control_flow.py 171.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import autodoc, templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
30
from .nn import logical_and, logical_not, logical_or
31 32 33 34 35 36 37 38 39 40 41
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
42
import numpy
43
import warnings
L
liym27 已提交
44
from functools import reduce, partial
45 46 47 48 49 50
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
51
from ..backward import _infer_var_data_type_shape_
52
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
53

Q
QI JUN 已提交
54
__all__ = [
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'less_equal',
    'greater_than',
    'greater_equal',
    'equal',
    'not_equal',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
79 80
]

Y
Yu Yang 已提交
81

82 83
def select_output(input, outputs, mask):
    """
84
    **select_output**
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
99 100 101 102
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

103 104 105 106 107
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
108 109 110
    return outputs


111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
126 127
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
128 129 130
    return out_shape


131 132 133
def select_input(inputs, mask):
    """
    **select_input**
134

135 136 137 138 139 140 141 142 143 144 145 146
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
147 148 149
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

150
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
151
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
152 153 154
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
155

156 157 158 159 160 161 162 163
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
164 165 166
    return out


167
def select_input_with_buildin_type(inputs, mask, name):
168 169 170
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
        to_static_variable,
    )
171
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
172

173 174
    false_var, true_var = inputs

175
    if isinstance(false_var, UndefinedVar) and isinstance(
176 177 178
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
179 180
        return None

181
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
182 183 184 185
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
186 187
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
188

189 190 191
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
192 193 194 195
        if false_var == true_var:
            return false_var
        else:
            inputs = [
196
                to_static_variable(false_var),
197
                to_static_variable(true_var),
198 199
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
200 201 202 203 204 205 206
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
207 208 209
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
210
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
211 212 213 214 215 216 217 218 219
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
220 221

        def create_var_if_not_undefined_var(a):
222 223
            if isinstance(a, UndefinedVar):
                return a
224 225
            return to_static_variable(a)

226
        true_var, false_var = to_static_variable(true_var), to_static_variable(
227 228
            false_var
        )
229
        inputs = [false_var, true_var]
230 231 232
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
233
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
234 235 236
                type(false_var), type(true_var)
            )
        )
237 238 239 240
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
241 242
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
243 244


245
def split_lod_tensor(input, mask, level=0):
246 247 248 249
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
250 251
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
252 253

    Args:
254
        input(Variable|tuple|list|None): The input tensor that contains complete
255
                                lod information needed to construct the output.
256
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
257
        level(int): The specific lod level to split.
258 259

    Returns:
Q
qiaolongfei 已提交
260 261 262 263
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
264 265 266 267

    Examples:
        .. code-block:: python

268
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
269
          x = fluid.layers.data(name='x', shape=[1])
270 271
          x.persistable = True

Q
qiaolongfei 已提交
272
          y = fluid.layers.data(name='y', shape=[1])
273 274
          y.persistable = True

Q
qiaolongfei 已提交
275
          out_true, out_false = fluid.layers.split_lod_tensor(
276
                input=x, mask=y, level=level)
277

278
    """
279 280 281 282 283 284
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
285 286
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
287
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
288 289
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
290 291 292 293 294 295 296 297 298
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
299 300 301
    return out_true, out_false


302
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
303 304 305 306 307
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
308 309 310
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
311 312

    Args:
313 314 315
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
316
                            lod information needed to construct the output.
317
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
318
        level(int): The specific lod level to merge.
319 320 321 322 323 324 325

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

326
          import paddle.fluid as fluid
327 328 329 330 331 332 333 334 335 336 337 338
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
339
    helper = LayerHelper('merge_lod_tensor', **locals())
340 341 342 343 344 345
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
346
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
347 348 349 350 351 352 353 354 355 356 357 358
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
359
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
360 361 362 363 364 365
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
366 367 368
    return out


369
@static_only
370 371 372 373 374 375 376 377 378 379 380 381
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
382
    '''
383 384
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
385 386 387 388 389 390 391 392 393
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
394
        input (Variable): A Tensor to print.
395
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
396
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
397 398
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
399 400 401
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
402
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
403
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
404
        print_phase (str): Which phase to displace, including 'forward',
405
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
406 407
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
408 409

    Returns:
410
        Variable: Output tensor.
Y
Yan Chunwei 已提交
411

412 413 414 415
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
416

Y
Yan Chunwei 已提交
417 418
    Examples:
        .. code-block:: python
419

420 421 422
           import paddle

           paddle.enable_static()
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
438
    '''
439 440 441 442 443 444
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
445

446 447
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
464
    return output
Y
Yan Chunwei 已提交
465 466


H
Huihuang Zheng 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

530 531 532 533 534
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
535 536 537 538

    return op


Y
Yu Yang 已提交
539 540
class BlockGuard(object):
    """
541 542 543 544
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
545 546
    """

547 548
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
549
            raise TypeError("BlockGuard takes a program")
550
        self.main_program = main_program
Y
Yu Yang 已提交
551 552

    def __enter__(self):
W
Wu Yi 已提交
553
        self.main_program._create_block()
Y
Yu Yang 已提交
554 555

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
556
        self.main_program._rollback()
Y
Yu Yang 已提交
557 558 559 560 561
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
562 563 564 565 566
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
567 568
    """

Y
Yu Yang 已提交
569
    def __init__(self, rnn):
X
Xin Pan 已提交
570
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
571
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
572
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
573 574 575 576
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
577
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
578 579

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
580 581
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
582
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
583
        self.rnn._complete_op()
584 585 586
        return super(BlockGuardWithCompletion, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
587 588 589 590


class StaticRNNMemoryLink(object):
    """
591 592 593 594
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
595 596 597 598 599 600 601 602 603


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
604 605 606 607 608 609 610 611 612
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
613
    """
614 615
    :api_attr: Static Graph

616 617
    StaticRNN class.

618 619 620 621 622 623 624
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
625 626

    Examples:
627 628 629 630 631 632
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
633 634
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
635 636 637 638 639
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
640
            # transform batch size to dim 1
641 642 643 644
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
645
                # mark created x_emb as input, each step process a word
646
                word = rnn.step_input(x_emb)
647
                # create prev memory parameter, batch size comes from word
648 649
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
650 651
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
652
                # mark hidden as output
653
                rnn.step_output(hidden)
654
            # get StaticrNN final output
655
            result = rnn()
C
chengduo 已提交
656

657
    """
658

Y
Yu Yang 已提交
659 660 661 662
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

663
    def __init__(self, name=None):
664
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
665
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
666 667 668 669 670 671 672 673
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
674
        """
675 676
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
677
        """
Y
Yang Yang 已提交
678
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
679 680 681 682 683

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

684 685 686 687 688 689 690 691 692
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
693
        """
C
chengduo 已提交
694 695 696
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
697 698
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
699

700
        Args:
701
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
702 703
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
704 705 706 707 708 709 710
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
711 712

        Returns:
713 714 715 716 717
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
741 742 743


        Examples 2:
744 745
            .. code-block:: python

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
768

769
        """
Y
Yu Yang 已提交
770
        self._assert_in_rnn_block_('memory')
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
789
        if init is None:
790
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
791
                raise ValueError(
792 793
                    "if init is None, memory at least need shape and batch_ref"
                )
794
            parent_block = self._parent_block()
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
817 818 819 820

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
821 822 823
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
824
                dtype=init.dtype,
825 826 827 828 829
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
830 831 832
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
833 834 835 836 837 838 839 840
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
841 842 843 844 845
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
869

C
chengduo 已提交
870
        """
Y
Yu Yang 已提交
871
        self._assert_in_rnn_block_('step_input')
872
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
873
        if self.seq_len is None:
Y
Yu Yang 已提交
874
            self.seq_len = x.shape[0]
875
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
876 877
            raise ValueError("Static RNN only take fix seq_len input")

878 879 880
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
881 882 883 884
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
885 886 887 888 889 890 891 892
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
893 894 895 896

        Examples:
            .. code-block:: python

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
923

C
chengduo 已提交
924
        """
Y
Yu Yang 已提交
925
        self._assert_in_rnn_block_('step_output')
926
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
927

X
Xin Pan 已提交
928
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
929 930 931 932 933 934
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
935

936 937 938 939 940
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
941 942 943 944

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
945 946 947 948
        """
        Mark the StaticRNN output variables.

        Args:
949
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
950 951 952

        Returns:
            None
953 954 955 956

        Examples:
            .. code-block:: python

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
984
        """
Y
Yu Yang 已提交
985 986 987 988
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
989
        """
990
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
991 992 993

        Args:
            mem(Variable): the memory variable.
994
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
995
                           var and mem should have same dims and data type.
C
chengduo 已提交
996 997 998

        Returns:
            None
999

C
chengduo 已提交
1000
        """
1001 1002
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1003 1004
        self.memories[mem.name].mem = var

1005
    def _parent_block(self):
1006
        prog = self.helper.main_program
Y
Yu Yang 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1022
    def _complete_op(self):
1023 1024
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1025
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1040 1041 1042
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1043 1044 1045 1046 1047 1048 1049 1050
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1051 1052 1053
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1054 1055

        step_scope = parent_block.create_var(
1056 1057
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1058 1059 1060 1061

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1062
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1063 1064 1065
        boot_memories = []
        pre_memories = []
        memories = []
1066
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1067 1068
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1069 1070 1071
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1072 1073
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1074
            new_mem = self.helper.create_variable_for_type_inference(
1075 1076 1077 1078 1079 1080 1081 1082
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1083 1084 1085

            memories.append(new_mem.name)

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1101 1102


Y
Yang Yang(Tony) 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1118
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1119 1120 1121
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1122 1123 1124
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1125 1126 1127 1128 1129 1130 1131 1132
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1146 1147 1148 1149 1150 1151 1152 1153
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1154
                if in_var_name not in inner_outputs and not is_ignore_vars(
1155 1156
                    op, in_var_name
                ):
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1172 1173 1174 1175 1176
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1177 1178 1179 1180 1181 1182 1183
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1184
class While(object):
X
Xin Pan 已提交
1185
    """
1186
    :api_attr: Static Graph
1187

1188
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1189

1190 1191 1192 1193
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1194 1195 1196 1197 1198 1199
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1200
    Args:
1201
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1202
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1203
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1204

1205
    Examples 1:
X
Xin Pan 已提交
1206
          .. code-block:: python
1207

1208
            import paddle.fluid as fluid
1209 1210 1211 1212 1213
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1214

1215
            cond = fluid.layers.less_than(x=i, y=loop_len)
1216
            while_op = fluid.layers.While(cond=cond)
1217
            with while_op.block():
1218
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1219
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1220 1221 1222 1223 1224

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1254 1255
    """

Y
Yang Yang(Tony) 已提交
1256 1257 1258 1259
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1260
    def __init__(self, cond, is_test=False, name=None):
1261
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1262
        self.status = While.BEFORE_WHILE_BLOCK
1263
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1264
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1265
            raise TypeError(
1266 1267 1268 1269
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1270
        self.cond_var = cond
C
chengduo 已提交
1271
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1272 1273 1274 1275

    def block(self):
        return WhileGuard(self)

1276
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1277 1278
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1279
        parent_block = main_program.block(
1280 1281
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1282 1283 1284

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1285
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1286 1287
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1288 1289 1290

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1291 1292 1293
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1294

1295
        x_name_list |= set(map(lambda x: x.name, out_vars))
1296 1297 1298
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1299

Y
Yang Yang(Tony) 已提交
1300
        step_scope = parent_block.create_var(
1301 1302
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1303 1304 1305 1306

        parent_block.append_op(
            type='while',
            inputs={
1307 1308 1309 1310 1311
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1312
            },
1313 1314 1315
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1316 1317


1318
support_ret_buildin_type = (bool, float, int)
1319 1320


1321
def assign_skip_lod_tensor_array(input, output):
1322
    """
1323
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1324
    """
1325 1326

    def has_shape_diff(x_var, y_var):
1327 1328
        if len(x_var.shape) != len(y_var.shape):
            return True
1329
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1330 1331
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1332 1333
        return False

1334
    if not isinstance(input, (Variable, core.VarBase)):
1335
        if isinstance(output, Variable) and isinstance(
1336 1337
            input, support_ret_buildin_type
        ):
1338 1339 1340
            assign(input, output)
        else:
            output = input
1341 1342
        return

1343 1344
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1345
        parent_block = main_program.block(
1346 1347
            main_program.current_block().parent_idx
        )
1348 1349 1350
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1351 1352 1353 1354 1355
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1356
            warnings.warn(
1357 1358 1359 1360
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1361
        assign(input, output)
1362 1363


G
guofei 已提交
1364
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1365
    """
1366 1367
    :api_attr: Static Graph

