framework.py 124.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83
def in_dygraph_mode():
L
lujun 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
97
    return _dygraph_tracer_ is not None
98 99


L
lujun 已提交
100 101
def _dygraph_tracer():
    return _dygraph_tracer_
102

W
Wu Yi 已提交
103

M
minqiyang 已提交
104
def _current_expected_place():
L
lujun 已提交
105
    return _dygraph_current_expected_place_
M
minqiyang 已提交
106 107


S
sneaxiy 已提交
108 109 110 111 112
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
113
    """
S
add doc  
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
133 134 135 136 137 138 139

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
174 175 176 177 178 179
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
180
    """
S
add doc  
sneaxiy 已提交
181 182 183 184 185 186 187 188 189 190 191 192
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
193 194 195 196 197 198 199 200 201

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
202 203 204 205 206 207 208
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
235
@signature_safe_contextmanager
236 237 238 239 240 241 242 243 244 245 246 247
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
248

249 250 251 252 253 254 255 256 257 258 259
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
279 280 281
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
282 283 284 285


def grad_var_name(var_name):
    """
286 287
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
288 289 290
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
291

292
def convert_np_dtype_to_dtype_(np_dtype):
293 294
    """
    Convert the data type in numpy to the data type in Paddle
295

296
    Args:
297
        np_dtype(np.dtype): the data type in numpy.
298

299 300
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
301 302

    """
303 304
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
305
        return core.VarDesc.VarType.FP32
306
    elif dtype == np.float64:
307
        return core.VarDesc.VarType.FP64
308
    elif dtype == np.float16:
309
        return core.VarDesc.VarType.FP16
310
    elif dtype == np.int32:
311
        return core.VarDesc.VarType.INT32
312
    elif dtype == np.int16:
313
        return core.VarDesc.VarType.INT16
314
    elif dtype == np.int64:
315
        return core.VarDesc.VarType.INT64
316
    elif dtype == np.bool:
317
        return core.VarDesc.VarType.BOOL
318 319
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
320 321
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
322 323
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
324
    else:
M
minqiyang 已提交
325
        raise ValueError("Not supported numpy dtype %s" % dtype)
326 327 328


def dtype_is_floating(dtype):
329 330 331
    """
    Check the data type is floating or not.
    Args:
332
        dtype(np.dtype|core.VarDesc.VarType): data type.
333 334 335 336 337
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
338
    if not isinstance(dtype, core.VarDesc.VarType):
339 340
        dtype = convert_np_dtype_to_dtype_(dtype)

341 342 343 344
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
345 346


Y
Yang Yang(Tony) 已提交
347
def _debug_string_(proto, throw_on_error=True):
348 349 350 351 352 353 354 355 356 357 358
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
359
    error_fields = list()
Y
Yang Yang(Tony) 已提交
360
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
361 362
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
363 364 365
    return proto.__str__()


X
Xin Pan 已提交
366
class Variable(object):
367
    """
368 369 370
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
371
    two variables in different blocks could have the same name.
372

373 374
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
375

376
    Most of a Variable's member variables can be setted to be None. It mean
377
    it is not available or will be specified later.
378 379

    Args:
380
        block(Block): The block that the variable belongs to.
381 382
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
383 384
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
385
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
386
            Some kinds of variable do not contain shape, just set it to None.
387 388 389
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
390
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
391
            series data.
392
            Default: None
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
415 416
    """

Y
Yu Yang 已提交
417 418
    def __init__(self,
                 block,
Y
Yu Yang 已提交
419
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
420 421 422 423
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
424
                 capacity=None,
Q
QI JUN 已提交
425
                 persistable=None,
F
fengjiayi 已提交
426
                 error_clip=None,
Y
Yu Yang 已提交
427
                 stop_gradient=False,
F
fengjiayi 已提交
428
                 is_data=False,
Y
Yu Yang 已提交
429
                 **kwargs):
Y
Yu Yang 已提交
430 431
        self.block = block
        if name is None:
Y
Yu Yang 已提交
432
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
433

Y
Yu Yang 已提交
434
        if dtype is not None:
435
            if not isinstance(dtype, core.VarDesc.VarType):
436
                dtype = convert_np_dtype_to_dtype_(dtype)
437

L
lujun 已提交
438
        if in_dygraph_mode():
M
minqiyang 已提交
439
            # record vars in tracer rather than blocks
M
minqiyang 已提交
440 441
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
442 443 444
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
445 446
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
447
            if persistable:
L
lujun 已提交
448
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
449
            self.op = None
M
minqiyang 已提交
450
        else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
523
            self.block.vars[name] = self
524
            self.op = None
525
            self._stop_gradient = stop_gradient
526
            self.is_data = is_data
Y
Yu Yang 已提交
527

528
    def numpy(self):
M
minqiyang 已提交
529
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
530
        return np.array(new_ivar.value().get_tensor())
531

532 533
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
534
        if backward_strategy is None:
535 536
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
537 538 539

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
540

541
    def gradient(self):
542 543
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
544

545
    def clear_gradient(self):
X
Xin Pan 已提交
546
        self._ivar._clear_gradient()
X
Xin Pan 已提交
547

548
    def __str__(self):
Y
Yang Yang(Tony) 已提交
549 550
        return self.to_string(True)

F
update  
fengjiayi 已提交
551
    def to_string(self, throw_on_error, with_details=False):
552 553 554 555
        """
        Get debug string.

