distribute_transpiler.py 67.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
36
import six
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
213
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
214
        self.grad_name_to_param_name = dict()
215 216
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
217
            self.grad_name_to_param_name[grad_var.name] = param_var.name
218

T
tangwei12 已提交
219 220 221 222 223 224
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

225
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
226
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
227
        self._init_splited_vars()
228

G
gongweibao 已提交
229
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
230
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
231
        send_vars = []
232 233 234 235 236 237

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
238
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
239

G
gongweibao 已提交
240
        if not self.config.slice_var_up:
241 242
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
243

244 245
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
246
            eplist = ps_dispatcher.dispatch(splited_vars)
247

G
gongweibao 已提交
248
            if not self.config.slice_var_up:
249 250
                assert (len(splited_vars) == 1)

251
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
252
            if len(splited_vars) == 1:
253
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
254
                index = find_op_by_output_arg(program.global_block(),
255
                                              splited_grad_varname)
Y
Yancey1989 已提交
256
            elif len(splited_vars) > 1:
257
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
258
                index = find_op_by_output_arg(program.global_block(),
259
                                              splited_grad_varname)
Y
Yancey1989 已提交
260
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
261
                index += 1
Y
Yancey1989 已提交
262 263
            else:
                AssertionError("Can not insert the send op by original "
264
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
265

W
Wu Yi 已提交
266 267
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
268
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
269

W
Wu Yi 已提交
270
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
271
                index=index + 1,
272
                type="send",
Y
update  
Yancey1989 已提交
273
                inputs={"X": splited_vars},
274
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
275 276
                attrs={
                    "epmap": eplist,
277
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
278 279
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
280
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
281
                })
Y
update  
Yancey1989 已提交
282 283
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
284 285

        if self.sync_mode:
W
Wu Yi 已提交
286 287 288
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
289 290
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
291 292
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
293 294
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
295
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
296
                })
Y
Yancey1989 已提交
297

G
gongweibao 已提交
298
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
299
        recv_vars = []
Y
update  
Yancey1989 已提交
300
        for _, var in enumerate(send_vars):
301
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
302
        ps_dispatcher.reset()
Y
Yancey1989 已提交
303 304
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
305
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
306 307
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
308

Y
Yancey1989 已提交
309
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
310
        all_recv_outputs = []
311
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
312 313 314 315
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
316 317 318 319 320 321 322
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
Y
Yancey1989 已提交
323 324
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
325
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
326 327 328
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
329
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
330 331 332 333
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
334
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
335
                })
T
typhoonzero 已提交
336

Q
qiaolongfei 已提交
337
        if self.sync_mode:
W
Wu Yi 已提交
338
            # form a WAW dependency
Q
qiaolongfei 已提交
339 340 341
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
342
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
343 344 345 346
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
347

348
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
349 350
            if len(splited_var) <= 1:
                continue
351
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
352
            program.global_block().append_op(
T
typhoonzero 已提交
353
                type="concat",
T
typhoonzero 已提交
354
                inputs={"X": splited_var},
T
typhoonzero 已提交
355
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
356
                attrs={"axis": 0})
T
typhoonzero 已提交
357

G
gongweibao 已提交
358 359
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

360
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
361 362
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
363
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
364

T
typhoonzero 已提交
365
    def get_trainer_program(self):
Y
yi.wu 已提交
366 367 368 369 370 371
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
372
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
373
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
374
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
375
        self.origin_program.__str__()
G
gongweibao 已提交
376

377
        return self.origin_program
T
typhoonzero 已提交
378

G
gongweibao 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
398
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
419
                inputs={"X": []},
G
gongweibao 已提交
420 421 422 423 424 425
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
426 427
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
428 429 430
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
431
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
432 433 434 435 436
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
437
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
438 439 440 441 442 443 444 445 446 447 448 449
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
450 451
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
452
        Get parameter server side program.
453

Y
yi.wu 已提交
454 455
        Args:
            endpoint (str): current parameter server endpoint.
456

