yuyang18 已提交
622

623
    5. Compute the overall objective loss.
Y
yuyang18 已提交
624

625
      5.1 Compute confidence loss.
Y
yuyang18 已提交
626

627
      5.1 Compute localization loss.
Y
yuyang18 已提交
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
652
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
653
        neg_overlap (float): The negative overlap upper bound for the unmatched
654
            predictions. Use only when mining_type is 'max_negative',
655 656 657 658
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
659
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
660 661
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
662
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
663
            of output locations, True by default.
664 665
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
666 667

    Returns:
Y
yuyang18 已提交
668 669
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
670 671

    Raises:
Y
yuyang18 已提交
672 673
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
693 694 695 696 697 698 699
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
700
    conf_shape = ops.shape(confidence)
701 702

    def __reshape_to_2d(var):
703
        return nn.flatten(x=var, axis=2)
704 705 706 707 708

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
709 710
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
711 712 713

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
714 715
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
716
    gt_label.stop_gradient = True
717 718 719 720 721 722 723
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
724
    target_label.stop_gradient = True
725 726
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
727 728
    actual_shape = ops.slice(conf_shape, axes=[0], starts=[0], ends=[2])
    actual_shape.stop_gradient = True
729
    conf_loss = nn.reshape(
730
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
731
    conf_loss.stop_gradient = True
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
749
            'neg_dist_threshold': neg_overlap,
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
775

776 777 778 779
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

780 781 782 783
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

784 785 786 787 788 789 790 791
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

792 793 794 795
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

796 797
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
798
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
799
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
800 801 802 803 804
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

805
    return loss
C
chengduoZH 已提交
806 807


808 809 810 811
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
812
              aspect_ratios=[1.],
813 814 815 816 817
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
818 819
              name=None,
              min_max_aspect_ratios_order=False):
820
    """
Q
update  
qiaolongfei 已提交
821
    **Prior Box Operator**
822 823 824 825 826 827 828 829 830 831 832

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
833
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
834 835
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
836 837
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
838 839 840 841
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
842
       step(list|turple): Prior boxes step across width and height, If
843
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
844 845
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
846 847
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
848
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
849
            in order of [min, max, aspect_ratios], which is consistent with
850 851 852
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
853 854

    Returns:
Q
update  
qiaolongfei 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
868 869 870 871


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
872 873 874 875 876 877 878

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
879 880 881 882
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

898 899 900 901 902 903 904 905
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
906 907
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
908 909
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
910 911
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
928
def multi_box_head(inputs,
C
chengduoZH 已提交
929 930
                   image,
                   base_size,
C
chengduoZH 已提交
931
                   num_classes,
C
chengduoZH 已提交
932
                   aspect_ratios,
933 934
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
935 936
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
937 938 939 940
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
941 942
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
943
                   clip=False,
C
chengduoZH 已提交
944
                   kernel_size=1,
C
chengduoZH 已提交
945
                   pad=0,
C
chengduoZH 已提交
946
                   stride=1,
947 948
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
949
    """
C
chengduoZH 已提交
950 951
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
952
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
953
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
954 955

    Args:
956
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
957
            of all Variables is NCHW.
C
chengduoZH 已提交
958 959
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
960 961
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
984
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
985 986 987 988 989 990
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
991
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
992
            in order of [min, max, aspect_ratios], which is consistent with
993 994 995
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
996 997

    Returns:
Q
update  
qiaolongfei 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1013

C
chengduoZH 已提交
1014 1015 1016

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1017 1018

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1029 1030
    """

C
chengduoZH 已提交
1031
    def _reshape_with_axis_(input, axis=1):
1032
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1033
        return out
1034

1035 1036
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1037

C
chengduoZH 已提交
1038 1039 1040 1041
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1042 1043
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1044

C
chengduoZH 已提交
1045 1046 1047 1048 1049
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1050
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1051 1052 1053
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1054
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1055 1056 1057 1058 1059
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1083 1084
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1085 1086
    box_results = []
    var_results = []
C
chengduoZH 已提交
1087 1088
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1089 1090
        max_size = max_sizes[i]

1091
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1092
            min_size = [min_size]
C
chengduoZH 已提交
1093 1094
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1095 1096 1097 1098

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1099
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1100
                aspect_ratio = [aspect_ratio]
1101
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1102

1103
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1104 1105
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1106 1107 1108 1109 1110

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1111

1112
        # get loc
Y
Yuan Gao 已提交
1113
        num_loc_output = num_boxes * 4
1114
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1115
            input=input,
1116 1117 1118 1119 1120
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1121
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1122
        compile_shape = [
1123
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1124
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1125
        ]
1126 1127 1128
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1129
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1130

1131
        # get conf
C
chengduoZH 已提交
1132
        num_conf_output = num_boxes * num_classes
1133
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1134
            input=input,
1135 1136 1137 1138
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1139
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1140 1141
        new_shape = [0, -1, num_classes]
        compile_shape = [
1142 1143 1144
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1145
        ]
1146 1147 1148 1149
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1150
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1151

C
chengduoZH 已提交
1152 1153 1154
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1155 1156
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1166 1167
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1168

1169 1170
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1171
    return mbox_locs_concat, mbox_confs_concat, box, var
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1264 1265


W
whs 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1314 1315
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1316
                             is_crowd,
1317
                             gt_boxes,
1318
                             im_info,
1319 1320 1321 1322 1323 1324
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1325 1326
                             class_nums=None,
                             use_random=True):
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    """
    ** Generate proposal labels Faster-RCNN **
    TODO(buxingyuan): Add Document
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

    rois = helper.create_tmp_variable(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_tmp_variable(dtype=gt_classes.dtype)
    bbox_targets = helper.create_tmp_variable(dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_tmp_variable(dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_tmp_variable(dtype=rpn_rois.dtype)

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1345
            'IsCrowd': is_crowd,
1346
            'GtBoxes': gt_boxes,
1347
            'ImInfo': im_info
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1363 1364
            'class_nums': class_nums,
            'use_random': use_random
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
    ** Generate proposal labels Faster-RCNN **
	
	This operation proposes RoIs according to each box with their probability to be a foreground object and 
	the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
	could be used to train detection net.

	For generating proposals, this operation performs following steps:

	1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
 	2. Calculate box locations as proposals candidates. 
	3. Clip boxes to image
	4. Remove predicted boxes with small area. 
	5. Apply NMS to get final proposals as output.
	
      
	Args:
		scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
			N is batch size, A is number of anchors, H and W are height and width of the feature map.
		bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. 
		im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
			between origin image size and the size of feature map.
		anchors(Variable):   A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
              		num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
		variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
		pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
		post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
		nms_thresh(float): Threshold in NMS, 0.5 by default.
		min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
		eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
    """
    helper = LayerHelper('generate_proposals', **locals())

    rpn_rois = helper.create_tmp_variable(dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_tmp_variable(dtype=scores.dtype)
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs