distribute_transpiler.py 113.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
19
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
20
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
21 22 23
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52

53 54
LOOKUP_TABLE_TYPE = ["lookup_table", "lookup_table_v2"]
LOOKUP_TABLE_GRAD_TYPE = ["lookup_table_grad", "lookup_table_v2_grad"]
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
109
        min_block_size (int): Minimum split block size.
110
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
143
        :api_attr: Static Graph
S
swtkiwi 已提交
144

145
    A configuration class that provide support for transpiler distributed jobs.
146 147 148
    Some important parameters are explained as follows:


H
haowang101779990 已提交
149 150
    .. py:attribute:: slice_var_up (bool)

151
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
152 153 154

    .. py:attribute:: split_method (PSDispatcher)

155 156 157 158
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
159 160 161

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
162
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
163 164

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
165
          We can use bandwidth efficiently when data size is larger than 2MB.If you
166 167 168 169
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
170

171 172 173
    Examples:
        .. code-block:: python

174 175 176
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

177 178
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
179 180
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
181 182 183 184 185
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
186
    enable_dc_asgd = False
187
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
188
    mode = "pserver"
189
    print_log = False
W
Wu Yi 已提交
190
    wait_port = True
Q
Qiao Longfei 已提交
191
    # split the send recv var in runtime
1
123malin 已提交
192 193
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
194

195 196
    # half_async
    half_async = False
T
tangwei12 已提交
197
    completely_not_async = False
198

199 200 201 202
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

203
    nccl_comm_num = 1
204 205
    # The picture here illustrates the principle:
    # https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
206
    use_hierarchical_allreduce = False
207
    # Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
208 209
    hierarchical_allreduce_inter_nranks = 0

210
    # if mode is collective
211
    # supported modes: grad_allreduce, local_sgd
212 213
    collective_mode = None

214 215 216 217 218
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
219
        return self.__runtime_split_send_recv
220 221 222 223 224

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
225
        if value and self.__sync_mode:
226 227 228
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
229
        self.__runtime_split_send_recv = value
230 231 232

    @property
    def sync_mode(self):
1
123malin 已提交
233
        return self.__sync_mode
234 235 236 237 238

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
239
        if value and self.__runtime_split_send_recv:
240 241 242
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
243 244 245 246 247 248 249 250 251 252 253
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
254

G
gongweibao 已提交
255

Y
gen rst  
yi.wu 已提交
256
class DistributeTranspiler(object):
Y
yi.wu 已提交
257
    """
258
        :api_attr: Static Graph
S
swtkiwi 已提交
259

Y
yi.wu 已提交
260 261 262
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
263
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
264

W
Wu Yi 已提交
265 266 267 268 269 270 271 272 273
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
274 275 276 277

    Examples:
        .. code-block:: python

278 279
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
280 281 282 283 284 285 286 287
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
288 289 290 291 292 293
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
294
            role = "PSERVER"
T
Tink_Y 已提交
295 296 297 298 299 300
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
301
                                                                pserver_program)
T
Tink_Y 已提交
302 303 304 305
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
306 307
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
308 309
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
310
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
311
            t = fluid.DistributeTranspiler(config=config)
312
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
313
            exe = fluid.ParallelExecutor(
314 315 316
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
317 318
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
319
    """
Y
Yancey1989 已提交
320

G
gongweibao 已提交
321 322 323 324 325
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
326
        self._set_server_config()
G
gongweibao 已提交
327 328 329 330

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
331
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
332 333 334 335 336 337
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

338 339 340
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
341 342
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
343
        self.counter_var = None
G
gongweibao 已提交
344

1
123malin 已提交
345 346 347 348 349 350 351 352 353 354
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
355 356 357 358
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
359 360
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
361 362 363 364 365 366
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
367 368
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
369 370 371

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
372 373 374 375 376 377 378 379 380

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
381 382 383 384
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
385 386 387 388 389
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
390 391 392 393 394
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
395 396 397 398 399 400 401
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
402 403 404 405 406
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

407 408 409 410 411 412 413 414 415 416 417 418
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
419
        elif collective_mode != "single_process_multi_thread":
420 421
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
422 423
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
424 425 426 427 428 429 430 431 432 433
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
434
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
435
        elif collective_mode == 'local_sgd':
436
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
437 438
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
439 440 441 442 443 444 445 446 447 448 449
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
450
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
451
        sparse_update_ops = []
452
        sparse_update_op_types = ["lookup_table", "nce", "lookup_table_v2"]
Q
Qiao Longfei 已提交
453 454
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
455
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
456 457 458
                sparse_update_ops.append(op)
        return sparse_update_ops

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

482
            if op_type in LOOKUP_TABLE_TYPE:
483 484 485 486 487 488 489 490 491 492 493 494
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
528 529
                            "trainer_id": self.trainer_id,
                            "lookup_table_version": op_type
530 531 532 533 534
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
535

536 537
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
538 539 540 541 542 543

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
544

545 546 547 548 549
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
550
                  sync_mode=True,
W
Wu Yi 已提交
551 552
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
553
        """
554
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
555 556 557 558 559 560

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
561 562
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
563 564
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
565 566 567
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
568
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
569 570
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
571 572 573
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
574 575 576 577 578 579 580 581 582 583 584

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
585
        """
586 587 588 589 590 591 592 593 594

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

595 596
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
597 598
        if startup_program is None:
            startup_program = default_startup_program()
599
        self.origin_program = program
W
Wu Yi 已提交
600 601
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
602

W
Wu Yi 已提交
603 604
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
605
            self.origin_program._trainers_endpoints = trainers.split(",")
606 607
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
608 609 610 611 612
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
613
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
614 615 616
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
617 618
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
619 620

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
621 622
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(
                        trainers_num, self.config.hierarchical_allreduce_inter_nranks)
623 624 625 626

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
627 628 629 630
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
631 632
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
633 634
            return

635 636 637 638 639 640 641 642 643 644 645
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

646
        self.trainer_num = trainers
647
        self.sync_mode = sync_mode
648 649 650
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
651
        self.vars_overview = VarsDistributed()
652 653
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
654
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
655 656
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
657
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
658
        self.grad_name_to_param_name = dict()
659 660
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
661
            self.grad_name_to_param_name[grad_var.name] = param_var.name
662

Q
Qiao Longfei 已提交
663
        # get all sparse update ops
Q
Qiao Longfei 已提交
664
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
665
            self.origin_program)
Q
Qiao Longfei 已提交
666
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
667
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
668
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
669

T
tangwei12 已提交
670 671 672
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
673
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
674 675 676
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

T
tianshuo78520a 已提交
677 678
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
679
        self._init_splited_vars()
680

G
gongweibao 已提交
681
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
682
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
683
        send_vars = []
684 685 686 687 688 689

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
690
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
691

G
gongweibao 已提交
692
        if not self.config.slice_var_up:
693 694
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
695

696
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
697

698
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
699
            eplist = ps_dispatcher.dispatch(splited_vars)
700

G
gongweibao 已提交
701
            if not self.config.slice_var_up:
702 703
                assert (len(splited_vars) == 1)

704
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
705
            if len(splited_vars) == 1:
706
                splited_grad_varname = splited_vars[0].name
707 708
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
709

Y
Yancey1989 已提交
710
            elif len(splited_vars) > 1:
711
                orig_var = program.global_block().vars[splited_grad_varname]
712 713
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
714

Q
Qiao Longfei 已提交
715 716 717 718
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
719 720
            else:
                AssertionError("Can not insert the send op by original "
721
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
722

723 724 725 726 727 728 729
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
730 731
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
732
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
733

Q
Qiao Longfei 已提交
734 735 736 737 738
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
739