Y
yi.wu 已提交
457 458
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
459
        """
Y
yi.wu 已提交
460 461 462 463 464
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
465 466
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
467
        pserver_program.random_seed = self.origin_program.random_seed
468
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
469 470 471 472 473 474 475 476
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
477 478 479 480 481
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
482 483 484 485 486 487 488 489 490
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
491
            if self.sync_mode and self.trainer_num > 1:
492
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
493 494 495 496 497 498 499 500 501
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
502

Q
qiaolongfei 已提交
503
        # step 3
504
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
505 506 507
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
508
        # step 3.2
T
typhoonzero 已提交
509 510 511 512
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
513 514
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
515
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
516
        # step 3.3
T
typhoonzero 已提交
517
        # Iterate through the ops, and if an op and the optimize ops
518
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
519
        # append it into the sub program.
T
typhoonzero 已提交
520 521 522

        global_ops = []

Y
wip  
yi.wu 已提交
523 524
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
525
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
526
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
527
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
528
            elif op not in lr_ops:
Q
Qiyang Min 已提交
529
                self._append_pserver_non_opt_ops(block, op)
530 531 532 533 534 535

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
536

Y
Yancey1989 已提交
537
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
538 539 540 541 542 543 544 545
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
546
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
547 548 549

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
550
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
551 552

            # clone ops
Y
Yancey1989 已提交
553 554
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
555
                # clone sub_block of op
Y
Yancey1989 已提交
556
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
557 558 559 560

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

561
        # append lr decay ops to the child block if exists
562
        lr_ops = self._get_lr_ops()
563 564
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
565
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
566 567
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
568
            optimize_blocks.append(lr_decay_block)
569
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
570
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
571
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
572 573
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
574

T
typhoonzero 已提交
575
        # append op to the current block
Q
qiaolongfei 已提交
576
        grad_to_block_id = []
Q
qiaolongfei 已提交
577
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
578
        for idx, opt_op in enumerate(opt_op_on_pserver):
579
            per_opt_block = pserver_program.create_block(pre_block_idx)
580
            optimize_blocks.append(per_opt_block)
581
            # append grad merging ops before clip and weight decay
582
            # cases may like:
T
typhoonzero 已提交
583
            # L2Decay op -> clip op -> optimize
584 585 586 587 588 589 590
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
591
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
592 593
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
594
                if ufind.is_connected(op, opt_op) and op not in global_ops:
595
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
596
                                           merged_var, lr_ops)
T
typhoonzero 已提交
597

W
Wu Yi 已提交
598 599
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
600
        # append global ops
601
        if global_ops:
Q
qiaolongfei 已提交
602 603
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
604
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
605
            for glb_op in global_ops:
X
Xi Chen 已提交
606
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
607
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
608

609
        # process distributed lookup_table
Q
qiaolongfei 已提交
610
        prefetch_var_name_to_block_id = []
611 612
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
613
            table_opt_block = self._create_table_optimize_block(
614
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
615
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
616
            prefetch_var_name_to_block_id = self._create_prefetch_block(
617
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
618 619
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
620

T
tangwei12 已提交
621 622
            pserver_program._distributed_lookup_table = self.table_name

623 624 625
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
626
            assert len(prefetch_var_name_to_block_id) > 0
627
        else:
Q
qiaolongfei 已提交
628
            assert len(prefetch_var_name_to_block_id) == 0
629

630
        attrs = {
631
            "optimize_blocks": optimize_blocks,
632 633 634
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
635
            "grad_to_block_id": grad_to_block_id,
636 637 638 639
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
640
            attrs['checkpint_block_id'] = checkpoint_block_id
641

T
typhoonzero 已提交
642 643 644 645 646
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
647
            attrs=attrs)
648

T
tangwei12 已提交
649
        # add distributed attrs
T
tangwei12 已提交
650
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
651
            endpoint)
652

W
Wu Yi 已提交
653
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
654 655
        return pserver_program

656 657 658 659
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
660 661 662 663
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
664 665 666 667 668

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
669 670
            startup_program (Program): if pass None, will use
                default_startup_program
671

