detection.py 160.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24
from .loss import softmax_with_cross_entropy
25 26
from . import tensor
from . import nn
27
from . import ops
M
minqiyang 已提交
28
from ... import compat as cpt
29
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
C
chengduoZH 已提交
30
import math
M
minqiyang 已提交
31
import six
32
import numpy as np
33
from functools import reduce
34
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
35

C
chengduoZH 已提交
36
__all__ = [
37 38 39 40 41 42 43 44
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
45
    'retinanet_target_assign',
46
    'sigmoid_focal_loss',
47 48 49 50
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
51
    'generate_mask_labels',
52 53 54 55
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
56
    'yolo_box',
57
    'box_clip',
J
jerrywgz 已提交
58
    'multiclass_nms',
59
    'locality_aware_nms',
60
    'retinanet_detection_output',
61
    'distribute_fpn_proposals',
62
    'box_decoder_and_assign',
63
    'collect_fpn_proposals',
C
chengduoZH 已提交
64
]
65 66


67 68 69 70 71 72 73 74 75 76 77 78
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
T
tianshuo78520a 已提交
103
    regression for each anchor, hence the target label for each positive(or negative)
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
118 119

    Args:
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
161
            information of each image is a 3-vector which are the height and width
162 163 164 165 166 167 168 169 170 171 172 173
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
217 218 219 220 221

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
222 223 224 225 226 227 228 229 230 231 232 233 234 235
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
236
          im_info = fluid.data(name='im_info', shape=[1, 3],
237
                            dtype='float32')
238
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num = \\
239 240 241 242 243
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    check_variable_and_dtype(bbox_pred, 'bbox_pred', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(cls_logits, 'cls_logits', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_box, 'anchor_box', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(anchor_var, 'anchor_var', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_boxes, 'gt_boxes', ['float32', 'float64'],
                             'retinanet_target_assign')
    check_variable_and_dtype(gt_labels, 'gt_labels', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(is_crowd, 'is_crowd', ['int32'],
                             'retinanet_target_assign')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_target_assign')

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


308 309
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
310
                      anchor_box,
311
                      anchor_var,
312 313 314
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
315
                      rpn_batch_size_per_im=256,
316 317
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
318
                      rpn_positive_overlap=0.7,
319 320
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
321
    """
H
haowang101779990 已提交
322
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
340
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
341 342
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
343
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
344 345 346
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
347
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
348 349 350 351 352
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
353
            coordinate of the anchor box. The data type can be float32 or float64.
354
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
355
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
356
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
357
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
358
            bboxes of mini-batch input. The data type can be float32 or float64.
359
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
360
                             The data type must be int32.
361 362
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
363
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
364
                                    The data type must be int32.
365
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
366
            by straddle_thresh pixels. The data type must be float32.
367
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
368
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
369 370
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
371
            example. The data type must be float32.
Y
Yuan Gao 已提交
372 373
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
374
            examples. The data type must be float32.
Y
Yuan Gao 已提交
375 376

    Returns:
M
minqiyang 已提交
377
        tuple:
378 379 380 381 382 383 384 385 386 387 388 389 390
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
391 392 393 394

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
395
            import paddle.fluid as fluid
396 397 398 399 400 401 402
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
403 404
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
405

Y
Yuan Gao 已提交
406 407 408
    """

    helper = LayerHelper('rpn_target_assign', **locals())
409
    # Assign target label to anchors
J
jerrywgz 已提交
410 411 412 413 414 415 416
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
417 418
    helper.append_op(
        type="rpn_target_assign",
419 420 421 422 423 424
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
425 426 427
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
428
            'TargetLabel': target_label,
J
jerrywgz 已提交
429
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
430
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
431 432 433
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
434
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
435 436
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
437 438
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
439 440
        })

441 442 443 444
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
445
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
446

447 448 449 450
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
451

J
jerrywgz 已提交
452
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
453 454


455
def sigmoid_focal_loss(x, label, fg_num, gamma=2.0, alpha=0.25):
456
    """
S
swtkiwi 已提交
457 458 459 460
	:alias_main: paddle.nn.functional.sigmoid_focal_loss
	:alias: paddle.nn.functional.sigmoid_focal_loss,paddle.nn.functional.loss.sigmoid_focal_loss
	:old_api: paddle.fluid.layers.sigmoid_focal_loss

461 462
    **Sigmoid Focal Loss Operator.**

463 464 465 466 467
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

468 469 470
    The focal loss is given as followed:

    .. math::
471 472 473 474 475 476 477
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

478 479 480 481 482 483 484

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
500
        gamma(int|float): Hyper-parameter to balance the easy and hard examples. Default value is
501
            set to 2.0.
502
        alpha(int|float): Hyper-parameter to balance the positive and negative example. Default value
503 504 505
            is set to 0.25.

    Returns:
506 507 508
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
509 510 511 512 513 514

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

515 516 517
            input = fluid.data(name='data', shape=[10,80], dtype='float32')
            label = fluid.data(name='label', shape=[10,1], dtype='int32')
            fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32')
518 519 520
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
521
                                                   gamma=2.0,
522 523 524
                                                   alpha=0.25)
    """

525 526 527 528 529
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'sigmoid_focal_loss')
    check_variable_and_dtype(label, 'label', ['int32'], 'sigmoid_focal_loss')
    check_variable_and_dtype(fg_num, 'fg_num', ['int32'], 'sigmoid_focal_loss')

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
545 546
def detection_output(loc,
                     scores,
547 548 549 550 551 552 553
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
554 555
                     nms_eta=1.0,
                     return_index=False):
556
    """
S
swtkiwi 已提交
557 558 559 560
	:alias_main: paddle.nn.functional.detection_output
	:alias: paddle.nn.functional.detection_output,paddle.nn.functional.vision.detection_output
	:old_api: paddle.fluid.layers.detection_output

Q
qingqing01 已提交
561 562
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
563

Q
qingqing01 已提交
564 565
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
566 567 568 569 570
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
571 572 573

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
574 575
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
576 577
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
578
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
579 580 581
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
582
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
583 584
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
585
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
586 587
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
588
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
589 590
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
591
        nms_top_k(int): Maximum number of detections to be kept according
T
tianshuo78520a 已提交
592
            to the confidences after filtering detections based on
Q
qingqing01 已提交
593
            score_threshold and before NMS. Default: 400.
594
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
595
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
596 597
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
598 599 600
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
601
        return_index(bool): Whether return selected index. Default: False
602 603