G
guofei 已提交
1368 1369
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1370 1371 1372 1373
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1374
    Args:
1375
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1376
            as many arguments as ``loop_vars`` .
1377 1378 1379
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1380
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1381 1382
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1383

G
guofei 已提交
1384
    Returns:
C
Chen Long 已提交
1385
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1386 1387 1388 1389

    Examples:
        .. code-block:: python

1390 1391 1392
            import paddle
            paddle.enable_static()

1393 1394
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1395

1396 1397 1398
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1399

C
Chen Long 已提交
1400 1401 1402 1403 1404 1405
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1406

C
Chen Long 已提交
1407
                exe = paddle.static.Executor(paddle.CPUPlace())
1408
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1409 1410 1411 1412 1413 1414 1415 1416
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1417
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1418 1419 1420 1421
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1422 1423 1424
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1425 1426
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1427
            "the shape of the variable returned by cond should be [1],"
1428 1429
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1430

J
Jiabin Yang 已提交
1431
    if _non_static_mode():
1432
        now_cond = pre_cond.numpy()[0]
1433
        while now_cond:
1434 1435 1436 1437 1438 1439
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1440 1441
                    "(length and structure) and types as loop_vars"
                )
1442
            now_cond = cond(*output_vars).numpy()[0]
1443
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1444 1445
        return loop_vars

G
guofei 已提交
1446
    while_loop_block = While(pre_cond, is_test, name)
1447
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1448
    with while_loop_block.block():
1449 1450 1451 1452 1453 1454 1455 1456 1457
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1458 1459
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1460
        try:
1461
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1462 1463
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1464 1465
            raise ValueError(
                "body in while_loop should return the same arity "
1466 1467
                "(length and structure) as loop_vars: {0}".format(e)
            )
1468
        now_cond = cond(*output_vars)
1469
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1470 1471 1472 1473
        assign(now_cond, pre_cond)
    return loop_vars


1474
def _deal_with_undefined_var(output_vars, loop_vars):
1475 1476 1477 1478 1479 1480 1481
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1482
    """
1483 1484 1485 1486
    from paddle.fluid.dygraph.dygraph_to_static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )
1487 1488

    def create_var_like(o_var):
1489 1490 1491 1492
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1493
            return create_undefined_variable()
1494
        if is_sequence(o_var):
1495
            """
1496 1497 1498
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1512
def lod_rank_table(x, level=0):
1513 1514
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1515 1516
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1517
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1518
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1519 1520
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1521 1522 1523 1524

        .. code-block:: text

            x is a LoDTensor:
1525 1526
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1527 1528
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1529 1530 1531
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1532

Y
yangyaming 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1542 1543 1544 1545

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1546 1547
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1548 1549 1550 1551 1552 1553 1554

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1555
            import paddle.fluid as fluid
Y
yangyaming 已提交
1556
            x = fluid.layers.data(name='x', shape=[10],
1557
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1558
            out = layers.lod_rank_table(x=x, level=0)
1559
    """
1560 1561 1562
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1563 1564 1565
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1566

Y
Yu Yang 已提交
1567
    helper = LayerHelper("lod_rank_table", **locals())
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1578
    return table
Y
Yu Yang 已提交
1579 1580


Y
yuyang18 已提交
1581
@templatedoc()
1582
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1583 1584 1585 1586 1587 1588 1589 1590
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1591 1592

    Args:
Y
yuyang18 已提交
1593
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1594 1595

    Returns:
Y
yuyang18 已提交
1596
        ${out_comment}.
F
fengjiayi 已提交
1597 1598
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1599
    res = helper.create_variable_for_type_inference(dtype="int64")
1600 1601 1602 1603 1604
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1605 1606 1607
    return res


1608
def lod_tensor_to_array(x, table):
1609
    """
F
fengjiayi 已提交
1610 1611
    Convert a LoDTensor to a LoDTensorArray.

1612 1613 1614 1615 1616
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1617
    Users should not use it directly.
1618 1619

    Args:
F
fengjiayi 已提交
1620
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1621 1622
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1623
                                descending order. It is generally generated
F
fengjiayi 已提交
1624
                                by `layers.lod_rank_table()` API.
1625 1626

    Returns:
F
fengjiayi 已提交
1627
        Variable: The LoDTensorArray that has been converted from the input tensor.
1628 1629 1630 1631

    Examples:
        .. code-block:: python

1632
          import paddle.fluid as fluid
1633 1634 1635
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1636
    """
1637 1638 1639
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1640 1641 1642 1643 1644 1645
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1646 1647 1648
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1649 1650 1651 1652 1653 1654
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1655 1656
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1657
        name=unique_name.generate("lod_tensor_to_array"),
1658
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1659 1660 1661 1662 1663 1664 1665
        dtype=x.dtype,
    )
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': array},
    )
1666 1667 1668
    return array


1669
def array_to_lod_tensor(x, table):
1670
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1671 1672

    Args:
1673
        x (Variable|list): The lod tensor array to be converted to a tensor.
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1685
          import paddle.fluid as fluid
1686 1687 1688 1689
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1690
    """
1691 1692 1693
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1694 1695 1696 1697 1698 1699
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1700 1701 1702
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1703 1704 1705 1706 1707 1708
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1709

1710
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1711
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1712 1713 1714 1715 1716
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': tmp},
    )
1717 1718 1719
    return tmp


1720
def increment(x, value=1.0, in_place=True):
1721
    """
1722 1723
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1724

1725
    Parameters:
T
tianshuo78520a 已提交
1726
        x (Variable): A tensor that must always contain only one element, its data type supports
1727 1728 1729
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1730 1731

    Returns:
1732
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1733 1734 1735 1736

    Examples:
        .. code-block:: python

1737
          import paddle.fluid as fluid
1738 1739
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1740
    """
H
hong 已提交
1741
    if in_dygraph_mode():
1742
        return _C_ops.increment_(x, value)
H
hong 已提交
1743

1744 1745 1746
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1747
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1748
    if not in_place:
X
Xin Pan 已提交
1749
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1750 1751
    else:
        out = x
1752 1753 1754 1755 1756 1757
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1758
    return out
Y
Yu Yang 已提交
1759 1760


1761
def array_write(x, i, array=None):
1762
    """
1763 1764 1765 1766
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1767 1768

    Args:
1769 1770 1771 1772
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1773 1774
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1775
            as a result.
1776

1777
    Returns:
1778
        Variable: The input ``array`` after ``x`` is written into.
1779 1780

    Examples:
D
dzhwinter 已提交
1781
        .. code-block:: python
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1806 1807
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1808 1809
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1810
    """
J
Jiabin Yang 已提交
1811
    if _non_static_mode():
1812 1813 1814 1815 1816 1817 1818 1819 1820
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1821
        i = i.numpy().item(0)
1822 1823 1824
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1825 1826
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1827 1828 1829 1830 1831 1832 1833 1834 1835
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1836 1837
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1838
    helper = LayerHelper('array_write', **locals())
1839
    if array is not None:
1840 1841 1842 1843
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1844
            raise TypeError(
1845 1846
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1847 1848 1849 1850
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1851 1852 1853 1854 1855 1856 1857
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1858 1859 1860
    return array


1861
def create_array(dtype, initialized_list=None):
1862
    """
1863
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1864
    the input of :ref:`api_fluid_layers_array_read` and
1865 1866
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1867 1868

    Args:
1869 1870
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1871 1872
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1873 1874

    Returns:
1875
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1876 1877 1878 1879

    Examples:
        .. code-block:: python

1880
          import paddle.fluid as fluid
1881
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1882 1883

    """
1884 1885 1886 1887
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1888 1889 1890 1891
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1892 1893 1894 1895 1896 1897
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1898 1899 1900 1901
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1902

J
Jiabin Yang 已提交
1903
    if _non_static_mode():
1904
        return array
1905

Y
Yang Yang(Tony) 已提交
1906
    helper = LayerHelper("array", **locals())
1907
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1908 1909
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1910 1911
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1912

1913 1914 1915 1916 1917
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1918

Y
yuyang18 已提交
1919
@templatedoc()
W
wawltor 已提交
1920
def less_than(x, y, force_cpu=None, cond=None, name=None):
1921
    """
1922

Y
yuyang18 已提交
1923
    ${comment}
1924 1925

    Args:
N
Noel 已提交
1926 1927
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1928
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1929
        cond(Tensor, optional): Optional output which can be any created Tensor
1930
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1931
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1932 1933
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1934
    Returns:
Y
yuyang18 已提交
1935
        ${out_comment}.
1936 1937 1938 1939

    Examples:
        .. code-block:: python

N
Noel 已提交
1940 1941 1942 1943 1944 1945 1946
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1947
    """
1948 1949 1950 1951 1952 1953
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1954 1955
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
1956
    if force_cpu is not None:
1957 1958
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1959 1960
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1961
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1962 1963
        cond.stop_gradient = True

Y
yuyang18 已提交
1964 1965 1966 1967
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1968 1969 1970 1971 1972 1973
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1974 1975 1976
    return cond


Z
zhoukunsheng 已提交
1977
@templatedoc()
W
wawltor 已提交
1978
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1979
    """
1980
    :alias_main: paddle.less_equal
1981 1982
        :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
        :old_api: paddle.fluid.layers.less_equal
1983

1984
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1985 1986

    Args:
1987
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1988
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1989 1990
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1991 1992
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1993 1994

    Returns:
1995
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1996 1997 1998 1999

    Examples:
        .. code-block:: python

2000
          import paddle.fluid as fluid
2001 2002 2003 2004 2005 2006
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
2007
    """
2008 2009 2010 2011 2012 2013
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_equal"
    )
2014
    if cond is not None:
2015
        check_type(cond, "cond", Variable, "less_equal")
2016

Z
zhoukunsheng 已提交
2017 2018 2019 2020 2021 2022 2023
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2024 2025 2026 2027 2028 2029
    helper.append_op(
        type='less_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2030 2031 2032 2033
    return cond


@templatedoc()
W
wawltor 已提交
2034
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2035
    """
2036
    :alias_main: paddle.greater_than
2037 2038
        :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
        :old_api: paddle.fluid.layers.greater_than
2039

2040
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
2041 2042

    Args:
2043
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2044
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2045 2046
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2047 2048
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2049 2050

    Returns:
2051
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
2052 2053 2054 2055

    Examples:
        .. code-block:: python

2056
          import paddle.fluid as fluid
2057 2058 2059 2060 2061
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
2062
    """
2063 2064 2065 2066 2067 2068
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_than"
    )
2069
    if cond is not None:
2070
        check_type(cond, "cond", Variable, "greater_than")
2071

Z
zhoukunsheng 已提交
2072 2073 2074 2075 2076 2077 2078
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2079
    if in_dygraph_mode():
2080
        return _C_ops.greater_than(x, y, -1)
2081
    else:
2082 2083 2084 2085 2086 2087
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [cond]},
            attrs=attrs,
        )
2088
        return cond
Z
zhoukunsheng 已提交
2089 2090 2091


@templatedoc()
W
wawltor 已提交
2092
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2093
    """
2094
    :alias_main: paddle.greater_equal
2095 2096
        :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
        :old_api: paddle.fluid.layers.greater_equal
2097

2098
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
2099 2100

    Args:
2101
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2102
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2103 2104
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2105 2106
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2107 2108

    Returns:
2109
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2110 2111 2112 2113

    Examples:
        .. code-block:: python

2114
          import paddle.fluid as fluid
2115 2116 2117 2118 2119 2120
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
2121

Z
zhoukunsheng 已提交
2122
    """
2123 2124 2125 2126 2127 2128
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
2129
    if cond is not None:
2130
        check_type(cond, "cond", Variable, "greater_equal")
2131

Z
zhoukunsheng 已提交
2132 2133 2134 2135 2136 2137 2138
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2139 2140 2141 2142 2143 2144
    helper.append_op(
        type='greater_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2145 2146 2147
    return cond


W
wawltor 已提交
2148
def equal(x, y, cond=None, name=None):
2149 2150 2151 2152
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
2153 2154
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
2155
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
2156 2157
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2158 2159
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
2160 2161

    Returns:
W
wangchaochaohu 已提交
2162 2163
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2164 2165 2166 2167

    Examples:
        .. code-block:: python

2168
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2169 2170 2171 2172 2173 2174 2175
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2176
    """
H
hong 已提交
2177 2178
    if in_dygraph_mode():
        default_axis = -1
2179
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2180

2181 2182 2183 2184 2185 2186
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "equal"
    )
2187
    if cond is not None:
2188
        check_type(cond, "cond", Variable, "equal")
2189