Y
yi.wu 已提交
672 673
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
674 675
        """
        s_prog = Program()
676 677 678 679
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
680
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
681 682 683 684 685 686 687 688 689 690 691
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
692
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
693
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
694
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
695 696 697 698
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
699
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
700 701
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
702 703 704 705 706 707 708 709 710 711
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
712 713

            if op_on_pserver:
714 715 716
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
717 718 719
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
720
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
721 722 723 724
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
725
                    attrs=op.all_attrs())
726 727

        # add slice vars
T
tangwei12 已提交
728
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
729

T
typhoonzero 已提交
730 731
        return s_prog

T
tangwei12 已提交
732 733 734
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
735
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
736
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
737
            if not block_name:
738 739
                continue

T
tangwei12 已提交
740
            block_idx = int(block_name.split(block_suffix)[1])
741 742 743 744 745 746
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
747
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
748

T
tangwei12 已提交
749
        return slice_vars_and_attrs
750

751 752
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
753 754 755 756 757 758 759 760 761
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
762
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
814
    def _init_splited_vars(self):
Y
yi.wu 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
838
        if self.config.slice_var_up:
Y
yi.wu 已提交
839 840
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
841 842 843
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
844
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
845 846
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
847 848 849
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
850 851 852 853
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
854 855
        assert (len(grad_blocks) == len(param_blocks))

856
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
857 858
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
859
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
860 861 862 863
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
864
        # dict(grad_splited_var -> param_splited_var)
865
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
866 867 868 869
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
870
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
871 872

        # create mapping of endpoint -> split var to create pserver side program
873
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
874 875 876 877 878 879 880 881 882
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

883
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
884 885
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
886
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
887 888 889 890 891 892 893 894 895
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
896 897 898 899 900 901 902 903 904

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

905
                    lookup_table_op_index = list(all_ops).index(op)
906 907 908
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
909
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
910
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
911 912 913 914 915 916
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
917
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
918 919 920 921
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
922 923

                    # insert split_ids_op
W
Wu Yi 已提交
924
                    program.global_block()._insert_op(
925
                        index=lookup_table_op_index,
926 927 928 929 930 931 932
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
933
                        outputs={"Out": prefetch_input_vars})
934 935

                    # insert prefetch_op
W
Wu Yi 已提交
936
                    program.global_block()._insert_op(
937
                        index=lookup_table_op_index + 1,
938
                        type="prefetch",
Q
qiaolongfei 已提交
939 940
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
941
                        attrs={
942
                            "epmap": pserver_endpoints,
943 944 945
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
946
                        })
947 948

                    # insert concat_op
W
Wu Yi 已提交
949
                    program.global_block()._insert_op(
950 951 952 953 954 955 956
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
957
                            'X': prefetch_output_vars
958
                        },
959 960 961 962 963
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
964
                        })
965 966

                    # delete lookup_table_op
967
                    delete_ops(program.global_block(), [op])
968 969 970
                    # break for loop
                    break

Y
Yancey1989 已提交
971
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
972
        # 2. add split_ids_op and send_op to send gradient to pservers
973 974
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
975
        table_grad_name = grad_var_name(self.table_name)
976 977 978 979
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
980
                program.global_block()._insert_op(
981 982 983 984 985
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
986
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
987
                program.global_block()._insert_op(
988
                    index=op_index + 2,
989
                    type="send",
990
                    inputs={'X': self.trainer_side_table_grad_list},
991
                    outputs={'Out': []},
Y
Yancey1989 已提交
992
                    attrs={
993
                        "sync_mode": True,
Y
Yancey1989 已提交
994
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
995 996 997 998 999
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1000
                    })
1001 1002 1003 1004 1005 1006
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1035 1036

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1037
                                     pre_block_idx, grad_to_block_id):
1038 1039
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1040 1041
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1042

T
tangwei12 已提交
1043
        zero_dim = int(
T
tangwei12 已提交
1044 1045 1046 1047
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1048 1049
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1050
            shape=table_shape,
Y
Yancey1989 已提交
1051 1052 1053
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1054 1055
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1056
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1057
            self.origin_program.global_block().vars[grad_var_name(
1058
                self.table_name)])
1059 1060 1061 1062