    Returns:
M
minqiyang 已提交
604

605 606 607
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
608 609 610 611 612 613 614 615 616 617 618 619
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
620 621 622
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

623 624 625 626

    Examples:
        .. code-block:: python

627 628
            import paddle.fluid as fluid

Q
qingqing01 已提交
629 630 631 632
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
633
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
634 635
                                       loc=loc,
                                       prior_box=pb,
636 637
                                       prior_box_var=pbv,
                                       return_index=True)
638 639
    """
    helper = LayerHelper("detection_output", **locals())
640 641 642 643 644
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
645
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
646
    scores = nn.transpose(scores, perm=[0, 2, 1])
647
    scores.stop_gradient = True
X
Xin Pan 已提交
648 649
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
681
    nmsed_outs.stop_gradient = True
682 683
    if return_index:
        return nmsed_outs, index
684
    return nmsed_outs
C
chengduoZH 已提交
685 686


X
Xin Pan 已提交
687
@templatedoc()
688
def iou_similarity(x, y, box_normalized=True, name=None):
X
Xin Pan 已提交
689
    """
S
swtkiwi 已提交
690 691 692 693
	:alias_main: paddle.nn.functional.iou_similarity
	:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
	:old_api: paddle.fluid.layers.iou_similarity

X
Xin Pan 已提交
694 695 696
    ${comment}

    Args:
L
LielinJiang 已提交
697 698
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
T
tianshuo78520a 已提交
699
        box_normalized(bool): Whether treat the priorbox as a normalized box.
700
            Set true by default.
X
Xin Pan 已提交
701
    Returns:
L
LielinJiang 已提交
702
        Variable: ${out_comment}.The data type is same with x.
703 704 705 706

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
707
            import numpy as np
708 709
            import paddle.fluid as fluid

L
LielinJiang 已提交
710 711 712 713 714 715
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
716
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
717 718 719 720 721 722 723 724 725 726 727

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
728 729
    """
    helper = LayerHelper("iou_similarity", **locals())
730
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
731 732 733 734 735

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
736
        attrs={"box_normalized": box_normalized},
X
Xin Pan 已提交
737 738 739 740 741 742 743 744 745 746
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
747 748
              name=None,
              axis=0):
X
Xin Pan 已提交
749
    """
S
swtkiwi 已提交
750 751 752 753
	:alias_main: paddle.nn.functional.box_coder
	:alias: paddle.nn.functional.box_coder,paddle.nn.functional.vision.box_coder
	:old_api: paddle.fluid.layers.box_coder

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
792 793

    Args:
794
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
795 796 797 798 799 800 801 802 803 804
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
805
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
806 807 808 809 810 811 812 813
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
T
tianshuo78520a 已提交
814
        box_normalized(bool): Whether treat the priorbox as a normalized box.
W
wangguanzhong 已提交
815 816 817 818
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
819
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
820 821 822 823
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
824 825

    Returns:
W
wangguanzhong 已提交
826 827
        Variable:

828
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
829 830 831
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
T
tianshuo78520a 已提交
832
        and M represents the number of decoded boxes.
833 834 835 836 837

    Examples:
 
        .. code-block:: python
 
838
            import paddle.fluid as fluid
W
wangguanzhong 已提交
839
            # For encode
840
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
841
                                  shape=[512, 4],
842 843 844 845
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
846 847 848 849 850
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
851
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
852
                                  shape=[512, 4],
853 854 855 856
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
857 858 859 860 861 862
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
863
    """
864 865 866 867
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_coder')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_coder')
X
Xin Pan 已提交
868 869
    helper = LayerHelper("box_coder", **locals())

870 871
    output_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)
X
Xin Pan 已提交
872

873 874 875 876 877 878 879 880 881 882 883 884
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
885 886
    helper.append_op(
        type="box_coder",
887 888
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
889 890 891 892 893 894 895 896 897 898
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
899 900 901 902
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
903 904

    Returns:
905
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
906 907 908 909 910

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
911
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
912
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
913
    """
914 915
    check_variable_and_dtype(input, "input", ['float32', 'float64'],
                             'polygon_box_transform')
X
Xin Pan 已提交
916
    helper = LayerHelper("polygon_box_transform", **locals())
917
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
918 919 920 921 922 923 924 925 926

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
927 928
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
929 930
                gt_box,
                gt_label,
D
dengkaipeng 已提交
931
                anchors,
932
                anchor_mask,
D
dengkaipeng 已提交
933 934
                class_num,
                ignore_thresh,
935
                downsample_ratio,
936
                gt_score=None,
D
dengkaipeng 已提交
937
                use_label_smooth=True,
938 939
                name=None,
                scale_x_y=1.):
D
dengkaipeng 已提交
940
    """
S
swtkiwi 已提交
941 942 943 944
	:alias_main: paddle.nn.functional.yolov3_loss
	:alias: paddle.nn.functional.yolov3_loss,paddle.nn.functional.vision.yolov3_loss
	:old_api: paddle.fluid.layers.yolov3_loss

D
dengkaipeng 已提交
945 946 947
    ${comment}

    Args:
X
xiaoting 已提交
948
        x (Variable): ${x_comment}The data type is float32 or float64. 
949
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
T
tianshuo78520a 已提交
950 951
                          in the third dimension, x, y, w, h should be stored. 
                          x,y is the center coordinate of boxes, w, h are the
952 953
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
954
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
955
                          an image.The data type is float32 or float64. 
T
tianshuo78520a 已提交
956
        gt_label (Variable): class id of ground truth boxes, should be in shape
X
xiaoting 已提交
957
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
958
        anchors (list|tuple): ${anchors_comment}
959
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
960 961
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
962
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
963 964 965
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
T
tianshuo78520a 已提交
966
        gt_score (Variable): mixup score of ground truth boxes, should be in shape
967
                            of [N, B]. Default None.
968
        use_label_smooth (bool): ${use_label_smooth_comment}
969
        scale_x_y (float): ${scale_x_y_comment}
D
dengkaipeng 已提交
970 971

    Returns:
972
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
973 974 975

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
976 977
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
978
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
979 980 981
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
982
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
983 984

    Examples:
985 986
      .. code-block:: python

987
          import paddle.fluid as fluid
X
xiaoting 已提交
988 989 990 991
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
992 993
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
994 995
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
996 997
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
998 999 1000 1001 1002
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
1003
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
1004
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
1005
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
1006
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
1007
    if gt_score is not None and not isinstance(gt_score, Variable):
1008
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
1009 1010
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
1011 1012
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
1013 1014 1015 1016 1017
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
1018 1019 1020
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
1021