740
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
741 742 743 744 745 746
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
747 748 749 750 751
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
752 753
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
754 755
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
756
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
757
                index=index + 1,
758
                type="send",
Q
Qiao Longfei 已提交
759
                inputs={"X": send_input_vars},
760
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
761 762
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
763 764
                    "sections": sections,
                    "send_varnames": send_varnames,
765
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
766 767 768
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
769
                    ]
Y
Yancey1989 已提交
770
                })
Y
update  
Yancey1989 已提交
771 772
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
773

774 775 776 777 778 779 780
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
781

782
        if not self.sync_mode:
1
123malin 已提交
783 784 785 786 787
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
788
                    # async mode, using communicator to merge and send
1
123malin 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
836

G
gongweibao 已提交
837
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
838
        recv_vars = []
Y
update  
Yancey1989 已提交
839
        for _, var in enumerate(send_vars):
840
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
841
        ps_dispatcher.reset()
Y
Yancey1989 已提交
842 843
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
844
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
845 846
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
847

848 849 850 851
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

852 853
        need_sparse_update_params = {}

Y
Yancey1989 已提交
854
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
855
        all_recv_outputs = []
856
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
857
            eps = []
Q
Qiao Longfei 已提交
858
            table_names = []
Y
Yancey1989 已提交
859 860 861
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
862
                table_names.append(var.name)
W
Wu Yi 已提交
863 864 865 866
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
867
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
868
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
869

T
tianshuo78520a 已提交
870 871
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
872 873 874 875 876 877 878
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
879
            if param_varname in self.sparse_param_to_height_sections:
880 881 882 883 884
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

885
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
886
            else:
Q
Qiao Longfei 已提交
887 888 889
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
890
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
891
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
892
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
893

Q
Qiao Longfei 已提交
894 895 896 897 898 899
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
900
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
901 902 903
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
904
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
905
                    })
T
typhoonzero 已提交
906

907 908
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
909
        if self.sync_mode:
W
Wu Yi 已提交
910
            # form a WAW dependency
Q
qiaolongfei 已提交
911 912
            program.global_block().append_op(
                type="fetch_barrier",
913
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
914
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
915 916
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
917
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
918 919
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
920

921
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
922 923
            if len(splited_var) <= 1:
                continue
924
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
925
            if param_varname not in self.sparse_param_to_height_sections:
926
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
927 928 929 930 931 932 933 934
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
935

G
gongweibao 已提交
936 937
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

938
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
939 940
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
941
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
942

943 944 945
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1018
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1019
        """
C
Chengmo 已提交
1020 1021 1022 1023 1024
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
1025

C
Chengmo 已提交
1026 1027 1028
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
1029 1030 1031

        Returns:
            Program: trainer side program.
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1044
        """
T
typhoonzero 已提交
1045
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1046
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1047

T
tangwei12 已提交
1048 1049 1050 1051
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1052 1053
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1054
        self._delete_trainer_optimizer(is_startup=False)
1055

1056
        self.origin_program.__str__()
T
tangwei12 已提交
1057
        self.startup_program.__str__()
G
gongweibao 已提交
1058

W
Wu Yi 已提交
1059 1060 1061
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1062
        return self.origin_program
T
typhoonzero 已提交
1063

W
Wu Yi 已提交
1064
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1065 1066 1067 1068
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1069
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1070
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1071 1072 1073 1074

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1075
        startup_program = self.startup_program
G
gongweibao 已提交
1076 1077 1078

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1079 1080 1081
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
1082
        # self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1083

M
minqiyang 已提交
1084
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1085 1086
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1107
                inputs={"X": []},
G
gongweibao 已提交
1108 1109 1110
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1111
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1112 1113 1114
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1115 1116
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1117 1118 1119
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1120
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1121 1122
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1123
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1124 1125 1126
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1127
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1128 1129
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1130
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1131 1132
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1133
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1134
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1145 1146 1147 1148 1149 1150 1151 1152
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1153 1154
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1155 1156 1157 1158 1159 1160
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1161

Y
yi.wu 已提交
1162 1163
        Args:
            endpoint (str): current parameter server endpoint.
1164

Y
yi.wu 已提交
1165 1166
        Returns:
            Program: the program for current parameter server to run.
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1181
        """
Y
yi.wu 已提交
1182 1183 1184 1185
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1186 1187 1188
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1189 1190
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1191
        pserver_program.random_seed = self.origin_program.random_seed
1192 1193
        pserver_program._copy_dist_param_info_from(self.origin_program)

1194
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1195 1196 1197 1198 1199 1200 1201 1202
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1203 1204 1205 1206 1207
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
T
tangwei12 已提交
1217
            if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
1218
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1228

Q
qiaolongfei 已提交
1229
        # step 3
1230
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1231 1232 1233
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1234
        # step 3.2
T
typhoonzero 已提交
1235 1236 1237 1238
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1239 1240
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1241
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1242
        # step 3.3
W
Wu Yi 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1261
        # Iterate through the ops, and if an op and the optimize ops
1262
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1263
        # append it into the sub program.
T
typhoonzero 已提交
1264 1265 1266

        global_ops = []

1267 1268 1269
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1270 1271
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1272
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1273
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1274 1275
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1276
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1277
                self._append_pserver_non_opt_ops(block, op)
1278

Y
Yancey1989 已提交
1279
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1280 1281 1282 1283 1284 1285 1286 1287
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1288
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1289 1290 1291

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1292
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1293 1294

            # clone ops
Y
Yancey1989 已提交
1295 1296
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1297
                # clone sub_block of op
Y
Yancey1989 已提交
1298
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1299 1300

            # reset the block of op
W
Wu Yi 已提交
1301
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1302

1303
        # append lr decay ops to the child block if exists
1304
        lr_ops = self._get_lr_ops()
1305 1306
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1307 1308

        lr_decay_block_id = -1
1309
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1310
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1311
                pserver_program.num_blocks - 1)
1312
            optimize_blocks.append(lr_decay_block)
1313
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1314
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1315
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1316 1317
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1318
            lr_decay_block_id = lr_decay_block.idx
1319

T
typhoonzero 已提交
1320
        # append op to the current block
Q
qiaolongfei 已提交
1321
        grad_to_block_id = []
Q
qiaolongfei 已提交
1322
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1323
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1324
            per_opt_block = pserver_program._create_block(pre_block_idx)
1325
            optimize_blocks.append(per_opt_block)
1326
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1327
            # append grad merging ops before clip and weight decay
1328 1329
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1330
            for _, op in enumerate(self.optimize_ops):
1331
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1332
                # merged_var should be the input var name of L2Decay
1333 1334 1335
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1336 1337 1338
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1339 1340 1341 1342 1343 1344
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1345
                            op not in global_ops:
1346 1347 1348 1349 1350
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1351

1352
        # dedup grad to ids list
W
Wu Yi 已提交
1353
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1354
        # append global ops
1355
        if global_ops:
W
Wu Yi 已提交
1356
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1357
                pserver_program.num_blocks - 1)
1358
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1359
            for glb_op in global_ops:
X
Xi Chen 已提交
1360
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1361
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1362

1363
        # process distributed lookup_table
Q
qiaolongfei 已提交
1364
        prefetch_var_name_to_block_id = []
1365 1366
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1367
            table_opt_block = self._create_table_optimize_block(
1368
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1369
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1370
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1371
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1372 1373
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1374

T
tangwei12 已提交
1375
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1376 1377
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1378

1379
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1380 1381
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1382 1383 1384 1385 1386 1387
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1388
        attrs = {
1389
            "optimize_blocks": optimize_blocks,
1390
            "endpoint": endpoint,
1391
            "pserver_id": self.pserver_endpoints.index(endpoint),
1392
            "Fanin": self.trainer_num,
1
123malin 已提交
1393
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1394
            "grad_to_block_id": grad_to_block_id,
1395
            "sparse_grad_to_param": sparse_grad_to_param,
1396
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1397 1398 1399 1400
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1401
        }
T
tangwei12 已提交
1402 1403

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1404
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1405 1406
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1407

T
tangwei12 已提交
1408 1409 1410 1411
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1412 1413 1414 1415 1416
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1417
            attrs=attrs)
1418

W
Wu Yi 已提交
1419
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1420 1421
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1422 1423
        return pserver_program

W
Wu Yi 已提交
1424 1425 1426
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1427 1428
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1429 1430 1431

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1432

W
Wu Yi 已提交
1433 1434
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1449 1450
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1451 1452
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1453 1454
        return pserver_prog, pserver_startup

1455 1456
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1457
                            pserver_program=None,
1458
                            startup_program=None):
T
typhoonzero 已提交
1459
        """
W
Wu Yi 已提交
1460 1461
        **Deprecated**

T
typhoonzero 已提交
1462 1463 1464
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1465 1466 1467

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1468 1469
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1470
                when initializing
1471

Y
yi.wu 已提交
1472 1473
        Returns:
            Program: parameter server side startup program.
1474 1475

        Examples:
1476 1477
            .. code-block:: python

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1489 1490
        """
        s_prog = Program()
W
Wu Yi 已提交
1491
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1492
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1504
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1505
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1506
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1507 1508 1509 1510
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1511
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1512 1513
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1524 1525

            if op_on_pserver:
1526 1527 1528
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1529
                if op.type in [
1530 1531
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1532
                ]:
W
Wu Yi 已提交
1533
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1534 1535 1536 1537
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1538
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1548

T
typhoonzero 已提交
1549 1550
        return s_prog

1551 1552
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1553
        block_suffix = "block"
1554 1555 1556
        block_idx = 0
        offset = 0
        is_slice = False
1557

1558
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1559

1560 1561
        if not block_name:
            return is_slice, block_idx, offset
1562

1563 1564 1565 1566
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1567 1568 1569 1570 1571
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1597 1598 1599 1600
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1638

Y
yi.wu 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1678
    def _init_splited_vars(self):
Y
yi.wu 已提交
1679
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1680 1681
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1702
        if self.config.slice_var_up:
Y
yi.wu 已提交
1703 1704
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1705 1706 1707
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1708
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1709 1710
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1711 1712 1713
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1714 1715 1716 1717
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1718 1719
        assert (len(grad_blocks) == len(param_blocks))

1720
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1721 1722
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1739
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1740 1741 1742 1743
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1744
        # dict(grad_splited_var -> param_splited_var)
1745
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1746 1747 1748
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1749
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1750
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1751 1752

        # create mapping of endpoint -> split var to create pserver side program
1753
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1763
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1764 1765
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1766
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1767
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1768 1769
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1770 1771
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1772 1773 1774 1775 1776 1777

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1778 1779
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1780
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1781 1782 1783
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1784 1785
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1786 1787
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1788 1789 1790
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1791
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1792
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1793 1794

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1795
                    self.all_out_emb_vars.append(out_var)
1796 1797

                    # delete lookup_table_op
1798
                    delete_ops(program.global_block(), [op])
1799 1800 1801
                    # break for loop
                    break

S
seiriosPlus 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1848
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1849
        # 2. add split_ids_op and send_op to send gradient to pservers
1850

1851 1852
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1853
        table_grad_name = grad_var_name(self.table_name)
1854 1855 1856 1857
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1858
                program.global_block()._insert_op(
1859 1860 1861 1862 1863
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1864 1865
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1866
                program.global_block()._insert_op(
1867
                    index=op_index + 2,
1868
                    type="send",
1869
                    inputs={'X': self.trainer_side_table_grad_list},
1870 1871 1872 1873 1874
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1875 1876
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1877
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1878 1879 1880 1881 1882
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1883
                    })
1884 1885 1886 1887 1888 1889
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1890
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1916
        return prefetch_var_name_to_block_id
1917 1918