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1063 1064
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1065
        ][0]
Q
qiaolongfei 已提交
1066
        table_opt_block = pserver_program.create_block(pre_block_idx)
1067

1068 1069 1070
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1071
            pserver_side_table_grad_list = [
1072 1073 1074 1075 1076 1077 1078 1079 1080
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1081
            # append sum op for pserver_side_table_grad_list
1082 1083
            table_opt_block.append_op(
                type="sum",
1084
                inputs={"X": pserver_side_table_grad_list},
1085 1086
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1087 1088
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1089
            origin_grad_name = grad_var.name
1090 1091
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1092 1093
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1094
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1095
            grad_var = pserver_program.global_block()._rename_var(
1096
                origin_grad_name, splited_grad_name)
1097 1098 1099 1100 1101 1102 1103 1104 1105

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1106
        # only support sgd now
1107 1108 1109 1110
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1111
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1112

1113 1114 1115
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1116 1117
        return table_opt_block

T
tangwei12 已提交
1118 1119 1120 1121 1122 1123
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1124
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1125
            name="kLookupTablePath",
T
tangwei12 已提交
1126 1127
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1128

T
tangwei12 已提交
1129
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1130
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1131 1132 1133 1134
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1135
            attrs={'file_path': "none"})
T
tangwei12 已提交
1136 1137 1138

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1139 1140 1141 1142 1143
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1144
        Create vars for each split.
T
typhoonzero 已提交
1145 1146
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1147 1148 1149 1150
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1151
        Returns:
1152
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1153
                from original var name to each var split.
T
typhoonzero 已提交
1154
        """
1155 1156

        # varname->[(block_id, current_block_size)]
1157
        block_map = collections.OrderedDict()
1158

1159
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1160 1161
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1162
            if varname not in block_map:
T
typhoonzero 已提交
1163
                block_map[varname] = []
1164
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1165

M
minqiyang 已提交
1166
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1167
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1168
            if len(splited) == 1:
1169
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1170 1171
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1172
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1173 1174 1175 1176 1177
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1178
                continue
T
typhoonzero 已提交
1179
            var_mapping[varname] = []
T
typhoonzero 已提交
1180 1181 1182 1183
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1184

T
typhoonzero 已提交
1185
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1186
                size = block[1]
M
minqiyang 已提交
1187
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1188 1189 1190
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1191
                new_var_name = ""
1192
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1193 1194 1195 1196 1197
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1198
                var = program.global_block().create_var(
T
typhoonzero 已提交
1199 1200
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1201
                    dtype=orig_var.dtype,
1202
                    type=orig_var.type,
T
typhoonzero 已提交
1203
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1204
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1205
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1206
        return var_mapping
T
done  
typhoonzero 已提交
1207

W
Wu Yi 已提交
1208
    def _create_splited_vars(self, source_var, block, tag):
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1219 1220 1221 1222 1223 1224
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1225
            persistable=persistable)
T
done  
typhoonzero 已提交
1226

Y
Yancey1989 已提交
1227
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1228 1229 1230 1231
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1232
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1242
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1252

T
typhoonzero 已提交
1253 1254 1255 1256
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1257
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1273 1274
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1275 1276 1277 1278 1279
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1280 1281
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1282
        orig_var_name = ""
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1293
        else:
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1321
        else:
1322 1323 1324 1325 1326 1327
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1328
            for i in range(self.trainer_num):
1329 1330 1331 1332 1333 1334 1335
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1336 1337
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1338 1339 1340 1341 1342 1343 1344 1345
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1346

1347
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1348
                            grad_to_block_id, origin_program, merged_var):
1349
        program = optimize_block.program
T
typhoonzero 已提交
1350
        pserver_block = program.global_block()
1351
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1362
        for key in opt_op.input_names:
T
typhoonzero 已提交
1363 1364 1365
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1366
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1367 1368
                if not param_block:
                    return
T
typhoonzero 已提交
1369
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1370
                    name=param_block.name,
T
typhoonzero 已提交
1371
                    persistable=True,
T
typhoonzero 已提交
1372 1373 1374
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1375
            elif key == "LearningRate":
1376
                # learning rate variable has already be created by non-optimize op,
1377
                # don't create it once again.
1378
                lr_varname = opt_op.input(key)[0]
1379
                if lr_varname in pserver_block.vars:
1380 1381 1382 1383 1384 1385 1386 1387 1388
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1389

T
typhoonzero 已提交
1390
        for key in opt_op.input_names:
1391
            new_shape = None
W
Wu Yi 已提交
1392
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1393
                continue
1394
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1395 1396 1397 1398
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1399
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1400 1401 1402 1403 1404
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1405

1406
        # change output's ParamOut variable
1407 1408
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1409
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1410

1411
        optimize_block.append_op(
T
typhoonzero 已提交
1412 1413
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1414
            outputs=outputs,
G
gongweibao 已提交
1415
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1416

1417 1418
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1419
        for _, g in six.iteritems(var_dict):
1420 1421 1422 1423 1424 1425
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1426 1427 1428
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1429
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1430 1431 1432 1433
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1434
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1435 1436 1437

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1438
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1439 1440 1441 1442
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1443
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1444

Y
Yancey1989 已提交
1445
        return block.append_op(
G
gongweibao 已提交
1446
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1447 1448

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1449
        program = optimize_block.program
1450
        # Append the ops for parameters that do not need to be optimized/updated
1451 1452
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1453
        for key, varlist in six.iteritems(inputs):
1454 1455
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1456
            for var in varlist:
1457 1458 1459 1460 1461 1462
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1463
                elif var.name not in program.global_block().vars:
1464
                    program.global_block().create_var(
T
typhoonzero 已提交
1465 1466 1467 1468 1469
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1470 1471
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1472
        for key, varlist in six.iteritems(outputs):
1473 1474 1475
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1476 1477 1478 1479
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1480
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1481
                    program.global_block()._clone_variable(var)
1482

Y
Yancey1989 已提交
1483
        return optimize_block.append_op(
T
typhoonzero 已提交
1484
            type=opt_op.type,
T
typhoonzero 已提交
1485 1486
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1487
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1488

1489 1490 1491 1492
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1493 1494
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1495 1496 1497 1498 1499 1500
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1501 1502
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1503 1504 1505 1506 1507 1508
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1509
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1510 1511
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1512 1513 1514 1515 1516 1517 1518
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1519
        if op.input("Param")[0] in param_names:
1520 1521 1522
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1523
                param = op.input("Param")[0]
T
typhoonzero 已提交
1524
                if same_or_split_var(n, param) and n != param:
1525 1526 1527
                    return True
            return False

T
typhoonzero 已提交
1528
    def _get_input_map_from_op(self, varmap, op):
1529
        """Returns a dict from op input name to the vars in varmap."""
1530
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1542
        """Returns a dict from op output name to the vars in varmap."""
1543
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1553 1554 1555 1556 1557 1558

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1559
            if self._is_optimizer_op(op):
1560 1561 1562 1563
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1564
        block = self.origin_program.global_block()
1565 1566 1567 1568 1569
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1570

1571 1572 1573 1574 1575
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1576
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1577 1578 1579 1580 1581 1582
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1583 1584
                    # we only need to append op for once
                    break
1585
        return lr_ops
Y
Yancey1989 已提交
1586

W
Wu Yi 已提交
1587 1588 1589 1590 1591
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1592 1593
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1594 1595 1596
            return True
        return False

Y
Yancey1989 已提交
1597
    def _get_optimize_pass(self):
1598
        """
1599
        Get optimizer operators, parameters and gradients from origin_program
1600 1601 1602 1603
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1604 1605 1606
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1607
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1608
        for op in block.ops:
W
Wu Yi 已提交
1609
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1610
                opt_ops.append(op)
1611 1612 1613 1614 1615
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1616 1617
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1618 1619 1620 1621
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1622 1623 1624
            else:
                pass
        return opt_ops, params_grads