1022
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
D
dengkaipeng 已提交
1023

1024 1025 1026
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

1027 1028
    inputs = {
        "X": x,
1029 1030
        "GTBox": gt_box,
        "GTLabel": gt_label,
1031
    }
1032
    if gt_score is not None:
1033
        inputs["GTScore"] = gt_score
1034

D
dengkaipeng 已提交
1035 1036
    attrs = {
        "anchors": anchors,
1037
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1038 1039
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1040
        "downsample_ratio": downsample_ratio,
1041
        "use_label_smooth": use_label_smooth,
1042
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1043 1044 1045 1046
    }

    helper.append_op(
        type='yolov3_loss',
1047
        inputs=inputs,
1048 1049 1050 1051 1052
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1053 1054 1055 1056
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1057
@templatedoc(op_type="yolo_box")
1058 1059 1060 1061 1062 1063
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
1064
             clip_bbox=True,
1065 1066
             name=None,
             scale_x_y=1.):
D
dengkaipeng 已提交
1067
    """
S
swtkiwi 已提交
1068 1069 1070 1071
	:alias_main: paddle.nn.functional.yolo_box
	:alias: paddle.nn.functional.yolo_box,paddle.nn.functional.vision.yolo_box
	:old_api: paddle.fluid.layers.yolo_box

D
dengkaipeng 已提交
1072 1073 1074
    ${comment}

    Args:
X
xiaoting 已提交
1075 1076
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1077 1078 1079 1080
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
1081
        clip_bbox (bool): ${clip_bbox_comment}
1082
        scale_x_y (float): ${scale_x_y_comment}
X
xiaoting 已提交
1083 1084 1085
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1086 1087

    Returns:
D
dengkaipeng 已提交
1088
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1089 1090
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1091 1092 1093 1094 1095 1096 1097 1098

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1099

D
dengkaipeng 已提交
1100 1101
    .. code-block:: python

X
xiaoting 已提交
1102
        import paddle.fluid as fluid
X
xiaoting 已提交
1103 1104
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1105
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1106
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1107 1108 1109 1110 1111
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1112 1113 1114
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1115
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1116
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1117
    if not isinstance(class_num, int):
1118
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1119
    if not isinstance(conf_thresh, float):
1120
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1121 1122 1123 1124 1125 1126 1127

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1128
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1129
        "downsample_ratio": downsample_ratio,
1130
        "clip_bbox": clip_bbox,
1131
        "scale_x_y": scale_x_y,
D
dengkaipeng 已提交
1132 1133 1134 1135
    }

    helper.append_op(
        type='yolo_box',
1136 1137 1138 1139
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1140 1141 1142 1143 1144 1145 1146 1147
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1148
@templatedoc()
1149 1150
def detection_map(detect_res,
                  label,
1151 1152
                  class_num,
                  background_label=0,
1153 1154
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1155 1156 1157 1158
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1170 1171 1172 1173 1174 1175 1176 1177
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1187
            import paddle.fluid as fluid
1188
            from fluid.layers import detection
1189
            detect_res = fluid.data(
X
Xin Pan 已提交
1190 1191 1192
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1193
            label = fluid.data(
X
Xin Pan 已提交
1194 1195 1196 1197
                name='label',
                shape=[10, 6],
                dtype='float32')

1198
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1199
    """
1200 1201
    helper = LayerHelper("detection_map", **locals())

1202
    def __create_var(type):
X
Xin Pan 已提交
1203
        return helper.create_variable_for_type_inference(dtype=type)
1204 1205

    map_out = __create_var('float32')
Z
zhongpu 已提交
1206 1207 1208 1209 1210 1211
    accum_pos_count_out = out_states[
        0] if out_states is not None else __create_var('int32')
    accum_true_pos_out = out_states[
        1] if out_states is not None else __create_var('float32')
    accum_false_pos_out = out_states[
        2] if out_states is not None else __create_var('float32')
1212

Z
zhongpu 已提交
1213 1214 1215
    pos_count = input_states[0] if input_states is not None else None
    true_pos = input_states[1] if input_states is not None else None
    false_pos = input_states[2] if input_states is not None else None
1216

1217 1218 1219 1220 1221
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1222
            'HasState': has_state,
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1236 1237
            'ap_type': ap_version,
            'class_num': class_num,
1238
        })
1239
    return map_out
1240 1241


1242 1243 1244 1245
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1246
    """
S
swtkiwi 已提交
1247 1248 1249 1250
	:alias_main: paddle.nn.functional.bipartite_match
	:alias: paddle.nn.functional.bipartite_match,paddle.nn.functional.vision.bipartite_match
	:old_api: paddle.fluid.layers.bipartite_match

Y
yuyang18 已提交
1251 1252
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1253
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1254 1255 1256 1257
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1258
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1259 1260 1261

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1262 1263 1264
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1265

Y
yuyang18 已提交
1266
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1267 1268 1269
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1270 1271 1272
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1273 1274
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1286
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1287
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1288 1289 1290 1291
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1292
    Returns:
W
wangguanzhong 已提交
1293
        Tuple:
Y
yuyang18 已提交
1294

W
wangguanzhong 已提交
1295 1296
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1297 1298 1299 1300 1301
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1302 1303
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1304 1305 1306 1307 1308 1309 1310
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1311
        >>> import paddle.fluid as fluid
1312 1313
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1314 1315
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1316 1317
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1318 1319 1320
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1321 1322 1323
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1324 1325 1326 1327
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
S
swtkiwi 已提交
1341 1342 1343 1344
	:alias_main: paddle.nn.functional.target_assign
	:alias: paddle.nn.functional.target_assign,paddle.nn.functional.extension.target_assign
	:old_api: paddle.fluid.layers.target_assign

1345 1346 1347 1348
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1349

1350 1351 1352 1353 1354
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1355

1356
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1357

1358 1359 1360
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1361

1362 1363
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1364

1365
        Otherwise,
C
chengduoZH 已提交
1366

1367 1368
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1369

Q
qingqing01 已提交
1370
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1371

Q
qingqing01 已提交
1372 1373
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1374

1375
    .. code-block:: text
C
chengduoZH 已提交
1376

Q
qingqing01 已提交
1377 1378 1379
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1380 1381