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1919
                                     pre_block_idx, grad_to_block_id):
1920
        # STEP: create table optimize block
1921
        table_opt_block = pserver_program._create_block(pre_block_idx)
1922
        # create table param and grad var in pserver program
1923 1924
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1925 1926 1927
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1928 1929
        ][0]

Y
Yancey1989 已提交
1930 1931
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1932

T
tangwei12 已提交
1933
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1934 1935
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1936 1937 1938
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1939 1940
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1941
            shape=table_shape,
Y
Yancey1989 已提交
1942 1943 1944
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1945

1946 1947
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1948
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1949
            self.origin_program.global_block().vars[grad_var_name(
1950
                self.table_name)])
1951

1952 1953 1954
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1955

1956 1957 1958
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1959
            pserver_side_table_grad_list = [
1960 1961 1962 1963 1964 1965 1966 1967 1968
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1969
            # append sum op for pserver_side_table_grad_list
1970 1971
            table_opt_block.append_op(
                type="sum",
1972
                inputs={"X": pserver_side_table_grad_list},
1973 1974
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1975
        else:
T
tianshuo78520a 已提交
1976
            # in async_mode, for table gradient, it also need to be split to each parameter server
1977
            origin_grad_name = grad_var.name
1978 1979
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1980 1981
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1982
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1983
            grad_var = pserver_program.global_block()._rename_var(
1984
                origin_grad_name, splited_grad_name)
1985 1986 1987 1988 1989 1990 1991

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1992
        # only support sgd now
1993 1994 1995
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1996
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1997

1998 1999 2000
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

2001 2002
        return table_opt_block

T
tangwei12 已提交
2003 2004 2005 2006 2007
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
2008
        pserver_program.global_block().create_var(
T
tangwei12 已提交
2009
            name="kLookupTablePath",
T
tangwei12 已提交
2010 2011
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
2012

W
Wu Yi 已提交
2013
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2014
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
2015 2016 2017 2018
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
2019
            attrs={'file_path': "none"})
T
tangwei12 已提交
2020 2021 2022

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2023 2024 2025 2026 2027
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2028
        Create vars for each split.
T
typhoonzero 已提交
2029 2030
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2031 2032 2033 2034
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2035
        Returns:
2036
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2037
                from original var name to each var split.
T
typhoonzero 已提交
2038
        """
2039 2040

        # varname->[(block_id, current_block_size)]
2041
        block_map = collections.OrderedDict()
2042

2043
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2044 2045
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2046
            if varname not in block_map:
T
typhoonzero 已提交
2047
                block_map[varname] = []
2048
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2049

T
tianshuo78520a 已提交
2050
        for varname, split in six.iteritems(block_map):
T
typhoonzero 已提交
2051
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2052
            if len(split) == 1:
2053
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2054
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2055
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2056
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2057 2058 2059 2060 2061
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2062
                continue
T
typhoonzero 已提交
2063
            var_mapping[varname] = []
T
typhoonzero 已提交
2064 2065 2066 2067
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2068

T
tianshuo78520a 已提交
2069
            for i, block in enumerate(split):
T
typhoonzero 已提交
2070
                size = block[1]
M
minqiyang 已提交
2071
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2072 2073 2074
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2075
                new_var_name = ""
2076
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2077
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2078
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2079 2080
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2081
                                   (varname, i)
T
typhoonzero 已提交
2082
                var = program.global_block().create_var(
T
typhoonzero 已提交
2083 2084
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2085
                    dtype=orig_var.dtype,
2086
                    type=orig_var.type,
T
tianshuo78520a 已提交
2087
                    shape=splited_shape)  # flattend split var
T
typhoonzero 已提交
2088
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2089
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2090
        return var_mapping
T
done  
typhoonzero 已提交
2091

2092
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2093 2094 2095 2096 2097 2098
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2099
            persistable=persistable)
T
done  
typhoonzero 已提交
2100

