Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
6b9fbcf3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b9fbcf3
编写于
12月 24, 2019
作者:
F
FDInSky
提交者:
qingqing01
12月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update iou_similarity op to support non-normalized bbox (#21671)
Update iou_similarity op to support non-normalized bbox
上级
d053561d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
16 deletion
+71
-16
paddle/fluid/operators/detection/iou_similarity_op.cc
paddle/fluid/operators/detection/iou_similarity_op.cc
+4
-1
paddle/fluid/operators/detection/iou_similarity_op.h
paddle/fluid/operators/detection/iou_similarity_op.h
+26
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+4
-3
python/paddle/fluid/tests/unittests/test_iou_similarity_op.py
...on/paddle/fluid/tests/unittests/test_iou_similarity_op.py
+37
-5
未找到文件。
paddle/fluid/operators/detection/iou_similarity_op.cc
浏览文件 @
6b9fbcf3
...
...
@@ -61,7 +61,10 @@ class IOUSimilarityOpMaker : public framework::OpProtoAndCheckerMaker {
"[xmin, ymin] is the left top coordinate of the box if the "
"input is image feature map, and [xmax, ymax] is the right "
"bottom coordinate of the box."
);
AddAttr
<
bool
>
(
"box_normalized"
,
"(bool, default true) "
"whether treat the priorbox as a noramlized box"
)
.
SetDefault
(
true
);
AddOutput
(
"Out"
,
"(LoDTensor, the lod is same as input X) The output of "
"iou_similarity op, a tensor with shape [N, M] "
...
...
paddle/fluid/operators/detection/iou_similarity_op.h
浏览文件 @
6b9fbcf3
...
...
@@ -18,16 +18,28 @@ limitations under the License. */
template
<
typename
T
>
inline
HOSTDEVICE
T
IOUSimilarity
(
T
xmin1
,
T
ymin1
,
T
xmax1
,
T
ymax1
,
T
xmin2
,
T
ymin2
,
T
xmax2
,
T
ymax2
)
{
T
ymin2
,
T
xmax2
,
T
ymax2
,
bool
normalized
)
{
constexpr
T
zero
=
static_cast
<
T
>
(
0
);
T
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
);
T
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
);
T
area1
;
T
area2
;
if
(
!
normalized
)
{
area1
=
(
ymax1
-
ymin1
+
1
)
*
(
xmax1
-
xmin1
+
1
);
area2
=
(
ymax2
-
ymin2
+
1
)
*
(
xmax2
-
xmin2
+
1
);
}
else
{
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
);
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
);
}
T
inter_xmax
=
xmax1
>
xmax2
?
xmax2
:
xmax1
;
T
inter_ymax
=
ymax1
>
ymax2
?
ymax2
:
ymax1
;
T
inter_xmin
=
xmin1
>
xmin2
?
xmin1
:
xmin2
;
T
inter_ymin
=
ymin1
>
ymin2
?
ymin1
:
ymin2
;
T
inter_height
=
inter_ymax
-
inter_ymin
;
T
inter_width
=
inter_xmax
-
inter_xmin
;
if
(
!
normalized
)
{
inter_height
=
inter_height
+
1
;
inter_width
=
inter_width
+
1
;
}
inter_height
=
inter_height
>
zero
?
inter_height
:
zero
;
inter_width
=
inter_width
>
zero
?
inter_width
:
zero
;
T
inter_area
=
inter_width
*
inter_height
;
...
...
@@ -38,8 +50,12 @@ inline HOSTDEVICE T IOUSimilarity(T xmin1, T ymin1, T xmax1, T ymax1, T xmin2,
template
<
typename
T
>
struct
IOUSimilarityFunctor
{
IOUSimilarityFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
cols
)
:
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
IOUSimilarityFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
cols
,
bool
normalized
)
:
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
)),
normalized_
(
normalized
)
{}
inline
HOSTDEVICE
void
operator
()(
size_t
tid
)
const
{
size_t
row_id
=
tid
/
cols_
;
...
...
@@ -56,7 +72,7 @@ struct IOUSimilarityFunctor {
T
y_max2
=
y_
[
col_id
*
4
+
3
];
T
sim
=
IOUSimilarity
(
x_min1
,
y_min1
,
x_max1
,
y_max1
,
x_min2
,
y_min2
,
x_max2
,
y_max2
);
x_max2
,
y_max2
,
normalized_
);
z_
[
row_id
*
cols_
+
col_id
]
=
sim
;
}
...
...
@@ -64,6 +80,7 @@ struct IOUSimilarityFunctor {
const
T
*
y_
;
T
*
z_
;
const
size_t
cols_
;
bool
normalized_
;
};
namespace
paddle
{
...
...
@@ -75,12 +92,14 @@ class IOUSimilarityKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
LoDTensor
*
in_x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
const
framework
::
Tensor
*
in_y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
bool
normalized
=
ctx
.
Attr
<
bool
>
(
"box_normalized"
);
framework
::
LoDTensor
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
x_n
=
in_x
->
dims
()[
0
];
int
y_n
=
in_y
->
dims
()[
0
];
IOUSimilarityFunctor
<
T
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
y_n
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
y_n
,
normalized
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
ctx
.
device_context
()),
x_n
*
y_n
);
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
6b9fbcf3
...
...
@@ -653,14 +653,15 @@ def detection_output(loc,
@
templatedoc
()
def
iou_similarity
(
x
,
y
,
name
=
None
):
def
iou_similarity
(
x
,
y
,
box_normalized
=
True
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}.The data type is float32 or float64.
y (Variable): ${y_comment}.The data type is float32 or float64.
box_normalized(bool): Whether treat the priorbox as a noramlized box.
Set true by default.
Returns:
Variable: ${out_comment}.The data type is same with x.
...
...
@@ -700,7 +701,7 @@ def iou_similarity(x, y, name=None):
type
=
"iou_similarity"
,
inputs
=
{
"X"
:
x
,
"Y"
:
y
},
attrs
=
{},
attrs
=
{
"box_normalized"
:
box_normalized
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
python/paddle/fluid/tests/unittests/test_iou_similarity_op.py
浏览文件 @
6b9fbcf3
...
...
@@ -31,27 +31,40 @@ class TestIOUSimilarityOp(OpTest):
self
.
boxes1
=
random
.
rand
(
2
,
4
).
astype
(
'float32'
)
self
.
boxes2
=
random
.
rand
(
3
,
4
).
astype
(
'float32'
)
self
.
output
=
random
.
rand
(
2
,
3
).
astype
(
'float32'
)
self
.
box_normalized
=
False
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
self
.
boxes1
,
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
def
_compute_iou
(
self
,
):
for
row
in
range
(
self
.
boxes1
.
shape
[
0
]):
for
col
in
range
(
self
.
boxes2
.
shape
[
0
]):
xmin1
,
ymin1
,
xmax1
,
ymax1
=
self
.
boxes1
[
row
]
xmin2
,
ymin2
,
xmax2
,
ymax2
=
self
.
boxes2
[
col
]
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
)
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
)
if
not
self
.
box_normalized
:
area1
=
(
ymax1
-
ymin1
+
1
)
*
(
xmax1
-
xmin1
+
1
)
area2
=
(
ymax2
-
ymin2
+
1
)
*
(
xmax2
-
xmin2
+
1
)
else
:
area1
=
(
ymax1
-
ymin1
)
*
(
xmax1
-
xmin1
)
area2
=
(
ymax2
-
ymin2
)
*
(
xmax2
-
xmin2
)
inter_xmax
=
min
(
xmax1
,
xmax2
)
inter_ymax
=
min
(
ymax1
,
ymax2
)
inter_xmin
=
max
(
xmin1
,
xmin2
)
inter_ymin
=
max
(
ymin1
,
ymin2
)
inter_height
=
inter_ymax
-
inter_ymin
inter_width
=
inter_xmax
-
inter_xmin
if
not
self
.
box_normalized
:
inter_height
+=
1
inter_width
+=
1
inter_height
=
max
(
inter_height
,
0
)
inter_width
=
max
(
inter_width
,
0
)
inter_area
=
inter_width
*
inter_height
union_area
=
area1
+
area2
-
inter_area
sim_score
=
inter_area
/
union_area
self
.
output
[
row
,
col
]
=
sim_score
self
.
inputs
=
{
'X'
:
self
.
boxes1
,
'Y'
:
self
.
boxes2
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
class
TestIOUSimilarityOpWithLoD
(
TestIOUSimilarityOp
):
...
...
@@ -62,8 +75,27 @@ class TestIOUSimilarityOpWithLoD(TestIOUSimilarityOp):
super
(
TestIOUSimilarityOpWithLoD
,
self
).
setUp
()
self
.
boxes1_lod
=
[[
1
,
1
]]
self
.
output_lod
=
[[
1
,
1
]]
self
.
box_normalized
=
False
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
(
self
.
boxes1
,
self
.
boxes1_lod
),
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
(
self
.
output
,
self
.
output_lod
)}
class
TestIOUSimilarityOpWithBoxNormalized
(
TestIOUSimilarityOp
):
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
def
setUp
(
self
):
super
(
TestIOUSimilarityOpWithBoxNormalized
,
self
).
setUp
()
self
.
boxes1_lod
=
[[
1
,
1
]]
self
.
output_lod
=
[[
1
,
1
]]
self
.
box_normalized
=
True
# run python iou computation
self
.
_compute_iou
()
self
.
inputs
=
{
'X'
:
(
self
.
boxes1
,
self
.
boxes1_lod
),
'Y'
:
self
.
boxes2
}
self
.
attrs
=
{
"box_normalized"
:
self
.
box_normalized
}
self
.
outputs
=
{
'Out'
:
(
self
.
output
,
self
.
output_lod
)}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录