    Args:
Q
qingqing01 已提交
1382 1383 1384
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1385 1386 1387
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1388 1389
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1390
           the total number of negative example indices.
Q
qingqing01 已提交
1391 1392 1393 1394 1395
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1396 1397

    Returns:
Q
qingqing01 已提交
1398 1399 1400 1401 1402 1403 1404 1405
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1406 1407 1408 1409 1410

    Examples:

        .. code-block:: python

1411
            import paddle.fluid as fluid
Q
qingqing01 已提交
1412
            x = fluid.data(
1413 1414 1415
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1416 1417
                lod_level=1)
            matched_id = fluid.data(
1418 1419
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1420
                dtype='int32')
1421 1422 1423 1424
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1425 1426
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1427 1428
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1456
             normalize=True,
1457 1458
             sample_size=None):
    """
S
swtkiwi 已提交
1459 1460 1461 1462
	:alias_main: paddle.nn.functional.ssd_loss
	:alias: paddle.nn.functional.ssd_loss,paddle.nn.functional.loss.ssd_loss
	:old_api: paddle.fluid.layers.ssd_loss

Y
yuyang18 已提交
1463
    **Multi-box loss layer for object detection algorithm of SSD**
1464

翟飞跃 已提交
1465 1466
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1467 1468 1469 1470
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1471
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1472

1473
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1474

T
tianshuo78520a 已提交
1475
      1.2 Compute matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1476

1477
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1478

1479
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1480

1481
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1482

1483 1484
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1485

1486
    4. Assign classification and regression targets
Y
yuyang18 已提交
1487

1488
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1489

1490
      4.2. Assign regression targets.
Y
yuyang18 已提交
1491

1492
      4.3. Assign classification targets.
Y
yuyang18 已提交
1493

1494
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1495

1496
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1497

1498
      5.2 Compute localization loss.
Y
yuyang18 已提交
1499

1500 1501 1502 1503 1504 1505
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1506 1507
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1508 1509
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1510 1511
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1512
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1513
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1514
            bboxes of mini-batch input.The data type is float32 or float64.
1515
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1516 1517 1518
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1519
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1520 1521
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1522
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1523
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1524 1525
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1526 1527
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1528
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1529
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1530
        neg_overlap (float): The negative overlap upper bound for the unmatched
1531
            predictions. Use only when mining_type is 'max_negative',
1532 1533 1534 1535
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1536
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1537 1538
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1539
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1540
            of output locations, True by default.
1541 1542
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1543 1544

    Returns:
1545 1546 1547
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1548 1549

    Raises:
Y
yuyang18 已提交
1550 1551
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1552 1553

    Examples:
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1573 1574 1575 1576 1577 1578 1579
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1580
    conf_shape = nn.shape(confidence)
1581 1582

    def __reshape_to_2d(var):
1583
        return nn.flatten(x=var, axis=2)
1584

T
tianshuo78520a 已提交
1585
    # 1. Find matched bounding box by prior box.
1586 1587
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
T
tianshuo78520a 已提交
1588
    #   1.2 Compute matched bounding box by bipartite matching algorithm.
1589 1590
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1591 1592 1593

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1594 1595
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1596
    gt_label.stop_gradient = True
1597 1598 1599 1600 1601 1602 1603
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1604
    target_label.stop_gradient = True
1605
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1606
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1607
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1608
    actual_shape.stop_gradient = True
1609 1610
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1611
    conf_loss = nn.reshape(
1612
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1613
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1614
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1615
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1616 1617
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1632
            'neg_dist_threshold': neg_overlap,
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1658

1659
    conf_loss = softmax_with_cross_entropy(confidence, target_label)
1660 1661 1662
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1663 1664 1665 1666
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1667 1668 1669 1670 1671 1672 1673 1674
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1675 1676 1677 1678
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1679 1680
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1681
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1682 1683 1684
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1685 1686 1687 1688 1689
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1690
    return loss
C
chengduoZH 已提交
1691 1692


1693 1694 1695 1696
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1697
              aspect_ratios=[1.],
1698 1699 1700 1701 1702
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1703 1704
              name=None,
              min_max_aspect_ratios_order=False):
1705
    """
S
swtkiwi 已提交
1706 1707 1708 1709
	:alias_main: paddle.nn.functional.prior_box
	:alias: paddle.nn.functional.prior_box,paddle.nn.functional.vision.prior_box
	:old_api: paddle.fluid.layers.prior_box

R
ruri 已提交
1710
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1711 1712 1713 1714 1715
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1716
    Parameters:
T
tianshuo78520a 已提交
1717
       input(Variable): 4-D tensor(NCHW), the data type should be float32 or float64.
R
ruri 已提交
1718 1719 1720 1721
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1722
            Default: None.
R
ruri 已提交
1723
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1724
            prior boxes. Default: [1.].
1725 1726 1727 1728
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1729
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1730 1731
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1732
            Default: [0., 0.]
1733
       offset(float): Prior boxes center offset. Default: 0.5
1734
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1735
            in order of [min, max, aspect_ratios], which is consistent with
1736 1737 1738
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1739
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1740 1741

    Returns:
R
ruri 已提交
1742
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1743

R
ruri 已提交
1744 1745
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1746
        H is the height of input, W is the width of input,
R
ruri 已提交
1747
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1748

R
ruri 已提交
1749 1750
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1751
        H is the height of input, W is the width of input
R
ruri 已提交
1752
        num_priors is the total box count of each position of input
1753 1754 1755

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1756

R
ruri 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1804 1805 1806
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()
1807 1808
    check_variable_and_dtype(
        input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box')
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1825 1826 1827 1828 1829 1830 1831 1832
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1833 1834
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1835 1836
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1837 1838
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1839 1840
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1841 1842
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1864
                      flatten_to_2d=False,
R
ruri 已提交
1865 1866
                      name=None):
    """
S
swtkiwi 已提交
1867 1868 1869 1870
	:alias_main: paddle.nn.functional.density_prior_box
	:alias: paddle.nn.functional.density_prior_box,paddle.nn.functional.vision.density_prior_box
	:old_api: paddle.fluid.layers.density_prior_box

R
ruri 已提交
1871

R
ruri 已提交
1872
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1873 1874 1875 1876 1877 1878
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1879
    
R
ruri 已提交
1880
    For densities_i in densities:
R
ruri 已提交
1881 1882
    
    .. math::
R
ruri 已提交
1883

R
ruri 已提交
1884 1885 1886 1887 1888 1889 1890
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1891
            the layout is NCHW.
R
ruri 已提交
1892
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1893 1894
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1895
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1896 1897
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1898
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1899 1900 1901
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1902
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1903
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1904
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1905
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1906 1907
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1908 1909
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1910 1911
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1912 1913
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1914
    Returns:
R
ruri 已提交
1915
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1916 1917