        Args:
556 557
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
558
            with_details(bool): more details about variables and parameters
559 560
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
561

562 563
        Returns:
            str: The debug string.
564
        """
L
lujun 已提交
565
        if in_dygraph_mode():
L
lujun 已提交
566
            # TODO(panyx0718): add more dygraph debug info.
567 568 569
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
570 571
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
572
        protostr = self.desc.serialize_to_string()
573
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
574 575 576 577
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
578 579
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
580
        return res_str
581 582 583

    __repr__ = __str__

584
    def set_desc(self, input):
585 586 587 588 589 590 591 592 593
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
594 595
        self.desc = input

596
    @property
597
    def stop_gradient(self):
L
lujun 已提交
598
        if in_dygraph_mode():
M
minqiyang 已提交
599 600
            return self._ivar.stop_gradient
        else:
601
            return self._stop_gradient
602

603 604
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
605
        if in_dygraph_mode():
M
minqiyang 已提交
606
            self._ivar.stop_gradient = s
607
        else:
608
            self._stop_gradient = s
609

610 611
    @property
    def persistable(self):
L
lujun 已提交
612
        if in_dygraph_mode():
613 614 615
            return self._ivar.persistable
        else:
            return self.desc.persistable()
616

Y
Yu Yang 已提交
617 618
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
619
        if in_dygraph_mode():
620 621 622
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
623

Y
Yu Yang 已提交
624 625
    @property
    def name(self):
L
lujun 已提交
626
        if in_dygraph_mode():
627 628 629
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
630

T
typhoonzero 已提交
631 632
    @name.setter
    def name(self, new_name):
L
lujun 已提交
633
        if in_dygraph_mode():
634 635 636
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
637

Y
Yu Yang 已提交
638 639 640
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
641
        if in_dygraph_mode():
642 643 644
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
645 646

    @property
F
fengjiayi 已提交
647
    def dtype(self):
L
lujun 已提交
648
        if in_dygraph_mode():
649 650 651
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
652 653 654

    @property
    def lod_level(self):
L
lujun 已提交
655
        # TODO(minqiyang): Support lod_level in dygraph mode
656
        return self.desc.lod_level()
Y
Yu Yang 已提交
657

Y
Yu Yang 已提交
658 659
    @property
    def type(self):
L
lujun 已提交
660
        if in_dygraph_mode():
661 662 663
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
664

W
Wu Yi 已提交
665
    def _set_error_clip(self, error_clip):
666 667 668 669 670 671 672 673 674
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
675 676
        self.error_clip = error_clip

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
764
    def _cloneVar(self, copy=False):
765 766 767 768 769
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
770
                stop_gradient=self.stop_gradient, )
771 772 773 774
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
775
        new_var = self._cloneVar()
776 777 778 779 780 781 782 783 784 785
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
786
        new_var = self._cloneVar()
787 788 789 790 791 792 793 794 795 796
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
797
                return self._cloneVar(True)
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
816
                return self._cloneVar(True)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
839 840 841 842 843 844
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

845
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
846 847
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
848
                if check:
W
wopeizl 已提交
849 850 851 852 853 854 855 856
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
857 858 859 860 861 862 863 864
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
865

F
fengjiayi 已提交
866 867 868
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
869

870 871
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
872 873 874 875
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
876
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
877 878 879 880 881
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
882 883 884 885
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
886 887 888 889 890 891 892 893 894
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
895
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
896 897 898 899 900 901
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
902 903 904 905 906 907 908 909
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
910 911
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
912 913
        return self.op_proto_map[type]

914 915 916 917
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
918
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
919 920
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
921 922
        }

F
fengjiayi 已提交
923

X
Xin Pan 已提交
924
class Operator(object):
925
    """
926 927 928 929 930 931 932
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
933
        type(str): The type of operator. Default None.
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
954
        Block.append_op or Block._prepend_op instead.
955 956 957 958 959 960 961 962 963 964

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
965
    """
966
    OP_WITHOUT_KERNEL_SET = {
967 968 969
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
970
    }
971

Y
Yu Yang 已提交
972 973
    def __init__(self,
                 block,
Y
Yu Yang 已提交
974
                 desc,
Y
Yu Yang 已提交
975 976 977
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
978
                 attrs=None):
L
lujun 已提交
979
        if in_dygraph_mode():
980 981
            if type is None:
                raise ValueError(
982
                    "`type` to initialized an Operator can not be None.")
983
            self.iop = core.OpBase(type)
M
minqiyang 已提交
984
            self.previous_ops = []
M
minqiyang 已提交
985

M
minqiyang 已提交
986
            self.attrs = attrs if attrs else {}
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1001
                )] = self.block.program._op_role
1002 1003 1004

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1005 1006
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1081
                        if not in_dygraph_mode():
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1101
    def _has_kernel(self, op_type):
1102 1103
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1104
    def to_string(self, throw_on_error):
1105
        """
1106 1107
        Get debug string.

1108
        Args:
1109 1110
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1111

1112 1113
        Returns:
            str: The debug string.
1114 1115

        """
1116
        protostr = self.desc.serialize_to_string()
1117
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1118 1119 1120 1121
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1122 1123 1124

    __repr__ = __str__

F
fengjiayi 已提交
1125 1126
    @property
    def type(self):
L
lujun 已提交
1127
        if in_dygraph_mode():
1128 1129 1130
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1131 1132

    def input(self, name):
1133
        """
1134
        Get the input arguments according to the input parameter name.
1135

1136 1137
        Args:
            name(str): The input parameter name.
1138

1139 1140 1141
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1142
        """
F
fengjiayi 已提交
1143 1144
        return self.desc.input(name)

W
Wu Yi 已提交
1145
    def _rename_input(self, old_name, new_name):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1156
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1157

W
Wu Yi 已提交
1158
    def _rename_output(self, old_name, new_name):
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1169
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1170

F
fengjiayi 已提交
1171 1172 1173 1174
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1175 1176 1177 1178 1179 1180 1181 1182
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1183
    def output(self, name):
1184
        """
1185
        Get output arguments by the output parameter name.
1186

1187 1188
        Args:
            name(str): The output parameter name.
1189

1190 1191 1192
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1193
        """
F
fengjiayi 已提交
1194 1195 1196 1197 1198 1199
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1200 1201 1202 1203 1204 1205 1206 1207
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1208
    def has_attr(self, name):
1209
        """
1210 1211
        Whether this Operator has the attribute with name or not.

1212
        Args:
1213
            name(str): the attribute name.
1214

1215 1216
        Returns:
            bool: True if has this attribute.
1217 1218

        """
F
fengjiayi 已提交
1219 1220 1221
        return self.desc.has_attr(name)

    def attr_type(self, name):
1222
        """
1223
        Get the type of attribute by attribute's name.
1224

1225 1226
        Args:
            name(str): the attribute name.
1227

1228 1229
        Returns:
            core.AttrType: the attribute type.
1230
        """
F
fengjiayi 已提交
1231 1232
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1233
    def _set_attr(self, name, val):
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1244 1245
        self._update_desc_attr(name, val)

1246 1247 1248
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1260 1261
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1262 1263
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1264
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1265 1266 1267 1268
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1269
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1270

F
fengjiayi 已提交
1271 1272 1273 1274 1275
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1276
        """
1277 1278
        Get the attribute by name.

1279
        Args:
1280
            name(str): the attribute name.
1281

1282 1283
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1284 1285
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1286
        return self.desc.attr(name)
Y
Yu Yang 已提交
1287

W
Wu Yi 已提交
1288
    def _block_attr_id(self, name):
1289
        """
G
gongweibao 已提交
1290
        Get the block attribute's id by name.
1291

1292 1293
        Args:
            name(str): the attribute name.
1294

1295 1296
        Returns:
            int: the block index.
1297
        """
W
Wu Yi 已提交
1298
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1299

W
Wu Yi 已提交
1300
    def _block_attr(self, name):
G
gongweibao 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1311
        id = self._block_attr_id(name)
G
gongweibao 已提交
1312 1313 1314
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1315
    def _blocks_attr(self, name):
G
gongweibao 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1326
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1327 1328 1329 1330 1331
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1332
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1343
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1344

J
JiayiFeng 已提交
1345
    def all_attrs(self):
F
fengjiayi 已提交
1346
        """
1347 1348 1349
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1350
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1351 1352 1353 1354
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1355 1356
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1357
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1358 1359 1360
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1361
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1362 1363 1364 1365
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1366 1367
        return attr_map

Y
Yu Yang 已提交
1368

Y
Yu Yang 已提交
1369
class Block(object):
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1384
        use `Program._create_block()` to create a block.
1385 1386 1387 1388

    Examples:
        .. code-block:: python

1389 1390 1391
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1392 1393 1394 1395 1396 1397 1398 1399 1400
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1401
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1402
        self.desc = program.desc.block(idx)
1403
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1404
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1405
        self.program = program
1406
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1407

1408
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1409 1410
        return self.to_string(True)

F
fengjiayi 已提交
1411 1412
    def to_string(self, throw_on_error, with_details=False):
        """
1413 1414
        Get debug string.

F
fengjiayi 已提交
1415 1416
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1417
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1418
            with_details(bool): more details about variables and parameters
1419 1420
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1421

1422 1423
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1424 1425 1426 1427
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1428
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1429 1430
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1431
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1432
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1433
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1434
            for op in self.ops:
F
fengjiayi 已提交
1435 1436
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1437 1438 1439
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1440 1441
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1442 1443
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1444 1445 1446

    __repr__ = __str__

Y
Yu Yang 已提交
1447 1448
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1449
        return self.desc.parent
Y
Yu Yang 已提交
1450

Y
Yu Yang 已提交
1451 1452 1453 1454
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1455
    def _set_forward_block_idx(self, idx):
1456 1457 1458 1459 1460 1461 1462 1463 1464
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1465
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1466

Y
Yu Yang 已提交
1467 1468
    @property
    def idx(self):
Y
Yu Yang 已提交
1469
        return self.desc.id
Y
Yu Yang 已提交
1470

Q
Qiao Longfei 已提交
1471
    def var(self, name):
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1485
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1486 1487 1488
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1489 1490
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1491
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1492
        return v
Q
Qiao Longfei 已提交
1493

X
Xin Pan 已提交
1494
    def _find_var_recursive(self, name):
1495 1496 1497 1498 1499 1500 1501
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1502
            Variable: the Variable with the giving name. Or None if not found.
1503
        """
Y
Yu Yang 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1528
        return None
Y
Yu Yang 已提交
1529

X
Xin Pan 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1549

Q
Qiao Longfei 已提交
1550
    def all_parameters(self):
1551
        return list(self.iter_parameters())
1552

1553
    def iter_parameters(self):
M
minqiyang 已提交
1554
        return (item[1] for item in six.iteritems(self.vars)
1555
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1556

Y
Yu Yang 已提交
1557
    def create_var(self, *args, **kwargs):
1558
        var = Variable(block=self, *args, **kwargs)
1559 1560
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1561
        return var
Y
Yu Yang 已提交
1562

Q
Qiao Longfei 已提交
1563 1564 1565
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1566
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1567 1568
        """
        Rename variable in vars and ops' inputs and outputs
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1581
        """
M
minqiyang 已提交
1582 1583
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1584

T
typhoonzero 已提交
1585
        if not self.has_var(name):
1586
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1587 1588
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1589
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1590 1591 1592 1593 1594 1595 1596
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1597
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1598 1599 1600 1601
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1602
        orig_var_type = v.type
M
minqiyang 已提交
1603
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1604
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1605
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1606
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1607 1608 1609 1610
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1611
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1612 1613 1614 1615 1616 1617 1618
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1619
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1620 1621
            var = Variable(
                self,
T
typhoonzero 已提交
1622
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1623 1624 1625 1626
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1627
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1628 1629 1630
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1631
        self._sync_with_cpp()
1632
        return var
T
typhoonzero 已提交
1633

W
Wu Yi 已提交
1634 1635
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1636
        self.desc._remove_var(cpt.to_bytes(name))
1637 1638
        del self.vars[name]

Y
Yu Yang 已提交
1639 1640
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1641
        param = Parameter(global_block, *args, **kwargs)
1642
        if 'initializer' in kwargs:
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1663
        return param
Y
Yu Yang 已提交
1664

Y
Yu Yang 已提交
1665
    def append_op(self, *args, **kwargs):
1666 1667 1668 1669 1670 1671
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1672
        if in_dygraph_mode():
1673 1674 1675 1676 1677
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
                attrs['is_test'] = True

1678 1679 1680 1681
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1682 1683
                inputs=None,
                outputs=None,
1684
                attrs=attrs)
1685

M
minqiyang 已提交
1686 1687 1688
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1689
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1690 1691 1692 1693
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1694
        else:
1695 1696 1697 1698 1699 1700 1701 1702 1703
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1704
            self.ops.append(op)
M
minqiyang 已提交
1705

1706 1707
        return op

W
Wu Yi 已提交
1708
    def _insert_op(self, index, *args, **kwargs):
1709 1710 1711 1712 1713 1714 1715 1716 1717
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1718 1719
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1720 1721 1722 1723
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1724
    def _remove_op(self, index):
1725 1726 1727 1728 1729 1730 1731 1732 1733
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1734 1735
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1736 1737
        del self.ops[index]

W
Wu Yi 已提交
1738
    def _slice_ops(self, start, end):
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1749
        return self.ops[start:end]
Y
Yancey1989 已提交
1750

W
Wu Yi 已提交
1751
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1752
        if in_dygraph_mode():
1753 1754 1755 1756
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1757 1758 1759 1760 1761 1762 1763 1764
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1765
        else:
1766 1767 1768 1769 1770 1771 1772 1773
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1774
            self.ops.insert(0, op)
1775

Y
Yu Yang 已提交
1776 1777
        return op

W
Wu Yi 已提交
1778
    def _sync_with_cpp(self):
1779
        """
1780 1781
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1782
        """
Q
Qiao Longfei 已提交
1783 1784 1785 1786 1787
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1788
        # sync variables removed from c++ end
1789
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1790
            if not self.desc.find_var(cpt.to_bytes(var)):
1791 1792
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1793
        # sync operators from cpp
1794 1795 1796 1797
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1814 1815 1816 1817 1818

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1819
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1820 1821 1822 1823 1824 1825 1826

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1840 1841 1842 1843
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1844
    def _copy_param_info_from(self, other):
1845
        """
1846 1847
        Copy the information of parameters from the other block.

1848
        Args:
1849 1850 1851 1852 1853
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1854 1855 1856 1857 1858

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1859 1860
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1861
        for p in other.iter_parameters():
1862 1863 1864
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1865
                raise ValueError("_copy_param_info_from should be invoked with "
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1878
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1879
                error_clip=p.error_clip,
1880 1881 1882
                name=v.name)
            self.vars[new_p.name] = new_p

1883
    def _clone_variable(self, var, force_persistable=True):
1884 1885
        """
        Clone a variable into current block.
1886

1887 1888
        Args:
            var: the variable to be cloned.
1889 1890 1891
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1892 1893

        Returns:
1894
            Variable: the new  variable cloned from 'var' in current block.
1895 1896
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1897 1898 1899 1900 1901
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1902 1903
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1904
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1905 1906 1907 1908 1909 1910
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1911
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1912
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1913 1914 1915 1916 1917 1918 1919
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1920
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1921
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1922
        return ret_var
1923

Y
Yu Yang 已提交
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2020
    def remove_input_by_id(self, node_id):
2021 2022 2023 2024 2025 2026
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2027
        self.node.remove_input(node_id)
2028

2029
    def remove_input(self, node):
2030 2031 2032 2033
        """
        Remove a node from inputs.