Q
Qiao Longfei 已提交
2101 2102 2103 2104 2105 2106 2107
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2108
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2109 2110
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2111
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2112
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2113
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2114 2115
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2116
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2117 2118 2119 2120
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2121 2122 2123 2124
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2125
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2126
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2127 2128 2129 2130
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2131
                attrs={
Q
Qiao Longfei 已提交
2132
                    "sections": height_sections,
2133 2134
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2135 2136 2137
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2138

T
typhoonzero 已提交
2139 2140 2141 2142
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2143
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2156
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2157 2158
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2159 2160
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2161
                return param_shape
2162 2163 2164
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2165 2166 2167
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2168 2169
        elif op_type == "sgd":
            pass
2170 2171 2172 2173
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2174 2175
        return orig_shape

2176 2177
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2178
        orig_var_name = ""
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2189
        else:
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2212
            return None
2213 2214 2215 2216
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2217
        else:
2218
            merged_var_name = orig_varname
2219 2220

        merged_var = pserver_block.vars[merged_var_name]
2221
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
T
tangwei12 已提交
2222
        if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
2223
            vars2merge = []
2224
            for i in range(self.trainer_num):
2225
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2226
                                   (merged_var_name, i)
2227 2228 2229 2230
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2231 2232
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2233 2234 2235 2236 2237
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2238
        return merged_var
T
typhoonzero 已提交
2239

W
Wu Yi 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2302
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2303 2304
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2305
        program = optimize_block.program
T
typhoonzero 已提交
2306
        pserver_block = program.global_block()
2307
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2318 2319 2320 2321
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2322
        for key in opt_op.input_names:
T
typhoonzero 已提交
2323
            if key == "Grad":
W
Wu Yi 已提交
2324 2325 2326
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2337
            elif key == "Param":
W
Wu Yi 已提交
2338
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2339 2340
                if not param_block:
                    return
T
typhoonzero 已提交
2341
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2342
                    name=param_block.name,
T
typhoonzero 已提交
2343
                    persistable=True,
T
typhoonzero 已提交
2344 2345 2346
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2347
            elif key == "LearningRate":
2348
                # learning rate variable has already be created by non-optimize op,
2349
                # don't create it once again.
2350
                lr_varname = opt_op.input(key)[0]
2351
                if lr_varname in pserver_block.vars:
2352 2353 2354 2355 2356 2357 2358 2359 2360
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2361

T
typhoonzero 已提交
2362
        for key in opt_op.input_names:
2363
            new_shape = None
2364 2365 2366 2367
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2368
                continue
2369
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2370
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2371
            # update accumulator variable shape
2372 2373
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2374
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2375 2376 2377 2378 2379
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2380

2381
        # change output's ParamOut variable
2382 2383
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2384
        outputs["ParamOut"] = new_inputs["Param"]
2385
        optimize_block.append_op(
T
typhoonzero 已提交
2386 2387
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2388
            outputs=outputs,
G
gongweibao 已提交
2389
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2390

2391 2392 2393 2394 2395 2396
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2397 2398 2399 2400 2401 2402
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2403
            a@GRAD -> a@GRAD (a is not split)
2404
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2405
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2406 2407
            _generated_var_123 -> None
        """
2408
        grad_block = None
M
minqiyang 已提交
2409
        for _, g in six.iteritems(var_dict):
2410
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2411
                # skip per trainer vars
2412
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2413
                    # only param or grads have split blocks
2414 2415
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2416 2417
                        grad_block = g
                        break
2418 2419
        return grad_block

Q
Qiyang Min 已提交
2420 2421 2422
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2423
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2424 2425 2426 2427
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2428
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2429 2430 2431

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2432
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2433 2434 2435 2436
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2437
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2438

Y
Yancey1989 已提交
2439
        return block.append_op(
G
gongweibao 已提交
2440
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2441 2442