2190 2191
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2192
        cond = helper.create_variable_for_type_inference(dtype='bool')
2193 2194
        cond.stop_gradient = True

2195 2196 2197
    helper.append_op(
        type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
2198 2199 2200
    return cond


W
wawltor 已提交
2201
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2202
    """
2203
    :alias_main: paddle.not_equal
2204 2205
        :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
        :old_api: paddle.fluid.layers.not_equal
2206

2207
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2208 2209

    Args:
2210
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2211
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2212 2213
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2214 2215
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2216 2217

    Returns:
2218
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2219 2220 2221 2222

    Examples:
        .. code-block:: python

2223
          import paddle.fluid as fluid
2224

2225 2226
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2227 2228
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2229 2230 2231 2232 2233 2234
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "not_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "not_equal"
    )
2235
    if cond is not None:
2236
        check_type(cond, "cond", Variable, "not_equal")
2237

Z
zhoukunsheng 已提交
2238 2239 2240 2241 2242
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2243 2244 2245
    helper.append_op(
        type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
Z
zhoukunsheng 已提交
2246 2247 2248
    return cond


2249
def array_read(array, i):
2250
    """
2251
    This OP is used to read data at the specified position from the input array
2252
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2253
    is the specified read position. This OP is often used together with
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2266

K
kavyasrinet 已提交
2267
    Args:
2268 2269 2270
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2271

K
kavyasrinet 已提交
2272
    Returns:
2273
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2274

K
kavyasrinet 已提交
2275
    Examples:
2276 2277
        .. code-block:: python

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2306 2307
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2308
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2309
    """
J
Jiabin Yang 已提交
2310
    if _non_static_mode():
2311
        assert isinstance(
2312 2313
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
2314 2315 2316 2317 2318 2319
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2320
        i = i.numpy().item(0)
2321 2322
        return array[i]

2323
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2324
    helper = LayerHelper('array_read', **locals())
2325 2326 2327 2328
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
2329
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2330
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2331 2332 2333 2334 2335
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
2336
    return out
Y
Yang Yu 已提交
2337 2338


2339
def shrink_memory(x, i, table):
2340
    """
Y
yuyang18 已提交
2341
    This function creates an operator to shrink rnn memory using the RankTable
2342
    as mentioned in the input parameter.
Y
yuyang18 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2363
    """
Y
Yang Yu 已提交
2364
    helper = LayerHelper('shrink_memory', **locals())
2365 2366 2367
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2368
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2369 2370 2371 2372 2373 2374
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
2375
    return out
Y
Yang Yu 已提交
2376 2377


2378
def array_length(array):
2379
    """
2380
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2381
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2382
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2383

K
kavyasrinet 已提交
2384
    Args:
2385
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2386 2387

    Returns:
2388
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2389 2390

    Examples:
Q
qiaolongfei 已提交
2391
        .. code-block:: python
K
kavyasrinet 已提交
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2409

2410 2411 2412 2413 2414
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2415

2416 2417 2418
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2419 2420
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2421
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2422
    """
2423

J
Jiabin Yang 已提交
2424
    if _non_static_mode():
2425
        assert isinstance(
2426 2427
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2428 2429
        return len(array)

2430 2431 2432 2433
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2434
        raise TypeError(
2435 2436
            "array should be tensor array vairable in array_length Op"
        )
2437

Y
Yang Yu 已提交
2438
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2439
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2440
    tmp.stop_gradient = True
2441 2442 2443
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2444
    return tmp
Y
Yu Yang 已提交
2445 2446 2447


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2448
    """
2449 2450 2451
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2452 2453 2454
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2455
    def __init__(self, block):
2456
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2457 2458 2459 2460 2461 2462 2463 2464
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2465 2466 2467
        return super(ConditionalBlockGuard, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
2468 2469 2470


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2471 2472 2473 2474 2475 2476 2477 2478
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2479
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2480 2481 2482 2483 2484
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2485
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2497
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2498
        for each_input in inputs:
2499
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2500
        self.inputs = inputs
2501
        self.is_scalar_condition = is_scalar_condition
2502
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2513 2514 2515
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2516

2517 2518 2519
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2520
        param_list = [
W
Wu Yi 已提交
2521
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2522 2523
        ]

X
Xin Pan 已提交
2524 2525 2526 2527 2528
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2529 2530

        step_scope = parent_block.create_var(
2531 2532
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2533
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2534 2535
            type='conditional_block',
            inputs={
2536 2537
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2538
            },
2539
            outputs={'Out': out_list, 'Scope': [step_scope]},
2540 2541
            attrs={
                'sub_block': inside_block,
2542 2543 2544
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2545

2546
        if self.need_append_conditional_block_grad(inside_block):
2547 2548 2549
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2550 2551 2552

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2553
        inside_block_idx = inside_block.idx
2554

2555 2556
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2557 2558 2559
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2560

2561 2562 2563
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2599
                param_list.append(inner_var.name)
2600 2601

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2602 2603
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2604 2605 2606 2607 2608 2609 2610 2611 2612

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2613 2614 2615
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2616 2617 2618

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2619 2620 2621 2622
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2623
                continue
2624
            grad_sub_block.desc.var(grad_var_name.encode())
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2639

2640
def copy_var_to_parent_block(var, layer_helper):
2641 2642
    if not isinstance(var, Variable):
        return var
2643 2644
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2645 2646 2647
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2648 2649
    parent_block = prog.block(parent_idx)

2650 2651 2652 2653
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2654 2655
        parent_block_var = var
    else:
2656 2657 2658
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2659
        assign(var, parent_block_var)
2660 2661 2662
    return parent_block_var


2663
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2664
    """
2665 2666 2667 2668 2669 2670 2671 2672 2673
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2674 2675

    Note:
2676 2677 2678 2679
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2680 2681 2682
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2683
        3. If it is in static mode, any tensors or operations created outside
2684 2685 2686
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2687 2688

        .. code-block:: python
2689 2690 2691 2692 2693

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2694
            c = a * b
2695
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2696

2697 2698 2699
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2700 2701

    Args:
2702
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2703
            value determines whether to return the result of ``true_fn`` or
2704 2705 2706 2707 2708 2709
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2710
             don't have to set this parameter. For more information, please
2711
             refer to :ref:`api_guide_Name` .
2712 2713 2714
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2715
             be same with return values of true_fn and false_fn.
2716 2717

    Returns:
2718
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2719
        predicate ``pred`` is true else ``false_fn()`` .
2720 2721 2722

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2723 2724
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2725 2726 2727 2728

    Examples:
        .. code-block:: python

2729
            import paddle
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2740 2741 2742 2743
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2744

2745 2746

            def false_func():
2747 2748 2749 2750 2751
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2752

2753 2754
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2755
            pred = paddle.less_than(x=x, y=y, name=None)
2756
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2757
            # ret is a tuple containing 2 tensors
2758 2759
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2760
            #           [ True  True  True]]
2761

2762
    """
J
Jiabin Yang 已提交
2763
    if _non_static_mode():
2764
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2765
        assert pred.size == 1, "condition input's numel should be 1"
2766 2767 2768 2769 2770
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2771 2772 2773 2774
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2775 2776 2777 2778 2779
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2780 2781 2782 2783
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2784 2785 2786
                return false_fn()
        return None

2787 2788
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2789 2790 2791
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2792
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2793 2794
    if true_fn is not None:
        if not callable(true_fn):
2795 2796
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2797 2798 2799
                    type(true_fn).__name__
                )
            )
2800 2801 2802 2803
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2804 2805 2806
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2807 2808
    if false_fn is not None:
        if not callable(false_fn):
2809 2810
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2811 2812 2813 2814 2815 2816
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True
        )
2817 2818 2819
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2820 2821 2822
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2823 2824 2825 2826 2827 2828 2829

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2830 2831
            "true_fn returns None while false_fn returns non-None"
        )
2832 2833 2834
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2835 2836
            "true_fn returns non-None while false_fn returns None"
        )
2837

2838
    # Merge true and false output if they are not None
2839
    if return_names is None:
2840
        is_dy2staic = False
2841
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2842
    else:
2843
        """
2844 2845
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2846 2847 2848 2849 2850 2851 2852
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2853
        true_output, false_output = expand_undefined_var(
2854 2855
            true_output, false_output, return_names
        )
2856

2857 2858 2859
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2860
        raise ValueError(
2861
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2862 2863
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2864 2865 2866
            )
        )
    for true_out, false_out, return_name in zip(
2867 2868 2869
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2870
    ):
2871 2872 2873 2874
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2875 2876 2877 2878
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2879

2880
    def check_ret_none(seq_true, seq_false, seq_names):
2881 2882 2883
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2884
            for idx in range(len(f_true)):
2885 2886 2887 2888 2889 2890
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2891 2892 2893 2894
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2895
                            f_name,
2896 2897 2898 2899 2900 2901 2902 2903
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2904 2905 2906
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2907
    )
2908 2909 2910

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2911 2912
            true_output, false_output
        )
2913

2914
    mask = cast(pred, dtype='int32')
2915 2916 2917 2918 2919
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2920 2921 2922 2923 2924

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2925 2926
        map(
            merge_every_var_list,
2927 2928 2929
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2930 2931
        )
    )
2932
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2933 2934 2935
    return merged_output


2936 2937 2938 2939
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
2940 2941
        if x is None:
            return UndefinedVar("padding")
2942 2943 2944 2945 2946 2947 2948
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2967
def expand_undefined_var(nest1, nest2, names):
2968 2969 2970 2971
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2972
    """
2973
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
2974 2975 2976
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_VALUE_PREFIX,
    )
2977 2978

    def pack_undefined_var_as(seq):
2979 2980 2981
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2982

2983
    def map_fn(n1, n2, name, order):
2984 2985 2986
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2987 2988 2989 2990 2991 2992
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2993 2994 2995
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2996 2997 2998 2999 3000
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
3001 3002 3003
                            name, type(n2), n2, type(n1), n1
                        )
                    )
3004 3005 3006 3007
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
3008 3009
        map(
            map_fn,
3010 3011 3012 3013
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
3014 3015
        )
    )
3016
    nest2_out = list(
3017 3018
        map(
            map_fn,
3019 3020 3021 3022
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
3023 3024
        )
    )
3025
    if not _is_sequence_except_dict(nest1):
3026
        nest1_out = nest1_out[0]
3027
    if not _is_sequence_except_dict(nest2):
3028
        nest2_out = nest2_out[0]
3029 3030 3031
    return nest1_out, nest2_out


L
liym27 已提交
3032
def _error_message(what, arg_name, op_name, right_value, error_value):
3033 3034
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
3035
        "{right_value}, but received: {error_value}.".format(
3036 3037 3038 3039 3040 3041 3042
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
3043 3044 3045 3046 3047 3048

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
3049 3050
    :api_attr: Static Graph

L
liym27 已提交
3051 3052 3053 3054 3055 3056 3057 3058
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3059
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
3060 3061 3062 3063 3064 3065 3066
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
3067
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
3068 3069 3070 3071 3072 3073
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3074 3075 3076
            import paddle

            paddle.enable_static()
L
liym27 已提交
3077 3078

            def fn_1():
3079
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3080 3081

            def fn_2():
3082
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3083 3084

            def fn_3():
3085
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3086

3087 3088 3089 3090
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
3091 3092 3093
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
3094

3095 3096 3097
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
3098 3099

                # Call fn_1 because pred_1 is True
3100
                out_1 = paddle.static.nn.case(
L
liym27 已提交
3101 3102 3103 3104
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
3105
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
3106

3107
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
3118
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
3119 3120 3121 3122

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
3123 3124 3125 3126 3127 3128 3129 3130
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
3131 3132
            if len(pred_fn) != 2:
                raise TypeError(
3133 3134 3135 3136 3137 3138 3139 3140
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
3141 3142 3143 3144
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
3145 3146 3147 3148 3149 3150 3151 3152
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
3153 3154 3155 3156

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
3157 3158
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


3180
class Switch(object):
Q
qiaolongfei 已提交
3181
    """
3182
    :api_attr: Static Graph
Q
qiaolongfei 已提交
3183

3184 3185 3186 3187 3188
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
3189 3190
    only the statement following the default branch is executed.

3191 3192 3193 3194
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

3195
    Member Functions:
3196
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
3197

3198 3199 3200 3201 3202
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
3213

3214 3215
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
3216 3217 3218

    Examples:
        .. code-block:: python
3219

3220
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
3221

3222
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
3223 3224 3225 3226 3227
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
3228
            zero_var = fluid.layers.fill_constant(
3229
                shape=[1], dtype='float32', value=0.0)
3230
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
3231
                shape=[1], dtype='float32', value=1.0)
3232
            two_var = fluid.layers.fill_constant(
3233
                shape=[1], dtype='float32', value=2.0)
3234

3235
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
3236 3237

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
3238
                with switch.case(global_step == zero_var):
3239
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
3240
                with switch.default():
3241
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
3242

3243 3244 3245 3246 3247
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
3248 3249
    """

3250 3251 3252 3253 3254 3255 3256 3257 3258
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

3259
        check_variable_and_dtype(
3260 3261 3262 3263 3264
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
3265

3266 3267 3268 3269 3270 3271 3272
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
3273 3274 3275
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition)
            )
3276 3277
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
3278
                [logical_and(x=pre_not_cond, y=condition)],
3279 3280
                is_scalar_condition=True,
            )
3281 3282 3283 3284 3285 3286 3287 3288 3289

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
3290 3291
            is_scalar_condition=True,
        )
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
3331 3332 3333 3334 3335
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3348
    """
3349 3350
    :api_attr: Static Graph

3351 3352 3353 3354
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3355 3356 3357 3358
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3359 3360 3361
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3362

3363 3364 3365 3366 3367 3368 3369 3370 3371
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3391
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3392 3393 3394 3395 3396 3397 3398 3399

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3400
        print(res)
3401
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3402 3403

    Args:
3404 3405
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3406

3407 3408
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3409

3410 3411
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3412

3413 3414 3415 3416 3417 3418 3419
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3420

X
Xin Pan 已提交
3421
    """
3422

Y
Yu Yang 已提交
3423 3424 3425 3426
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3427
    def __init__(self, cond, name=None):
3428 3429
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3430
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3442
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3443
            out_true = parent_block.create_var(
3444 3445 3446 3447 3448
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3449 3450

            out_false = parent_block.create_var(
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3474
    def _parent_block(self):
Y
Yu Yang 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3488 3489 3490
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3491
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3492
        for each_out in outs:
3493 3494 3495
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3496 3497
            # create outside tensor
            outside_out = parent_block.create_var(
3498 3499 3500 3501 3502
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3503 3504 3505
            out_table.append(outside_out)

            # assign local var to outside
3506
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3507 3508 3509 3510

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3511
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3512
        if false_len == 0 and true_len == 0:
3513 3514 3515
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3526 3527 3528 3529 3530 3531 3532 3533
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3534
        return rlist
3535 3536 3537


class DynamicRNN(object):
Y
yuyang18 已提交
3538
    """
3539 3540
    :api_attr: Static Graph

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3553
    The input sequences will be shrank because only sequences of which the
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3566

3567 3568 3569 3570
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3571 3572 3573 3574

    Examples:
        .. code-block:: python

3575
            import paddle.fluid as fluid
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3603
    """
3604

3605 3606 3607 3608
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3609 3610
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3611 3612 3613 3614
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3615
        self.zero_idx = None
3616 3617 3618
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3619
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3620 3621 3622 3623 3624
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3625
    def step_input(self, x, level=0):
3626
        r"""
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3670

Y
yuyang18 已提交
3671
        Args:
3672 3673 3674 3675 3676 3677 3678
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3679 3680

        Returns:
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3715
        """
3716
        self._assert_in_rnn_block_("step_input")
3717
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3718 3719 3720
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3721
                name=unique_name.generate('lod_rank_table'),
3722 3723
                type=core.VarDesc.VarType.LOD_RANK_TABLE,
            )
3724
            self.lod_rank_table.stop_gradient = True
3725 3726 3727 3728 3729 3730
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level},
            )
3731
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3732
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
3733 3734
                dtype='int64',
            )
3735
            self.max_seq_len.stop_gradient = False
3736 3737 3738 3739 3740
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len},
            )
3741
            self.cond.stop_gradient = True
3742 3743 3744 3745 3746 3747
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx, 'Y': self.max_seq_len},
                outputs={'Out': self.cond},
                attrs={'force_cpu': True},
            )
3748 3749

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3750
            name=unique_name.generate('dynamic_rnn_input_array'),
3751
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
3752 3753
            dtype=x.dtype,
        )
3754
        self.input_array.append((input_array, x.dtype))
3755 3756 3757 3758 3759
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x, 'RankTable': self.lod_rank_table},
            outputs={'Out': input_array},
        )
3760
        return array_read(array=input_array, i=self.step_idx)
3761

Y
yangyaming 已提交
3762
    def static_input(self, x):
3763
        r"""
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3837

Y
yuyang18 已提交
3838
        Args:
3839 3840 3841 3842
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3843 3844

        Returns:
T
tianshuo78520a 已提交
3845
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3857 3858 3859 3860

        Examples:
            .. code-block:: python

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3887
        """
Y
yangyaming 已提交
3888
        self._assert_in_rnn_block_("static_input")
3889
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3890 3891
        if self.lod_rank_table is None:
            raise RuntimeError(
3892 3893
                "static_input() must be called after step_input()."
            )
Y
yangyaming 已提交
3894 3895
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3896
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3897
            type=core.VarDesc.VarType.LOD_TENSOR,
3898 3899 3900 3901 3902 3903 3904
            dtype=x.dtype,
        )
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x], 'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]},
        )
Y
yangyaming 已提交
3905 3906
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3907
    @signature_safe_contextmanager
3908
    def block(self):
Y
yuyang18 已提交
3909
        """
3910 3911 3912 3913 3914 3915
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3916
        """
3917 3918
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3919 3920 3921
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True
        )
3922 3923 3924 3925
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3926
            increment(x=self.step_idx, value=1.0, in_place=True)
3927 3928

            for new_mem, mem_array in self.mem_link:
3929 3930
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3931 3932 3933 3934 3935 3936
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond,
            )
3937 3938 3939 3940

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3941 3942
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table)
            )
3943 3944

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3945
        """
T
tianshuo78520a 已提交
3946
        This function is used to get the output  sequences of DynamicRNN.
3947 3948 3949 3950 3951 3952 3953 3954 3955

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3956
        """
3957
        if self.status != DynamicRNN.AFTER_RNN:
3958 3959 3960 3961 3962 3963
            raise ValueError(
                (
                    "Output of the dynamic RNN can only be visited "
                    "outside the rnn block."
                )
            )
3964 3965 3966 3967 3968
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3969 3970 3971 3972 3973 3974 3975 3976
    def memory(
        self,
        init=None,
        shape=None,
        value=0.0,
        need_reorder=False,
        dtype='float32',
    ):
3977
        r"""
3978 3979 3980
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3981

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3994
            value (float, optional): When init is None, it is used as initialized value
3995 3996
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3997
                the memory needs to reorder like the RNN's input sequences. It should be
3998 3999 4000 4001 4002 4003 4004
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
4005
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
4006
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
4007
                the memory Tensor also need to be shrank and will only retain data \
4008 4009 4010 4011 4012 4013
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4014

4015 4016 4017
        Examples:
            .. code-block:: python

4018
                import paddle.fluid as fluid
4019

4020 4021
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
4034

4035 4036
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4037 4038


4039 4040
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4061
        """
4062
        self._assert_in_rnn_block_('memory')
4063
        self._init_zero_idx_()
4064
        if shape is not None:
4065 4066 4067 4068 4069 4070
            check_type(
                shape,
                'shape',
                (list, tuple),
                'fluid.layers.DynamicRNN.memory()',
            )
4071
        if init is not None:
4072 4073 4074
            check_type(
                init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()'
            )
4075
            parent_block = self._parent_block_()
4076 4077 4078 4079 4080 4081
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
4082 4083
                        'memory(init=init, need_reordered=True, ...).'
                    )
4084
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
4085
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
4086
                    type=core.VarDesc.VarType.LOD_TENSOR,
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
                    dtype=init.dtype,
                )
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table],
                    },
                    outputs={'Out': [init_reordered]},
                )
4097
                init_tensor = init_reordered
4098
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
4099
                name=unique_name.generate('dynamic_rnn_mem_array'),
4100
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4101 4102 4103 4104 4105 4106 4107
                dtype=init.dtype,
            )
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init_tensor, 'I': self.zero_idx},
                outputs={'Out': mem_array},
            )
4108
            retv = array_read(array=mem_array, i=self.step_idx)
4109 4110 4111
            retv = shrink_memory(
                x=retv, i=self.step_idx, table=self.lod_rank_table
            )
4112 4113 4114 4115 4116 4117 4118 4119 4120
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
4121 4122
                name=unique_name.generate('mem_init'), dtype=dtype
            )
4123
            arr, dtype = self.input_array[0]
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype
            )
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr], 'I': [self.zero_idx]},
                outputs={'Out': [in0]},
            )
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype,
                },
            )
4142 4143 4144
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
4145
        """
4146 4147
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
4148
        Args:
4149 4150 4151
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
4152 4153 4154

        Returns:
            None
4155

4156 4157 4158 4159 4160
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4161
        """
4162
        self._assert_in_rnn_block_('update_memory')
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
        check_type(
            ex_mem,
            'ex_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
        check_type(
            new_mem,
            'new_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
4185
        """
4186
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
4187 4188

        Args:
4189 4190
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
4191 4192 4193

        Returns:
            None
4194 4195 4196

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
4197
        """
4198 4199 4200
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
4201 4202 4203
            check_type(
                each, "outputs", Variable, "fluid.layers.DynamicRNN.output"
            )
4204
            outside_array = parent_block.create_var(
4205 4206 4207
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, "output_array", each.name])
                ),
4208
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4209 4210
                dtype=each.dtype,
            )
4211 4212 4213
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

4214 4215 4216 4217
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
                name=unique_name.generate('zero_idx'), dtype='int64'
            )
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True,
                },
            )
4231

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
4242
            raise ValueError(
4243 4244
                "{0} can only be invoked inside rnn block.".format(method)
            )
Y
Yang Yu 已提交
4245 4246


L
liym27 已提交
4247 4248
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
4249 4250
    :api_attr: Static Graph

L
liym27 已提交
4251 4252 4253
    This operator is like a C++ switch/case statement.

    Args:
4254
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
4255 4256 4257 4258 4259
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4260
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
4261 4262 4263 4264
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
4265
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

4277 4278 4279
            import paddle

            paddle.enable_static()
4280

L
liym27 已提交
4281
            def fn_1():
4282
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
4283 4284

            def fn_2():
4285
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
4286 4287

            def fn_3():
4288
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
4289

4290 4291 4292
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
4293 4294
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
4295

4296
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
4297 4298 4299 4300
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

4301
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
4302 4303 4304 4305 4306
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
4307
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
4308 4309 4310
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

4311
                exe = paddle.static.Executor(paddle.CPUPlace())
4312
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
4313 4314 4315 4316 4317 4318 4319 4320
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

4321 4322 4323 4324 4325 4326
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
4327 4328 4329 4330

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

4331
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
4332

4333 4334 4335
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
4336

4337 4338 4339 4340 4341
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
4342 4343 4344 4345 4346

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
4347 4348 4349 4350 4351 4352 4353 4354
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
4355 4356 4357

            if len(index_fn_pair) != 2:
                raise TypeError(
4358 4359 4360 4361 4362 4363 4364 4365
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
4366 4367 4368 4369 4370

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
4371 4372 4373 4374 4375 4376 4377 4378
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
4379 4380 4381

            if key in keys_of_fns:
                raise ValueError(
4382 4383 4384 4385
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
4386 4387 4388 4389 4390
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4391 4392
                    _error_message(
                        "The type of function for key {}".format(key),
4393 4394 4395 4396 4397 4398
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4423
@templatedoc()
Y
Yang Yu 已提交
4424
def reorder_lod_tensor_by_rank(x, rank_table):
4425 4426 4427 4428
    """
    ${comment}

    Args:
4429 4430
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4431

4432
    Returns:
4433
        out(${out_type}): ${out_comment}.
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4447 4448

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
4449 4450 4451
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
4452 4453 4454
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4455 4456
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4457
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4458 4459 4460 4461 4462
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
4463
    return out
4464 4465


4466
def is_empty(x, name=None):
4467
    """
4468

4469
    Test whether a Tensor is empty.
4470 4471

    Args:
4472 4473 4474 4475
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4476 4477

    Returns:
4478
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4479 4480 4481 4482

    Examples:
        .. code-block:: python

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4494

4495
    """
H
hong 已提交
4496
    if in_dygraph_mode():
W
wanghuancoder 已提交
4497
        return _C_ops.is_empty(x)
4498 4499
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4500

4501 4502 4503
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
4504 4505
    check_type(name, "name", (str, type(None)), "is_empty")

4506
    helper = LayerHelper("is_empty", **locals())
4507 4508
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4509 4510 4511
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
4512
    return cond