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1918 1919 1920
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1921 1922

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1923 1924 1925
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1926 1927 1928


    Examples:
R
ruri 已提交
1929

R
ruri 已提交
1930 1931
        .. code-block:: python

R
ruri 已提交
1932
            #declarative mode
R
ruri 已提交
1933

R
ruri 已提交
1934 1935
            import paddle.fluid as fluid
            import numpy as np
R
ruri 已提交
1936

R
ruri 已提交
1937 1938 1939
            input = fluid.data(name="input", shape=[None,3,6,9])
            image = fluid.data(name="image", shape=[None,3,9,12])
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1940 1941 1942 1943 1944 1945 1946 1947
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

R
ruri 已提交
1948 1949 1950
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
R
ruri 已提交
1951
 
R
ruri 已提交
1952 1953 1954 1955 1956 1957
            # prepare a batch of data
            input_data = np.random.rand(1,3,6,9).astype("float32")
            image_data = np.random.rand(1,3,9,12).astype("float32")

            box_out, var_out = exe.run(
                fluid.default_main_program(),
R
ruri 已提交
1958
                feed={"input":input_data,
R
ruri 已提交
1959
                      "image":image_data},
R
ruri 已提交
1960 1961 1962
                fetch_list=[box,var],
                return_numpy=True)

R
ruri 已提交
1963 1964 1965 1966
            # print(box_out.shape)
            # (1134, 4)
            # print(var_out.shape)
            # (1134, 4)
R
ruri 已提交
1967 1968


R
ruri 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            #imperative mode
            import paddle.fluid.dygraph as dg

            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                image = dg.to_variable(image_data)
                box, var = fluid.layers.density_prior_box(
                    input=input,
                    image=image,
                    densities=[4, 2, 1],
                    fixed_sizes=[32.0, 64.0, 128.0],
                    fixed_ratios=[1.],
                    clip=True)

                # print(box.shape)
                # [6L, 9L, 21L, 4L]
                # print(var.shape)
                # [6L, 9L, 21L, 4L]
R
ruri 已提交
1987

R
ruri 已提交
1988 1989 1990
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()
1991 1992
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'density_prior_box')
R
ruri 已提交
1993 1994 1995 1996

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

1997 1998 1999
    check_type(densities, 'densities', (list, tuple), 'density_prior_box')
    check_type(fixed_sizes, 'fixed_sizes', (list, tuple), 'density_prior_box')
    check_type(fixed_ratios, 'fixed_ratios', (list, tuple), 'density_prior_box')
R
ruri 已提交
2000 2001
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
2002

R
ruri 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
2018 2019 2020 2021
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
2037
def multi_box_head(inputs,
C
chengduoZH 已提交
2038 2039
                   image,
                   base_size,
C
chengduoZH 已提交
2040
                   num_classes,
C
chengduoZH 已提交
2041
                   aspect_ratios,
2042 2043
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
2044 2045
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
2046 2047 2048 2049
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
2050 2051
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
2052
                   clip=False,
C
chengduoZH 已提交
2053
                   kernel_size=1,
C
chengduoZH 已提交
2054
                   pad=0,
C
chengduoZH 已提交
2055
                   stride=1,
2056 2057
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
2058
    """
S
swtkiwi 已提交
2059 2060
	:api_attr: Static Graph

Q
qingqing01 已提交
2061 2062 2063 2064
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
2065
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
2066 2067

    Args:
Q
qingqing01 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2089
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2090 2091
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2111
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2112 2113 2114 2115 2116
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2117 2118 2119
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2120
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2121
            in order of [min, max, aspect_ratios], which is consistent with
2122
            Caffe. Please note, this order affects the weights order of
T
tianshuo78520a 已提交
2123
            convolution layer followed by and does not affect the final
2124
            detection results. Default: False.
C
chengduoZH 已提交
2125 2126

    Returns:
Q
update  
qiaolongfei 已提交
2127 2128
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2129 2130 2131
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2132

Q
qingqing01 已提交
2133 2134 2135 2136
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2137

Q
qingqing01 已提交
2138 2139 2140
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2141

Q
qingqing01 已提交
2142 2143
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2144

Q
qingqing01 已提交
2145
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2146
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2147

2148 2149
          import paddle.fluid as fluid

Q
qingqing01 已提交
2150 2151 2152 2153 2154 2155 2156
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2157

Q
update  
qiaolongfei 已提交
2158
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2159
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2195 2196
    """

C
chengduoZH 已提交
2197
    def _reshape_with_axis_(input, axis=1):
2198
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2199
        return out
2200

2201 2202
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2203

C
chengduoZH 已提交
2204 2205 2206 2207
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2208 2209
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2210

C
chengduoZH 已提交
2211 2212 2213 2214 2215
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2216
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2217 2218 2219
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2220
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2221 2222 2223 2224 2225
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2226 2227 2228 2229 2230
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
Z
zhongpu 已提交
2231
    if step_h is not None:
C
chengduoZH 已提交
2232 2233 2234 2235
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
Z
zhongpu 已提交
2236
    if step_w is not None:
C
chengduoZH 已提交
2237 2238 2239 2240
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
Z
zhongpu 已提交
2241
    if steps is not None:
C
chengduoZH 已提交
2242 2243 2244 2245 2246 2247 2248
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2249 2250
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2251 2252
    box_results = []
    var_results = []
C
chengduoZH 已提交
2253 2254
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2255 2256
        max_size = max_sizes[i]

2257
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2258
            min_size = [min_size]
C
chengduoZH 已提交
2259 2260
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2261 2262 2263 2264

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2265
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2266
                aspect_ratio = [aspect_ratio]
2267
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2268

2269
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2270 2271
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2272 2273 2274 2275 2276

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2277

2278
        # get loc
Y
Yuan Gao 已提交
2279
        num_loc_output = num_boxes * 4
2280
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2281
            input=input,
2282 2283 2284 2285 2286
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2287
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2288
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2289
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2290

2291
        # get conf
C
chengduoZH 已提交
2292
        num_conf_output = num_boxes * num_classes
2293
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2294
            input=input,
2295 2296 2297 2298
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2299
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2300
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2301
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2302

C
chengduoZH 已提交
2303 2304 2305
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2306 2307
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2317
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2318
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2319
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2320 2321
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2322

2323 2324
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2325
    return mbox_locs_concat, mbox_confs_concat, box, var
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
S
swtkiwi 已提交
2336 2337 2338 2339
	:alias_main: paddle.nn.functional.anchor_generator
	:alias: paddle.nn.functional.anchor_generator,paddle.nn.functional.vision.anchor_generator
	:old_api: paddle.fluid.layers.anchor_generator

2340 2341 2342 2343 2344 2345 2346 2347
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2364 2365

    Returns:
W
wangguanzhong 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2378 2379 2380 2381 2382 2383


    Examples:

        .. code-block:: python

2384
            import paddle.fluid as fluid
2385
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2386
            anchor, var = fluid.layers.anchor_generator(
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2420 2421
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2422 2423 2424 2425 2426 2427 2428 2429 2430
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2431 2432


W
whs 已提交
2433 2434 2435 2436
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2437 2438
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2439
    """
S
SunGaofeng 已提交
2440
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2441

S
SunGaofeng 已提交
2442 2443 2444 2445 2446
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2447 2448
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2449 2450 2451
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2452 2453 2454
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2455 2456 2457 2458
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2459
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2460 2461 2462
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2463 2464

    Returns:
S
SunGaofeng 已提交
2465
            A tuple with three Variables. (out, mask, transform_matrix)
2466 2467

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2468
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2469 2470

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2471
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2472 2473

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2474 2475 2476 2477
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2478 2479 2480 2481

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2482
            import paddle.fluid as fluid
2483

S
SunGaofeng 已提交
2484 2485
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2486
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2487
    """
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    check_variable_and_dtype(input, 'input', ['float32'],
                             'roi_perspective_transform')
    check_variable_and_dtype(rois, 'rois', ['float32'],
                             'roi_perspective_transform')
    check_type(transformed_height, 'transformed_height', int,
               'roi_perspective_transform')
    check_type(transformed_width, 'transformed_width', int,
               'roi_perspective_transform')
    check_type(spatial_scale, 'spatial_scale', float,
               'roi_perspective_transform')

W
whs 已提交
2499 2500
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2501
    out = helper.create_variable_for_type_inference(dtype)
2502 2503
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2504 2505
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2506 2507 2508 2509
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2510 2511 2512
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2513 2514 2515
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2516
        },
W
whs 已提交
2517 2518 2519 2520 2521
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2522
    return out, mask, transform_matrix
W
whs 已提交
2523 2524


2525 2526
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2527
                             is_crowd,
2528
                             gt_boxes,
2529
                             im_info,
2530 2531 2532 2533 2534 2535
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2536
                             class_nums=None,
2537 2538 2539
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2540
    """
S
swtkiwi 已提交
2541 2542 2543 2544
	:alias_main: paddle.nn.functional.generate_proposal_labels
	:alias: paddle.nn.functional.generate_proposal_labels,paddle.nn.functional.vision.generate_proposal_labels
	:old_api: paddle.fluid.layers.generate_proposal_labels

2545
    **Generate Proposal Labels of Faster-RCNN**
2546

B
buxingyuan 已提交
2547
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2548
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2549 2550 2551

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2552
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2553 2554
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2555
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2556
    then we apply random sampling to make sure
B
buxingyuan 已提交
2557
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2558 2559 2560 2561 2562

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2563 2564 2565
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2566 2567 2568
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2569 2570 2571 2572 2573 2574 2575
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2576
        use_random(bool): Use random sampling to choose foreground and background boxes.
2577 2578
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2579

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2591 2592 2593 2594
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2595 2596 2597 2598 2599
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2600
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2601 2602 2603
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2604 2605 2606 2607
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2617 2618 2619 2620 2621 2622

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2623
            'IsCrowd': is_crowd,
2624
            'GtBoxes': gt_boxes,
2625
            'ImInfo': im_info
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2641
            'class_nums': class_nums,
2642 2643 2644
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2656 2657 2658
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
S
swtkiwi 已提交
2659 2660 2661 2662
	:alias_main: paddle.nn.functional.generate_mask_labels
	:alias: paddle.nn.functional.generate_mask_labels,paddle.nn.functional.vision.generate_mask_labels
	:old_api: paddle.fluid.layers.generate_mask_labels

Q
qingqing01 已提交
2663
    **Generate Mask Labels for Mask-RCNN**
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2699 2700 2701 2702 2703 2704
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
T
tianshuo78520a 已提交
2705
            should be int. M is the total number of ground-truth, each
Q
qingqing01 已提交
2706 2707 2708 2709 2710 2711 2712
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2713
            The users should return correct data format in reader.
Q
qingqing01 已提交
2714
            The LoD[0] represents the ground-truth objects number of
2715 2716 2717 2718
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2719 2720 2721 2722
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
T
tianshuo78520a 已提交
2723
            of int32. R is the same as it in `rois`. Each element represents
2724
            a class label of a RoI.
Q
qingqing01 已提交
2725 2726
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2727 2728

    Returns:
Q
qingqing01 已提交
2729 2730 2731
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
T
tianshuo78520a 已提交
2732
        original image size.
Q
qingqing01 已提交
2733 2734

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
T
tianshuo78520a 已提交
2735
        and int data type, each element represents the output mask RoI
Q
qingqing01 已提交
2736 2737 2738 2739
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
T
tianshuo78520a 已提交
2740
        predictions. Each element represents the binary mask targets.
2741 2742 2743 2744

    Examples:
        .. code-block:: python

2745 2746
          import paddle.fluid as fluid

Q
qingqing01 已提交
2747
          im_info = fluid.data(name="im_info", shape=[None, 3],
2748
              dtype="float32")
Q
qingqing01 已提交
2749
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2750
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2751
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2752
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2753
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2754
              dtype="float32", lod_level=3)
2755
          # rois, roi_labels can be the output of
2756
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2757
          rois = fluid.data(name="rois", shape=[None, 4],
2758
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2759
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2760
              dtype="int32", lod_level=1)
2761 2762 2763 2764 2765 2766
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2767
              labels_int32=roi_labels,
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
F
FDInSky 已提交
2815 2816
                       name=None,
                       return_rois_num=False):
2817
    """
S
swtkiwi 已提交
2818 2819 2820 2821
	:alias_main: paddle.nn.functional.generate_proposals
	:alias: paddle.nn.functional.generate_proposals,paddle.nn.functional.vision.generate_proposals
	:old_api: paddle.fluid.layers.generate_proposals