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2443
        program = optimize_block.program
2444
        # Append the ops for parameters that do not need to be optimized/updated
2445 2446
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2447
        for key, varlist in six.iteritems(inputs):
2448 2449
            if not isinstance(varlist, list):
                varlist = [varlist]
2450 2451
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2452
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2453
                # for inputs/outputs
2454
                grad_block = self._get_pserver_grad_param_var(
2455 2456
                    var, program.global_block().vars)
                if grad_block:
2457
                    varlist[i] = grad_block
2458
                elif var.name not in program.global_block().vars:
2459 2460 2461 2462 2463
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2464

2465 2466
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2467
        for key, varlist in six.iteritems(outputs):
2468 2469
            if not isinstance(varlist, list):
                varlist = [varlist]
2470 2471 2472
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2473 2474
                    var, program.global_block().vars)
                if grad_block:
2475
                    varlist[i] = grad_block
2476
                elif var.name not in program.global_block().vars:
2477 2478 2479 2480 2481
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2482

Y
Yancey1989 已提交
2483
        return optimize_block.append_op(
T
typhoonzero 已提交
2484
            type=opt_op.type,
T
typhoonzero 已提交
2485 2486
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2487
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2488

2489 2490 2491 2492
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2493
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2494
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2495 2496 2497 2498 2499 2500
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2501 2502
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2503 2504 2505 2506 2507 2508
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2509
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2510
        if "Param" in op.input_names and \
T
tangwei12 已提交
2511
                "LearningRate" in op.input_names:
2512 2513 2514 2515 2516 2517 2518
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2519
        if op.input("Param")[0] in param_names:
2520 2521 2522
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2523
                param = op.input("Param")[0]
T
typhoonzero 已提交
2524
                if same_or_split_var(n, param) and n != param:
2525 2526 2527
                    return True
            return False

T
typhoonzero 已提交
2528
    def _get_input_map_from_op(self, varmap, op):
2529
        """Returns a dict from op input name to the vars in varmap."""
2530
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2542
        """Returns a dict from op output name to the vars in varmap."""
2543
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2553 2554

    def _get_lr_ops(self):
2555 2556
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2557
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2558 2559 2560 2561
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2608 2609 2610 2611 2612
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2613 2614 2615 2616
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2617
            if self._is_optimizer_op(op):
2618 2619 2620 2621
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2622
        block = self.origin_program.global_block()
2623 2624 2625 2626 2627
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2628

2629 2630 2631 2632 2633
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2634
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2635 2636 2637 2638 2639 2640
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2641 2642
                    # we only need to append op for once
                    break
2643
        return lr_ops
Y
Yancey1989 已提交
2644

W
Wu Yi 已提交
2645 2646 2647 2648 2649
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2650 2651
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2652 2653 2654
            return True
        return False

Y
Yancey1989 已提交
2655
    def _get_optimize_pass(self):
2656
        """
2657
        Get optimizer operators, parameters and gradients from origin_program
2658 2659
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2660
            params_grads (dict): parameter->gradient.
2661
        """
Y
Yancey1989 已提交
2662 2663 2664
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2665 2666
        # tmp set to dedup
        optimize_params = set()
2667
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2668
        for op in block.ops:
W
Wu Yi 已提交
2669
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2670
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
2671
                # delete clip op from opt_ops when run in Parameter Server mode
C
Chengmo 已提交
2672 2673 2674 2675 2676 2677 2678 2679
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2680
                opt_ops.append(op)
2681 2682 2683 2684 2685 2686
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2687 2688
                        params_grads.append([
                            origin_var_dict[param_name],
2689
                            origin_var_dict[grad_name]
2690
                        ])
Y
Yancey1989 已提交
2691 2692
            else:
                pass
C
Chengmo 已提交
2693 2694 2695 2696 2697 2698

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2699
        return opt_ops, params_grads
C
Chengmo 已提交
2700 2701

    def _get_distribute_update_vars(self):
2702
        # TODO(chengmo): find more powerful and simple way to deal with these special situation
C
Chengmo 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads