Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c12a969b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c12a969b
编写于
1月 22, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine comment and unittest, test=develop
上级
0d4b60ab
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
79 addition
and
123 deletion
+79
-123
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+8
-5
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+2
-8
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+2
-2
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+67
-108
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
c12a969b
...
...
@@ -32,7 +32,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
prior_box_dims
.
size
(),
2
,
"The rank of Input
of
PriorBox must be 2"
);
"The rank of Input PriorBox must be 2"
);
PADDLE_ENFORCE_EQ
(
prior_box_dims
[
1
],
4
,
"The shape of PriorBox is [N, 4]"
);
if
(
ctx
->
HasInput
(
"PriorBoxVar"
))
{
...
...
@@ -58,7 +58,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
2
,
"The rank of Input
of
TargetBox must be 2"
);
"The rank of Input TargetBox must be 2"
);
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
4
,
"The shape of TargetBox is [M, 4]"
);
ctx
->
SetOutputDim
(
...
...
@@ -66,7 +66,7 @@ class BoxCoderOp : public framework::OperatorWithKernel {
framework
::
make_ddim
({
target_box_dims
[
0
],
prior_box_dims
[
0
],
4
}));
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
.
size
(),
3
,
"The rank of Input
of
TargetBox must be 3"
);
"The rank of Input TargetBox must be 3"
);
if
(
axis
==
0
)
{
PADDLE_ENFORCE_EQ
(
target_box_dims
[
1
],
prior_box_dims
[
0
]);
}
else
if
(
axis
==
1
)
{
...
...
@@ -126,8 +126,11 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddAttr
<
int
>
(
"axis"
,
"(int, default 1)"
"which axis to broadcast for box decode, it is only valid"
"(int, default 0)"
"which axis in PriorBox to broadcast for box decode,"
"for example, if axis is 0 and TargetBox has shape"
"[N, M, 4] and PriorBox has shape [M, 4], then PriorBox "
"will broadcast to [N, M, 4] for decoding. It is only valid"
"when code type is decode_center_size"
)
.
SetDefault
(
0
)
.
InEnum
({
0
,
1
});
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
c12a969b
...
...
@@ -79,10 +79,7 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
if
(
idx
<
row
*
col
)
{
const
int
col_idx
=
idx
%
col
;
const
int
row_idx
=
idx
/
col
;
if
(
axis
==
0
)
prior_box_offset
=
col_idx
*
len
;
else
if
(
axis
==
1
)
prior_box_offset
=
row_idx
*
len
;
prior_box_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
T
prior_box_width
=
prior_box_data
[
prior_box_offset
+
2
]
-
prior_box_data
[
prior_box_offset
]
+
(
normalized
==
false
);
...
...
@@ -98,10 +95,7 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
if
(
axis
==
0
)
prior_var_offset
=
col_idx
*
len
;
else
if
(
axis
==
1
)
prior_var_offset
=
row_idx
*
len
;
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
}
target_box_width
=
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
idx
*
len
+
2
])
*
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
c12a969b
...
...
@@ -342,8 +342,8 @@ def box_coder(prior_box,
target_box
,
code_type
=
"encode_center_size"
,
box_normalized
=
True
,
axis
=
0
,
name
=
None
):
name
=
None
,
axis
=
0
):
"""
${comment}
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
c12a969b
...
...
@@ -21,121 +21,80 @@ import math
from
op_test
import
OpTest
def
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
,
axis
=
0
):
prior_box_width
=
prior_box
[:,
2
]
-
prior_box
[:,
0
]
+
\
(
box_normalized
==
False
)
prior_box_height
=
prior_box
[:,
3
]
-
prior_box
[:,
1
]
+
\
(
box_normalized
==
False
)
prior_box_x
=
prior_box_width
*
0.5
+
prior_box
[:,
0
]
prior_box_y
=
prior_box_height
*
0.5
+
prior_box
[:,
1
]
if
axis
==
0
:
prior_box_width
=
prior_box_width
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_height
=
prior_box_height
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_x
=
prior_box_x
.
reshape
(
1
,
prior_box
.
shape
[
0
])
prior_box_y
=
prior_box_y
.
reshape
(
1
,
prior_box
.
shape
[
0
])
def
box_decoder
(
t_box
,
p_box
,
pb_v
,
output_box
,
norm
,
axis
=
0
):
pb_w
=
p_box
[:,
2
]
-
p_box
[:,
0
]
+
(
norm
==
False
)
pb_h
=
p_box
[:,
3
]
-
p_box
[:,
1
]
+
(
norm
==
False
)
pb_x
=
pb_w
*
0.5
+
p_box
[:,
0
]
pb_y
=
pb_h
*
0.5
+
p_box
[:,
1
]
shape
=
(
1
,
p_box
.
shape
[
0
])
if
axis
==
0
else
(
p_box
.
shape
[
0
],
1
)
pb_w
=
pb_w
.
reshape
(
shape
)
pb_h
=
pb_h
.
reshape
(
shape
)
pb_x
=
pb_x
.
reshape
(
shape
)
pb_y
=
pb_y
.
reshape
(
shape
)
if
pb_v
.
ndim
==
2
:
pb_v
=
pb_v
.
reshape
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
if
pb_v
.
ndim
==
1
:
tb_x
=
pb_v
[
0
]
*
t_box
[:,
:,
0
]
*
pb_w
+
pb_x
tb_y
=
pb_v
[
1
]
*
t_box
[:,
:,
1
]
*
pb_h
+
pb_y
tb_w
=
np
.
exp
(
pb_v
[
2
]
*
t_box
[:,
:,
2
])
*
pb_w
tb_h
=
np
.
exp
(
pb_v
[
3
]
*
t_box
[:,
:,
3
])
*
pb_h
else
:
prior_box_width
=
prior_box_width
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_height
=
prior_box_height
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_x
=
prior_box_x
.
reshape
(
prior_box
.
shape
[
0
],
1
)
prior_box_y
=
prior_box_y
.
reshape
(
prior_box
.
shape
[
0
],
1
)
if
prior_box_var
.
ndim
==
2
:
prior_box_var
=
prior_box_var
.
reshape
(
1
,
prior_box_var
.
shape
[
0
],
prior_box_var
.
shape
[
1
])
if
(
code_type
==
"EncodeCenterSize"
):
target_box_x
=
((
target_box
[:,
2
]
+
target_box
[:,
0
])
/
2
).
reshape
(
target_box
.
shape
[
0
],
1
)
target_box_y
=
((
target_box
[:,
3
]
+
target_box
[:,
1
])
/
2
).
reshape
(
target_box
.
shape
[
0
],
1
)
target_box_width
=
((
target_box
[:,
2
]
-
target_box
[:,
0
])).
reshape
(
target_box
.
shape
[
0
],
1
)
target_box_height
=
((
target_box
[:,
3
]
-
target_box
[:,
1
])).
reshape
(
target_box
.
shape
[
0
],
1
)
if
not
box_normalized
:
target_box_height
=
target_box_height
+
1
target_box_width
=
target_box_width
+
1
if
prior_box_var
.
ndim
==
1
:
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
\
prior_box_width
/
\
prior_box_var
[
0
]
output_box
[:,:,
1
]
=
(
target_box_y
-
prior_box_y
)
/
\
prior_box_height
/
\
prior_box_var
[
1
]
output_box
[:,:,
2
]
=
np
.
log
(
np
.
fabs
(
target_box_width
/
\
prior_box_width
))
/
\
prior_box_var
[
2
]
output_box
[:,:,
3
]
=
np
.
log
(
np
.
fabs
(
target_box_height
/
\
prior_box_height
))
/
\
prior_box_var
[
3
]
else
:
output_box
[:,:,
0
]
=
(
target_box_x
-
prior_box_x
)
/
\
prior_box_width
/
\
prior_box_var
[:,:,
0
]
output_box
[:,:,
1
]
=
(
target_box_y
-
prior_box_y
)
/
\
prior_box_height
/
\
prior_box_var
[:,:,
1
]
output_box
[:,:,
2
]
=
np
.
log
(
np
.
fabs
(
target_box_width
/
\
prior_box_width
))
/
\
prior_box_var
[:,:,
2
]
output_box
[:,:,
3
]
=
np
.
log
(
np
.
fabs
(
target_box_height
/
\
prior_box_height
))
/
\
prior_box_var
[:,:,
3
]
elif
(
code_type
==
"DecodeCenterSize"
):
if
prior_box_var
.
ndim
==
1
:
target_box_x
=
prior_box_var
[
0
]
*
target_box
[:,:,
0
]
*
\
prior_box_width
+
prior_box_x
target_box_y
=
prior_box_var
[
1
]
*
target_box
[:,:,
1
]
*
\
prior_box_height
+
prior_box_y
target_box_width
=
np
.
exp
(
prior_box_var
[
2
]
*
target_box
[:,:,
2
])
*
\
prior_box_width
target_box_height
=
np
.
exp
(
prior_box_var
[
3
]
*
target_box
[:,:,
3
])
*
\
prior_box_height
else
:
target_box_x
=
prior_box_var
[:,:,
0
]
*
target_box
[:,:,
0
]
*
\
prior_box_width
+
prior_box_x
target_box_y
=
prior_box_var
[:,:,
1
]
*
target_box
[:,:,
1
]
*
\
prior_box_height
+
prior_box_y
target_box_width
=
np
.
exp
(
prior_box_var
[:,:,
2
]
*
\
target_box
[:,:,
2
])
*
prior_box_width
target_box_height
=
np
.
exp
(
prior_box_var
[:,:,
3
]
*
\
target_box
[:,:,
3
])
*
prior_box_height
output_box
[:,
:,
0
]
=
target_box_x
-
target_box_width
/
2
output_box
[:,
:,
1
]
=
target_box_y
-
target_box_height
/
2
output_box
[:,
:,
2
]
=
target_box_x
+
target_box_width
/
2
output_box
[:,
:,
3
]
=
target_box_y
+
target_box_height
/
2
if
not
box_normalized
:
output_box
[:,
:,
2
]
=
output_box
[:,
:,
2
]
-
1
output_box
[:,
:,
3
]
=
output_box
[:,
:,
3
]
-
1
def
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
,
code_type
,
box_normalized
,
axis
=
0
):
n
=
target_box
.
shape
[
0
]
m
=
prior_box
.
shape
[
0
]
tb_x
=
pb_v
[:,
:,
0
]
*
t_box
[:,
:,
0
]
*
pb_w
+
pb_x
tb_y
=
pb_v
[:,
:,
1
]
*
t_box
[:,
:,
1
]
*
pb_h
+
pb_y
tb_w
=
np
.
exp
(
pb_v
[:,
:,
2
]
*
t_box
[:,
:,
2
])
*
pb_w
tb_h
=
np
.
exp
(
pb_v
[:,
:,
3
]
*
t_box
[:,
:,
3
])
*
pb_h
output_box
[:,
:,
0
]
=
tb_x
-
tb_w
/
2
output_box
[:,
:,
1
]
=
tb_y
-
tb_h
/
2
output_box
[:,
:,
2
]
=
tb_x
+
tb_w
/
2
-
(
not
norm
)
output_box
[:,
:,
3
]
=
tb_y
+
tb_h
/
2
-
(
not
norm
)
def
box_encoder
(
t_box
,
p_box
,
pb_v
,
output_box
,
norm
):
pb_w
=
p_box
[:,
2
]
-
p_box
[:,
0
]
+
(
norm
==
False
)
pb_h
=
p_box
[:,
3
]
-
p_box
[:,
1
]
+
(
norm
==
False
)
pb_x
=
pb_w
*
0.5
+
p_box
[:,
0
]
pb_y
=
pb_h
*
0.5
+
p_box
[:,
1
]
shape
=
(
1
,
p_box
.
shape
[
0
])
pb_w
=
pb_w
.
reshape
(
shape
)
pb_h
=
pb_h
.
reshape
(
shape
)
pb_x
=
pb_x
.
reshape
(
shape
)
pb_y
=
pb_y
.
reshape
(
shape
)
if
pb_v
.
ndim
==
2
:
pb_v
=
pb_v
.
reshape
(
1
,
pb_v
.
shape
[
0
],
pb_v
.
shape
[
1
])
tb_x
=
((
t_box
[:,
2
]
+
t_box
[:,
0
])
/
2
).
reshape
(
t_box
.
shape
[
0
],
1
)
tb_y
=
((
t_box
[:,
3
]
+
t_box
[:,
1
])
/
2
).
reshape
(
t_box
.
shape
[
0
],
1
)
tb_w
=
(
t_box
[:,
2
]
-
t_box
[:,
0
]).
reshape
(
t_box
.
shape
[
0
],
1
)
+
(
not
norm
)
tb_h
=
(
t_box
[:,
3
]
-
t_box
[:,
1
]).
reshape
(
t_box
.
shape
[
0
],
1
)
+
(
not
norm
)
if
pb_v
.
ndim
==
1
:
output_box
[:,
:,
0
]
=
(
tb_x
-
pb_x
)
/
pb_w
/
pb_v
[
0
]
output_box
[:,
:,
1
]
=
(
tb_y
-
pb_y
)
/
pb_h
/
pb_v
[
1
]
output_box
[:,
:,
2
]
=
np
.
log
(
np
.
fabs
(
tb_w
/
pb_w
))
/
pb_v
[
2
]
output_box
[:,
:,
3
]
=
np
.
log
(
np
.
fabs
(
tb_h
/
pb_h
))
/
pb_v
[
3
]
else
:
output_box
[:,
:,
0
]
=
(
tb_x
-
pb_x
)
/
pb_w
/
pb_v
[:,
:,
0
]
output_box
[:,
:,
1
]
=
(
tb_y
-
pb_y
)
/
pb_h
/
pb_v
[:,
:,
1
]
output_box
[:,
:,
2
]
=
np
.
log
(
np
.
fabs
(
tb_w
/
pb_w
))
/
pb_v
[:,
:,
2
]
output_box
[:,
:,
3
]
=
np
.
log
(
np
.
fabs
(
tb_h
/
pb_h
))
/
pb_v
[:,
:,
3
]
def
batch_box_coder
(
p_box
,
pb_v
,
t_box
,
lod
,
code_type
,
norm
,
axis
=
0
):
n
=
t_box
.
shape
[
0
]
m
=
p_box
.
shape
[
0
]
if
code_type
==
"DecodeCenterSize"
:
m
=
t
arget
_box
.
shape
[
1
]
m
=
t_box
.
shape
[
1
]
output_box
=
np
.
zeros
((
n
,
m
,
4
),
dtype
=
np
.
float32
)
cur_offset
=
0
for
i
in
range
(
len
(
lod
)):
if
(
code_type
==
"EncodeCenterSize"
):
box_coder
(
target_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:],
prior_box
,
prior_box_var
,
output_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:,
:],
code_type
,
box_normalized
)
box_encoder
(
t_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:],
p_box
,
pb_v
,
output_box
[
cur_offset
:(
cur_offset
+
lod
[
i
]),
:,
:],
norm
)
elif
(
code_type
==
"DecodeCenterSize"
):
box_coder
(
target_box
,
prior_box
,
prior_box_var
,
output_box
,
code_type
,
box_normalized
,
axis
)
box_decoder
(
t_box
,
p_box
,
pb_v
,
output_box
,
norm
,
axis
)
cur_offset
+=
lod
[
i
]
return
output_box
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录