H
haowang101779990 已提交
2822 2823
    **Generate proposal Faster-RCNN**

2824 2825 2826 2827
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2828 2829 2830 2831
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2832 2833
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2834 2835 2836 2837 2838 2839
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2840 2841 2842
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2843
            width of the feature map. The data type must be float32.
2844
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
T
tianshuo78520a 已提交
2845
            represents the difference between predicted box location and
2846
            anchor location. The data type must be float32.
2847
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
2848 2849
            image information for N batch. Height and width are the input sizes 
            and scale is the ratio of network input size and original size. 
2850
            The data type must be int32.
2851 2852 2853
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2854 2855
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2856
            [H, W, num_priors, 4]. Each variance is in
2857
            (xcenter, ycenter, w, h) format. The data type must be float32.
2858
        pre_nms_top_n(float): Number of total bboxes to be kept per
2859
            image before NMS. The data type must be float32. `6000` by default.
2860
        post_nms_top_n(float): Number of total bboxes to be kept per
2861 2862
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2863
        min_size(float): Remove predicted boxes with either height or
2864 2865 2866
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.
F
FDInSky 已提交
2867 2868 2869 2870
        return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's 
            num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents
            the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. 
            'False' by default. 
2871 2872 2873 2874 2875 2876
    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2877 2878 2879 2880 2881

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2882 2883 2884 2885 2886
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2887 2888 2889
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2890 2891 2892
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2893 2894 2895 2896
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
F
FDInSky 已提交
2897 2898
    rpn_rois_lod = helper.create_variable_for_type_inference(dtype='int32')

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
F
FDInSky 已提交
2915 2916 2917 2918 2919
        outputs={
            'RpnRois': rpn_rois,
            'RpnRoiProbs': rpn_roi_probs,
            'RpnRoisLod': rpn_rois_lod
        })
2920 2921
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True
F
FDInSky 已提交
2922
    rpn_rois_lod.stop_gradient = True
2923

F
FDInSky 已提交
2924 2925 2926 2927
    if return_rois_num:
        return rpn_rois, rpn_roi_probs, rpn_rois_lod
    else:
        return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2928 2929


J
jerrywgz 已提交
2930
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2931
    """
S
swtkiwi 已提交
2932 2933 2934 2935
	:alias_main: paddle.nn.functional.box_clip
	:alias: paddle.nn.functional.box_clip,paddle.nn.functional.vision.box_clip
	:old_api: paddle.fluid.layers.box_clip
	
J
jerrywgz 已提交
2936
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2937
    For each input box, The formula is given as follows:
2938 2939 2940
        
    .. code-block:: text

J
jerrywgz 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2952 2953

    Args:
W
wangguanzhong 已提交
2954 2955 2956
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
T
tianshuo78520a 已提交
2957
            (height, width, scale) representing the information of image. 
2958
            Height and width are the input sizes and scale is the ratio of network input
W
wangguanzhong 已提交
2959 2960 2961 2962
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2963 2964
    
    Returns:
W
wangguanzhong 已提交
2965 2966
        Variable:

T
tianshuo78520a 已提交
2967
        output(Variable): The clipped tensor with data type float32 or float64. 
W
wangguanzhong 已提交
2968 2969
        The shape is same as input.

2970
        
J
jerrywgz 已提交
2971 2972
    Examples:
        .. code-block:: python
2973
        
2974
            import paddle.fluid as fluid
2975 2976 2977
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2978
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2979
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2980 2981
    """

2982 2983 2984 2985
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'box_clip')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'box_clip')

J
jerrywgz 已提交
2986
    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2987
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2988
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2989
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2990

2991 2992
    return output

J
jerrywgz 已提交
2993

2994 2995 2996 2997 2998 2999 3000 3001
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
3002
                               nms_eta=1.0):
3003
    """
3004
    **Detection Output Layer for the detector RetinaNet.**
3005

3006 3007 3008 3009
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
3010

3011 3012 3013
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
3014 3015 3016 3017
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
3035
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
3036 3037 3038
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
T
tianshuo78520a 已提交
3039
            information of each image is a 3-vector which are the height and width
3040 3041
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
3042
        score_threshold(float): Threshold to filter out bounding boxes
3043
            with a confidence score before NMS, default value is set to 0.05.
3044
        nms_top_k(int): Maximum number of detections per FPN layer to be
3045 3046
            kept according to the confidences before NMS, default value is set to
            1000.
3047
        keep_top_k(int): Number of total bounding boxes to be kept per image after
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
T
tianshuo78520a 已提交
3066
    :attr:`anchors` is required to be from the highest FPN level.
3067 3068

    Returns:
3069 3070
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
3071
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
3072 3073 3074
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
3075 3076 3077 3078 3079 3080
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
3098 3099 3100 3101 3102 3103 3104 3105 3106
               bboxes=[bboxes_low, bboxes_high],
               scores=[scores_low, scores_high],
               anchors=[anchors_low, anchors_high],
               im_info=im_info,
               score_threshold=0.05,
               nms_top_k=1000,
               keep_top_k=100,
               nms_threshold=0.45,
               nms_eta=1.0)
3107 3108
    """

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
    check_type(bboxes, 'bboxes', (list), 'retinanet_detection_output')
    for i, bbox in enumerate(bboxes):
        check_variable_and_dtype(bbox, 'bbox{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(scores, 'scores', (list), 'retinanet_detection_output')
    for i, score in enumerate(scores):
        check_variable_and_dtype(score, 'score{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_type(anchors, 'anchors', (list), 'retinanet_detection_output')
    for i, anchor in enumerate(anchors):
        check_variable_and_dtype(anchor, 'anchor{}'.format(i),
                                 ['float32', 'float64'],
                                 'retinanet_detection_output')
    check_variable_and_dtype(im_info, 'im_info', ['float32', 'float64'],
                             'retinanet_detection_output')

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3150 3151 3152 3153 3154
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3155
                   nms_threshold=0.3,
J
jerrywgz 已提交
3156 3157
                   normalized=True,
                   nms_eta=1.,
3158 3159
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3160
    """
S
swtkiwi 已提交
3161 3162 3163 3164
	:alias_main: paddle.nn.functional.multiclass_nms
	:alias: paddle.nn.functional.multiclass_nms,paddle.nn.functional.extension.multiclass_nms
	:old_api: paddle.fluid.layers.multiclass_nms