        Args:
2034
            node(IrNode): the node being removed.
2035
        """
2036
        self.node.remove_input(node.node)
2037

2038
    def append_input(self, node):
2039 2040 2041 2042
        """
        Append a node in inputs.

        Args:
2043
            node(IrNode): the node being appended.
2044
        """
2045
        self.node.append_input(node.node)
2046 2047 2048 2049 2050 2051 2052 2053

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2054
    def remove_output_by_id(self, node_id):
2055 2056 2057 2058 2059 2060
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2061
        self.node.remove_output(node_id)
2062

2063
    def remove_output(self, node):
2064 2065 2066 2067
        """
        Remove a node from outputs.

        Args:
2068
            node(IrNode): the node being removed.
2069
        """
2070
        self.node.remove_output(node.node)
2071

2072
    def append_output(self, node):
2073 2074 2075 2076
        """
        Append a node in outputs.

        Args:
2077
            node(IrNode): the node being appended.
2078
        """
2079
        self.node.append_output(node.node)
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2334 2335
class IrGraph(object):
    """
2336
    Python IrGraph. Beneath it is a core.Graph, which is used for
2337
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2338 2339
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2340 2341 2342 2343
    """

    def __init__(self, graph, for_test=False):
        """
2344 2345
        Construct an IrGraph using core.Graph.

2346 2347 2348 2349 2350 2351 2352 2353 2354
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2355 2356 2357 2358
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2359 2360 2361
        Warns:
            The method only clones the graph structure, not its attributes.

2362 2363 2364
        Returns:
            IrGraph: A new and duplicated graph.
        """
2365
        g = self.graph.clone()
2366 2367
        return IrGraph(g, self._for_test)

2368
    def is_test(self):
2369 2370 2371
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2372 2373
        return self._for_test

W
WangZhen 已提交
2374
    def all_nodes(self):
2375 2376 2377
        """
        Return all nodes included in the graph as a set.
        """
2378
        return {IrNode(node) for node in self.graph.nodes()}
2379

2380
    def all_var_nodes(self):
2381 2382 2383
        """
        Return all variable nodes included in the graph as a set.
        """
2384
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2385

2386
    def all_persistable_nodes(self):
2387 2388 2389
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2390 2391 2392 2393 2394
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2395
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2396

2397
    def all_op_nodes(self):
2398 2399 2400
        """
        Return all operator nodes included in the graph as a set.
        """
2401
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2402

2403
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2415
            IrVarNode: the created persistable variable node.
2416
        """
2417 2418 2419 2420 2421
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2422
        return IrVarNode(self.graph.create_var_node(var_desc))
2423 2424

    def create_var_node(self, name, var_type, shape, var_dtype):
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2436
            IrVarNode: the created variable node.
2437 2438
        """

2439 2440 2441 2442
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2443
        return IrVarNode(self.graph.create_var_node(var_desc))
2444 2445

    def create_var_node_from_desc(self, var_desc):
2446 2447 2448 2449 2450 2451 2452 2453
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2454
            IrVarNode: the created variable node.
2455
        """
2456
        return IrVarNode(self.graph.create_var_node(var_desc))
2457 2458

    def create_op_node(self, op_type, attrs, inputs, outputs):
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2469
            IrOpNode: the created operator node.
2470
        """
2471 2472
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2473
        for attr, value in six.iteritems(attrs):
2474
            self._update_desc_attr(op_desc, attr, value)
2475
        for input_name, var_nodes in six.iteritems(inputs):
2476 2477 2478 2479
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2480
        for output_name, var_nodes in six.iteritems(outputs):
2481 2482 2483 2484
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2485
        return IrOpNode(self.graph.create_op_node(op_desc))
2486 2487

    def create_op_node_from_desc(self, op_desc):
2488 2489 2490 2491 2492 2493 2494
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2495
            IrOpNode: the created operator node.
2496
        """
2497
        return IrOpNode(self.graph.create_op_node(op_desc))
2498 2499

    def update_input_link(self, old_input_node, new_input_node, op_node):
2500 2501 2502 2503
        """
        Update the input's link of a operator node.

        Args:
2504 2505 2506
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2507
        """
2508 2509
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2510
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2511 2512 2513 2514
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2515
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2516 2517

    def link_to(self, node_in, node_out):
2518 2519 2520 2521
        """
        Connect two nodes.

        Args:
2522 2523
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2524
        """
2525
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2526
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2527 2528
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2529 2530

    def safe_remove_nodes(self, remove_nodes):
2531 2532 2533 2534 2535 2536 2537
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2538
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2539 2540 2541 2542
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2543 2544
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2545

Z
Zhen Wang 已提交
2546 2547 2548 2549 2550 2551 2552 2553
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2554
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2555 2556 2557 2558
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2559
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2560 2561 2562
                        ]
                    else:
                        var_nodes[each_var_name].append(
2563 2564
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2565 2566
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2567
    def has_circle(self):
2568 2569 2570 2571 2572 2573
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2574 2575 2576
        return core.has_circle(self.graph)

    def graph_num(self):
2577 2578 2579 2580 2581 2582
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2583 2584 2585
        return core.graph_num(self.graph)

    def topology_sort(self):
2586 2587 2588 2589 2590 2591
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2592
            list(IrNode): nodes in topology order.
2593
        """
2594
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2595
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2596 2597

    def build_adjacency_list(self):
2598 2599 2600 2601
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2602
            dict{IrNode: set(IrNode)}: the adjacency list.
2603
        """
2604 2605 2606 2607 2608
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2609

2610 2611 2612 2613 2614 2615 2616 2617
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2618
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2619 2620 2621 2622 2623
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2624 2625 2626 2627 2628 2629 2630 2631 2632
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2633
        remove_ctr_vars = set()
2634
        if remove_ctr_var:
2635
            for node in self.all_var_nodes():
2636 2637 2638
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2639 2640
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2641 2642
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2643 2644 2645 2646 2647 2648
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2660 2661 2662
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2663
        WARN: When the graph includes backward operator nodes, the
2664 2665 2666 2667 2668 2669
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2670
        convert_pass = core.get_pass('graph_to_program_pass')
2671 2672
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2673 2674 2675 2676
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2704
class Program(object):
D
dzhwinter 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2716
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2717 2718

    Returns:
Y
yuyang18 已提交
2719
        A empty program.
D
dzhwinter 已提交
2720 2721

    Examples:
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2735 2736 2737

    """

2738 2739
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2740 2741
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2742
        self._seed = 0
Y
yuyang18 已提交
2743
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2744
        self.__op_role_var = []
T
tangwei12 已提交
2745

2746 2747
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2748
        self._is_distributed = False
2749
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2750
        self._is_chief = False
2751 2752 2753
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2754
        self._endpoints = []
2755 2756 2757
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2758
        self._trainers_endpoints = []
2759
        # the distributed lookup table names
T
tangwei12 已提交
2760
        self._distributed_lookup_table = None
2761 2762 2763 2764

        # use Deep gradient comrepssion or not
        self._enable_dgc = False

D
dzhwinter 已提交
2765
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2766
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2767
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2768

2769 2770 2771
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2772
        self._program_config = None
2773

D
dzhwinter 已提交
2774
    @property
D
dzhwinter 已提交
2775
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2776 2777
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2778
        return self.__is_mem_optimized
D
dzhwinter 已提交
2779

D
dzhwinter 已提交
2780 2781 2782
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2783 2784

    @property
2785
    def _op_role(self):
Y
yuyang18 已提交
2786 2787 2788 2789 2790 2791 2792 2793
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2794
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2795 2796 2797 2798
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2799 2800
        return self._current_role

2801 2802
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2803 2804 2805
        self._current_role = role

    @property
2806
    def _op_role_var(self):
Y
yuyang18 已提交
2807
        """
2808
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2809

2810
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2811 2812 2813

        Notes: This is a very low-level API. Users should not use it directly.
        """
2814
        return self.__op_role_var
Y
yuyang18 已提交
2815

2816 2817 2818 2819 2820 2821 2822 2823 2824
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2825
    @signature_safe_contextmanager
W
Wu Yi 已提交
2826
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2827 2828 2829 2830 2831 2832 2833
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2834
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2835 2836 2837 2838

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2839
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2840 2841
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2842
        tmp_role = self._current_role
2843
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2844

Y
yuyang18 已提交
2845 2846
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2847
        self.__op_role_var = [
2848 2849 2850
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2851
        yield
2852
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2853
        self._current_role = tmp_role
Y
Yu Yang 已提交
2854

S
rename  
sneaxiy 已提交
2855
    @signature_safe_contextmanager
X
Xin Pan 已提交
2856
    def _lr_schedule_guard(self, is_with_opt=False):
2857 2858 2859 2860 2861 2862 2863
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2864 2865 2866 2867
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2868 2869 2870 2871 2872 2873 2874

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2875 2876

        tmp_role = self._current_role
2877
        tmp_var = self.__op_role_var
2878

2879 2880
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2881 2882
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2883
        # TODO(typhoonzero): how to set target learning rate var
2884
        self.__op_role_var = []
2885
        yield
2886
        self.__op_role_var = tmp_var
2887
        self._current_role = tmp_role
2888

2889
    def __str__(self):
Y
yuyang18 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2899 2900
        return self.to_string(True)

F
fengjiayi 已提交
2901 2902 2903
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2904

F
fengjiayi 已提交
2905
        Args:
Y
yuyang18 已提交
2906 2907
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2908

Y
yuyang18 已提交
2909 2910 2911 2912
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2913 2914
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2915 2916 2917 2918

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2938 2939
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2940 2941
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2942

W
Wu Yi 已提交
2943
    def _get_desc(self):
Y
yuyang18 已提交
2944 2945 2946 2947 2948 2949 2950
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2951 2952
        return self.desc

X
version  
Xin Pan 已提交
2953 2954 2955
    def _version(self):
        return self.desc._version()

2956
    def clone(self, for_test=False):
Y
yuyang18 已提交
2957 2958 2959
        """
        Create a new, duplicated program.

2960

Y
yuyang18 已提交
2961 2962 2963 2964
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2965

Y
yuyang18 已提交
2966
        * Set for_test to False when we want to clone the program for training.
2967 2968 2969
        * Set for_test to True when we want to clone the program for testing. We will not do any prune
          on program here, So if you just want an forward program for testing, please use :code:`clone`
          before using :code:`Opimizer.minimize`
Y
yuyang18 已提交
2970 2971

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2972 2973
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

2974 2975 2976 2977 2978
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2979 2980

        Args:
Y
yuyang18 已提交
2981 2982
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2983

D
dzhwinter 已提交
2984
        Returns:
Y
yuyang18 已提交
2985 2986 2987 2988
            Program: The new, duplicated Program object.

        Examples:

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        Notes: The Program Descs' order maybe different after :code:`clone` and this will not affect your training or testing progress. In the following example we give you an simple method :code:`print_prog(program)` to print Program Descs inorder to make sure you have same print result after :code:`clone`:
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3085 3086
        """
        if for_test:
X
Xin Pan 已提交
3087
            p = self._inference_optimize(prune_read_op=False)
3088
        else:
3089
            p = Program()
G
gongweibao 已提交
3090 3091
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3092
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3093 3094 3095
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3096 3097

            p._current_role = self._current_role
3098
            p.__op_role_var = self.__op_role_var
G
gongweibao 已提交
3099

W
Wu Yi 已提交
3100
            p._sync_with_cpp()
3101

W
Wu Yi 已提交
3102
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3103
        p._copy_data_info_from(self)
3104
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3105
        return p
3106

W
Wu Yi 已提交
3107
    def _prune(self, targets):
Y
yuyang18 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3123 3124 3125 3126 3127 3128
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3129 3130
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3131
                    # and we need to find the current op that generate this
3132 3133 3134 3135 3136 3137 3138 3139
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3140
                    t = t.op
3141 3142 3143 3144
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3145
                else:
3146 3147
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3148 3149 3150 3151

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3152 3153 3154
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3155
        res._sync_with_cpp()
3156 3157
        return res

X
Xin Pan 已提交
3158
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3159
        """
F
fengjiayi 已提交
3160 3161 3162 3163 3164
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3165
        3. change the :code:`is_test`
Y
yuyang18 已提交
3166 3167 3168
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3169
        Args:
X
Xin Pan 已提交
3170 3171
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3172

Y
yuyang18 已提交
3173 3174 3175 3176 3177 3178
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3179
        res = Program()
3180
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3181 3182 3183 3184

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3185
        if prune_read_op:
3186 3187 3188 3189 3190 3191 3192 3193 3194
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3195
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3196 3197

        # change all `is_test` attributes to True
M
minqiyang 已提交
3198
        for i in six.moves.range(res.desc.num_blocks()):
3199
            block = res.desc.block(i)
M
minqiyang 已提交
3200
            for j in six.moves.range(block.op_size()):
3201 3202
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3203
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3204 3205 3206
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3207
        res._sync_with_cpp()
3208 3209
        return res

3210 3211
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3212 3213 3214 3215 3216 3217 3218
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3219
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3220 3221 3222 3223

        Returns:
            Program: A deserialized program desc.
        """
3224 3225
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3226
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3227
        p._sync_with_cpp()
3228
        return p
Y
Yu Yang 已提交
3229

3230
    @staticmethod
3231
    def _construct_from_desc(desc):
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3247 3248
    @property
    def random_seed(self):
Y
yuyang18 已提交
3249 3250 3251 3252 3253
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3265
        """
D
dzhwinter 已提交
3266 3267
        return self._seed

Q
qiaolongfei 已提交
3268 3269
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3270 3271
        """
        The number of blocks in this program.
3272 3273 3274 3275 3276 3277 3278 3279 3280

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3281
        """
Q
qiaolongfei 已提交
3282 3283
        return self.desc.num_blocks()

D
dzhwinter 已提交
3284 3285 3286 3287 3288 3289
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3290
    def __repr__(self):
3291
        return self.__str__()
3292

Y
Yu Yang 已提交
3293
    def global_block(self):
Y
yuyang18 已提交
3294 3295
        """
        Get the first block of this program.
3296 3297 3298 3299 3300 3301 3302 3303 3304

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3305
        """
Y
Yu Yang 已提交
3306 3307
        return self.blocks[0]

Q
Qiao Longfei 已提交
3308
    def block(self, index):
Y
yuyang18 已提交
3309 3310 3311 3312 3313 3314 3315
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3316 3317 3318 3319 3320 3321 3322 3323 3324

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3325
        """
Q
Qiao Longfei 已提交
3326 3327
        return self.blocks[index]

Y
Yu Yang 已提交
3328
    def current_block(self):
Y
yuyang18 已提交
3329 3330 3331
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3332 3333 3334 3335 3336 3337 3338 3339 3340

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3341
        """
Y
Yu Yang 已提交
3342 3343
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3344
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3355
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3356 3357 3358
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3359 3360 3361 3362
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3363
    def _rollback(self):
Y
yuyang18 已提交
3364 3365 3366 3367 3368
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3369 3370
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3371
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3382 3383 3384
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3385
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3386

W
Wu Yi 已提交
3387
    def _copy_param_info_from(self, other):
3388
        """
3389
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3390

Y
yuyang18 已提交
3391 3392 3393
        Notes: This is a very low level API. Users should not invoke it
        directly.

3394 3395 3396 3397 3398 3399 3400
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3401
            raise TypeError("_copy_param_info_from should be invoked with "
3402 3403 3404
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3405
            raise ValueError("_copy_param_info_from should be invoked with two "
3406
                             "program, with represent the same topology")
W
Wu Yi 已提交
3407
        self.global_block()._copy_param_info_from(other.global_block())
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3424
        self._parameters_on_pservers = other._parameters_on_pservers
3425
        self._endpoints = other._endpoints
3426
        self._ps_endpoint = other._ps_endpoint
3427 3428
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3429
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3430 3431
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3432

Y
yuyang18 已提交
3433 3434 3435
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3436 3437 3438 3439 3440 3441 3442
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3443
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3444 3445 3446
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3447
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3448
                             "program, with represent the same topology")
3449
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3450 3451 3452
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3453
    def list_vars(self):
Y
yuyang18 已提交
3454 3455 3456 3457 3458
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3470
        """
3471
        for each_block in self.blocks:
3472
            for each_var in list(each_block.vars.values()):
3473 3474
                yield each_var

Y
Yu Yang 已提交
3475

Y
Yu Yang 已提交
3476
class Parameter(Variable):
3477
    """
3478
    Parameter is derived from Variable. A parameter is a persistable
3479
    Variable, and will be updated by optimizers after each iteration.
3480
    The training of a neural network is essentially the updating of
3481 3482
    its parameters.

3483
    Relative to a general Variable, a Parameter has several its own
3484 3485
    member variables:

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3498 3499
    """

Y
Yu Yang 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3510 3511 3512

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3513 3514 3515 3516
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3517 3518
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3519
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3520

W
wanghaoshuang 已提交
3521
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3522

F
fengjiayi 已提交
3523 3524 3525
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3526 3527 3528
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3529

F
update  
fengjiayi 已提交
3530 3531 3532 3533 3534 3535 3536 3537
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3538 3539 3540 3541 3542 3543 3544 3545 3546
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3547 3548 3549 3550 3551 3552
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3553
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3554
            for attr_name in additional_attr:
3555 3556
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3557 3558
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3559 3560 3561 3562
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3563

Y
Yu Yang 已提交
3564
# program is a global instance.
Y
Yu Yang 已提交
3565 3566
_main_program_ = Program()
_startup_program_ = Program()
3567

3568

3569
def default_startup_program():
Y
Yu Yang 已提交
3570
    """
Y
yuyang18 已提交
3571 3572 3573 3574 3575 3576 3577 3578 3579
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3580

Y
Yu Yang 已提交
3581 3582
    Returns:
        Program: startup program
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3598
    """
Y
Yu Yang 已提交
3599
    return _startup_program_
3600

3601

3602
def default_main_program():
Y
Yu Yang 已提交
3603
    """
Y
yuyang18 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3613

Y
Yu Yang 已提交
3614 3615
    Returns:
        Program: main program
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3645
    """
Y
Yu Yang 已提交
3646
    return _main_program_
Y
Yu Yang 已提交
3647 3648 3649 3650 3651


def switch_main_program(program):
    """
    Switch the main program to a new program.
3652

Y
Yu Yang 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3667
    Switch the startup program to a new program
Y
Yu Yang 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3680
@signature_safe_contextmanager
Y
Yu Yang 已提交
3681 3682
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3683 3684 3685
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3686

Y
Yu Yang 已提交
3687
    Examples:
3688 3689 3690
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3691

3692 3693 3694 3695 3696
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3697 3698 3699

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3700

Y
Yu Yang 已提交
3701
    Examples:
3702
       .. code-block:: python
Y
yuyang18 已提交
3703

3704 3705 3706 3707 3708 3709
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3710

Y
Yu Yang 已提交
3711
    Args:
Y
yuyang18 已提交
3712
        main_program(Program): New main program inside `with` statement.
3713
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3727 3728


W
Wu Yi 已提交
3729
def _get_var(name, program=None):
X
xuwei06 已提交
3730
    """
Y
yuyang18 已提交
3731
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3732

X
xuwei06 已提交
3733 3734 3735
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3736
        If None, default_global_program() will be used.
X
xuwei06 已提交
3737 3738 3739 3740 3741 3742 3743

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3744
    assert isinstance(program, Program)
X
xuwei06 已提交
3745 3746

    return program.global_block().var(name)
3747 3748


S
rename  
sneaxiy 已提交
3749
@signature_safe_contextmanager
L
lujun 已提交
3750 3751 3752 3753
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3754

3755
    yield
P
Paddle CI 已提交
3756

L
lujun 已提交
3757
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3758 3759


S
rename  
sneaxiy 已提交
3760
@signature_safe_contextmanager
L
lujun 已提交
3761 3762 3763 3764
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3765

3766
    yield
M
minqiyang 已提交
3767

L
lujun 已提交
3768
    _dygraph_current_expected_place_ = tmp_place