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3193

3194 3195 3196 3197 3198 3199 3200

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3201 3202 3203 3204 3205 3206 3207 3208
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3209
                           The data type is float32 or float64.
3210 3211
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3212
                           class number. The data type is float32 or float64.   
3213 3214 3215 3216 3217 3218 3219
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3220
                           of BBoxes.The data type is float32 or float64. 
3221 3222 3223
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3224
                           case with shape [M, C, 4].The data type is float32 or float64. 
3225 3226 3227 3228 3229 3230 3231
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3232
                         the confidences after the filtering detections based
3233 3234 3235 3236 3237 3238 3239 3240 3241
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3242
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3243 3244 3245 3246 3247
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3248 3249 3250 3251
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3252

3253

3254 3255 3256
    Examples:
        .. code-block:: python

3257

3258
            import paddle.fluid as fluid
X
xiaoting 已提交
3259
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3260
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3261
            scores = fluid.data(name='scores', shape=[None,81],
3262 3263 3264 3265 3266 3267 3268 3269 3270
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3271
    """
X
xiaoting 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
    check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'],
                             'multiclass_nms')
    check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'],
                             'multiclass_nms')
    check_type(score_threshold, 'score_threshold', float, 'multicalss_nms')
    check_type(nms_top_k, 'nums_top_k', int, 'multiclass_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'mutliclass_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'multiclass_nms')
    check_type(normalized, 'normalized', bool, 'multiclass_nms')
    check_type(nms_eta, 'nms_eta', float, 'multiclass_nms')
    check_type(background_label, 'background_label', int, 'multiclass_nms')

J
jerrywgz 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
    helper = LayerHelper('multiclass_nms', **locals())
    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3301 3302

    return output
3303 3304


3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
3353
                         the confidences after the filtering detections based
3354 3355 3356
                         on score_threshold.
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
3357 3358
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    check_variable_and_dtype(bboxes, 'bboxes', ['float32', 'float64'],
                             'locality_aware_nms')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'locality_aware_nms')
    check_type(background_label, 'background_label', int, 'locality_aware_nms')
    check_type(score_threshold, 'score_threshold', float, 'locality_aware_nms')
    check_type(nms_top_k, 'nms_top_k', int, 'locality_aware_nms')
    check_type(nms_eta, 'nms_eta', float, 'locality_aware_nms')
    check_type(nms_threshold, 'nms_threshold', float, 'locality_aware_nms')
    check_type(keep_top_k, 'keep_top_k', int, 'locality_aware_nms')
    check_type(normalized, 'normalized', bool, 'locality_aware_nms')

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3435 3436 3437 3438 3439 3440 3441
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
S
swtkiwi 已提交
3442 3443 3444 3445
	:alias_main: paddle.nn.functional.distribute_fpn_proposals
	:alias: paddle.nn.functional.distribute_fpn_proposals,paddle.nn.functional.vision.distribute_fpn_proposals
	:old_api: paddle.fluid.layers.distribute_fpn_proposals
	
W
wangguanzhong 已提交
3446 3447 3448 3449 3450 3451
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3452
    
J
jerrywgz 已提交
3453
    .. math::
3454

J
jerrywgz 已提交
3455
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3456

J
jerrywgz 已提交
3457 3458 3459
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3460 3461

    Args:
W
wangguanzhong 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3474

3475
    Returns:
W
wangguanzhong 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3486 3487 3488 3489

    Examples:
        .. code-block:: python

3490
            import paddle.fluid as fluid
3491 3492
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3493
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3494 3495 3496
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3497 3498 3499
                refer_level=4,
                refer_scale=224)
    """
3500 3501
    check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
                             'distribute_fpn_proposals')
3502
    helper = LayerHelper('distribute_fpn_proposals', **locals())
3503
    dtype = helper.input_dtype('fpn_rois')
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3521 3522


3523
@templatedoc()
J
jerrywgz 已提交
3524 3525 3526 3527 3528 3529
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3530
    """
S
swtkiwi 已提交
3531 3532 3533 3534
	:alias_main: paddle.nn.functional.box_decoder_and_assign
	:alias: paddle.nn.functional.box_decoder_and_assign,paddle.nn.functional.vision.box_decoder_and_assign
	:old_api: paddle.fluid.layers.box_decoder_and_assign
	
3535 3536 3537 3538 3539 3540
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3541
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3542 3543 3544 3545
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3546
    Returns:
W
wangguanzhong 已提交
3547
        Tuple:
J
jerrywgz 已提交
3548

W
wangguanzhong 已提交
3549 3550 3551
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3552 3553


3554 3555 3556
    Examples:
        .. code-block:: python

3557
            import paddle.fluid as fluid
3558 3559 3560 3561 3562 3563 3564 3565
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3566
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3567
                pb, pbv, loc, scores, 4.135)
3568 3569

    """
3570 3571 3572 3573 3574 3575
    check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
                             'box_decoder_and_assign')
    check_variable_and_dtype(box_score, 'box_score', ['float32', 'float64'],
                             'box_decoder_and_assign')
3576 3577
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3578
    decoded_box = helper.create_variable_for_type_inference(
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3593
            "DecodeBox": decoded_box,
3594 3595
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3596
    return decoded_box, output_assign_box
3597 3598 3599 3600 3601 3602 3603 3604 3605


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
S
swtkiwi 已提交
3606 3607 3608 3609
	:alias_main: paddle.nn.functional.collect_fpn_proposals
	:alias: paddle.nn.functional.collect_fpn_proposals,paddle.nn.functional.vision.collect_fpn_proposals
	:old_api: paddle.fluid.layers.collect_fpn_proposals
	
W
wangguanzhong 已提交
3610 3611 3612
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3613 3614 3615 3616 3617 3618 3619 3620

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3621 3622 3623 3624 3625 3626
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3627 3628 3629
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3630 3631 3632 3633
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3634
    Returns:
W
wangguanzhong 已提交
3635 3636 3637 3638 3639
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3640 3641 3642 3643

    Examples:
        .. code-block:: python
           
3644
            import paddle.fluid as fluid
3645 3646 3647
            multi_rois = []
            multi_scores = []
            for i in range(4):
3648 3649
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3650
            for i in range(4):
3651 3652
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3653 3654 3655 3656 3657 3658 3659 3660

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """
3661 3662
    check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals')
    check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals')
3663 3664
    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
3665 3666
    check_dtype(dtype, 'multi_rois', ['float32', 'float64'],
                'collect_fpn_proposals')
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois