distribute_transpiler.py 69.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
185 186
                  sync_mode=True,
                  startup_program=None):
187
        """
Y
yi.wu 已提交
188 189 190 191 192 193 194 195 196 197 198
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
199 200
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
201 202 203
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
204 205
        if startup_program is None:
            startup_program = default_startup_program()
206
        self.origin_program = program
W
Wu Yi 已提交
207 208
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
209

210 211 212 213 214 215 216
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
217
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
218
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
219
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
220
        self.grad_name_to_param_name = dict()
221 222
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
223
            self.grad_name_to_param_name[grad_var.name] = param_var.name
224

T
tangwei12 已提交
225 226 227 228 229 230
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

231
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
232
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
233
        self._init_splited_vars()
234

G
gongweibao 已提交
235
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
236
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
237
        send_vars = []
238 239 240 241 242 243

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
244
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
245

G
gongweibao 已提交
246
        if not self.config.slice_var_up:
247 248
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
249

250 251
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
252
            eplist = ps_dispatcher.dispatch(splited_vars)
253

G
gongweibao 已提交
254
            if not self.config.slice_var_up:
255 256
                assert (len(splited_vars) == 1)

257
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
258
            if len(splited_vars) == 1:
259
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
260
                index = find_op_by_output_arg(program.global_block(),
261
                                              splited_grad_varname)
Y
Yancey1989 已提交
262
            elif len(splited_vars) > 1:
263
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
264
                index = find_op_by_output_arg(program.global_block(),
265
                                              splited_grad_varname)
Y
Yancey1989 已提交
266
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
267
                index += 1
Y
Yancey1989 已提交
268 269
            else:
                AssertionError("Can not insert the send op by original "
270
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
271

W
Wu Yi 已提交
272 273
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
274
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
275

W
Wu Yi 已提交
276
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
277
                index=index + 1,
278
                type="send",
Y
update  
Yancey1989 已提交
279
                inputs={"X": splited_vars},
280
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
281 282
                attrs={
                    "epmap": eplist,
283
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
284 285
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
286
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
287
                })
Y
update  
Yancey1989 已提交
288 289
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
290 291

        if self.sync_mode:
W
Wu Yi 已提交
292 293 294
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
295 296
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
297 298
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
299 300
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
301
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
302
                })
Y
Yancey1989 已提交
303

G
gongweibao 已提交
304
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
305
        recv_vars = []
Y
update  
Yancey1989 已提交
306
        for _, var in enumerate(send_vars):
307
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
308
        ps_dispatcher.reset()
Y
Yancey1989 已提交
309 310
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
311
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
312 313
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
314

Y
Yancey1989 已提交
315
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
316
        all_recv_outputs = []
317
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
318 319 320 321
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
322 323 324 325 326 327 328
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
Y
Yancey1989 已提交
329 330
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
331
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
332 333 334
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
335
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
336 337 338 339
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
340
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
341
                })
T
typhoonzero 已提交
342

Q
qiaolongfei 已提交
343
        if self.sync_mode:
W
Wu Yi 已提交
344
            # form a WAW dependency
Q
qiaolongfei 已提交
345 346 347
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
348
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
349 350 351 352
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
353

354
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
355 356
            if len(splited_var) <= 1:
                continue
357
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
358
            program.global_block().append_op(
T
typhoonzero 已提交
359
                type="concat",
T
typhoonzero 已提交
360
                inputs={"X": splited_var},
T
typhoonzero 已提交
361
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
362
                attrs={"axis": 0})
T
typhoonzero 已提交
363

G
gongweibao 已提交
364 365
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

366
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
367 368
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
369
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
370

T
typhoonzero 已提交
371
    def get_trainer_program(self):
Y
yi.wu 已提交
372 373 374 375 376 377
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
378
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
379
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
380
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
381
        self.origin_program.__str__()
G
gongweibao 已提交
382

383
        return self.origin_program
T
typhoonzero 已提交
384

W
Wu Yi 已提交
385
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
386 387 388 389
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
390 391
            recv_vars (list): Variable list to recv for current trainer_id
            eplist (list): A list of strings indicating 
G
gongweibao 已提交
392 393 394 395

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
396
        startup_program = self.startup_program
G
gongweibao 已提交
397 398 399 400

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
401
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
422
                inputs={"X": []},
G
gongweibao 已提交
423 424 425 426 427 428
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
429 430
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
431 432 433
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
434
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
435 436 437 438 439
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
440
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
441 442 443
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
444 445 446 447 448 449 450 451 452 453 454 455
            # NOTE: if enable memory optimization, origin vars maybe removed.
            if startup_program.global_block().vars.has_key(varname):
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
456 457 458 459 460 461 462 463
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
464 465
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
466
        Get parameter server side program.
467

Y
yi.wu 已提交
468 469
        Args:
            endpoint (str): current parameter server endpoint.
470

Y
yi.wu 已提交
471 472
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
473
        """
Y
yi.wu 已提交
474 475 476 477
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
478 479 480
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
481 482
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
483
        pserver_program.random_seed = self.origin_program.random_seed
484
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
485 486 487 488 489 490 491 492
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
493 494 495 496 497
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
498 499 500 501 502 503 504 505 506
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
507
            if self.sync_mode and self.trainer_num > 1:
508
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
509 510 511 512 513 514 515 516 517
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
518

Q
qiaolongfei 已提交
519
        # step 3
520
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
521 522 523
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
524
        # step 3.2
T
typhoonzero 已提交
525 526 527 528
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
529 530
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
531
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
532
        # step 3.3
T
typhoonzero 已提交
533
        # Iterate through the ops, and if an op and the optimize ops
534
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
535
        # append it into the sub program.
T
typhoonzero 已提交
536 537 538

        global_ops = []

Y
wip  
yi.wu 已提交
539 540
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
541
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
542
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
543
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
544
            elif op not in lr_ops:
Q
Qiyang Min 已提交
545
                self._append_pserver_non_opt_ops(block, op)
546 547 548 549 550 551

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
552

Y
Yancey1989 已提交
553
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
554 555 556 557 558 559 560 561
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
562
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
563 564 565

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
566
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
567 568

            # clone ops
Y
Yancey1989 已提交
569 570
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
571
                # clone sub_block of op
Y
Yancey1989 已提交
572
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
573 574 575 576

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

577
        # append lr decay ops to the child block if exists
578
        lr_ops = self._get_lr_ops()
579 580
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
581
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
582 583
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
584
            optimize_blocks.append(lr_decay_block)
585
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
586
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
587
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
588 589
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
590

T
typhoonzero 已提交
591
        # append op to the current block
Q
qiaolongfei 已提交
592
        grad_to_block_id = []
Q
qiaolongfei 已提交
593
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
594
        for idx, opt_op in enumerate(opt_op_on_pserver):
595
            per_opt_block = pserver_program.create_block(pre_block_idx)
596
            optimize_blocks.append(per_opt_block)
597
            # append grad merging ops before clip and weight decay
598
            # cases may like:
T
typhoonzero 已提交
599
            # L2Decay op -> clip op -> optimize
600 601 602 603 604 605 606
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
607
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
608 609
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
610
                if ufind.is_connected(op, opt_op) and op not in global_ops:
611
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
612
                                           merged_var, lr_ops)
T
typhoonzero 已提交
613

W
Wu Yi 已提交
614 615
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
616
        # append global ops
617
        if global_ops:
Q
qiaolongfei 已提交
618 619
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
620
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
621
            for glb_op in global_ops:
X
Xi Chen 已提交
622
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
623
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
624

625
        # process distributed lookup_table
Q
qiaolongfei 已提交
626
        prefetch_var_name_to_block_id = []
627 628
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
629
            table_opt_block = self._create_table_optimize_block(
630
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
631
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
632
            prefetch_var_name_to_block_id = self._create_prefetch_block(
633
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
634 635
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
636

T
tangwei12 已提交
637 638
            pserver_program._distributed_lookup_table = self.table_name

639 640 641
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
642
            assert len(prefetch_var_name_to_block_id) > 0
643
        else:
Q
qiaolongfei 已提交
644
            assert len(prefetch_var_name_to_block_id) == 0
645

646
        attrs = {
647
            "optimize_blocks": optimize_blocks,
648 649 650
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
651
            "grad_to_block_id": grad_to_block_id,
652 653 654 655
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
656
            attrs['checkpint_block_id'] = checkpoint_block_id
657

T
typhoonzero 已提交
658 659 660 661 662
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
663
            attrs=attrs)
664

T
tangwei12 已提交
665
        # add distributed attrs
T
tangwei12 已提交
666
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
667
            endpoint)
668

W
Wu Yi 已提交
669
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
670 671
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
672 673
        return pserver_program

W
Wu Yi 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
        
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

688 689
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
690
                            pserver_program=None,
691
                            startup_program=None):
T
typhoonzero 已提交
692
        """
W
Wu Yi 已提交
693 694
        **Deprecated**

T
typhoonzero 已提交
695 696 697
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
698 699 700

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
701 702 703
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
                when initalizing 
704

Y
yi.wu 已提交
705 706
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
707
        """
W
Wu Yi 已提交
708 709 710 711 712 713 714 715 716 717 718 719
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
720
        s_prog = Program()
W
Wu Yi 已提交
721
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
722
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
723 724 725 726 727 728 729 730 731 732 733
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
734
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
735
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
736
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
737 738 739 740
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
741
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
742 743
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
744 745 746 747 748 749 750 751 752 753
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
754 755

            if op_on_pserver:
756 757 758
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
759 760 761
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
762
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
763 764 765 766
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
767
                    attrs=op.all_attrs())
768 769

        # add slice vars
T
tangwei12 已提交
770
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
771

T
typhoonzero 已提交
772 773
        return s_prog

T
tangwei12 已提交
774 775 776
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
777
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
778
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
779
            if not block_name:
780 781
                continue

T
tangwei12 已提交
782
            block_idx = int(block_name.split(block_suffix)[1])
783 784 785 786 787 788
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
789
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
790

T
tangwei12 已提交
791
        return slice_vars_and_attrs
792

793 794
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
795 796 797 798 799 800 801 802 803
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
804
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
856
    def _init_splited_vars(self):
Y
yi.wu 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
880
        if self.config.slice_var_up:
Y
yi.wu 已提交
881 882
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
883 884 885
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
886
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
887 888
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
889 890 891
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
892 893 894 895
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
896 897
        assert (len(grad_blocks) == len(param_blocks))

898
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
899 900
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
901
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
902 903 904 905
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
906
        # dict(grad_splited_var -> param_splited_var)
907
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
908 909 910 911
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
912
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
913 914

        # create mapping of endpoint -> split var to create pserver side program
915
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
916 917 918 919 920 921 922 923 924
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

925
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
926 927
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
928
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
929 930 931 932 933 934 935 936 937
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
938 939 940 941 942 943 944 945 946

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

947
                    lookup_table_op_index = list(all_ops).index(op)
948 949 950
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
951
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
952
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
953 954 955 956 957 958
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
959
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
960 961 962 963
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
964 965

                    # insert split_ids_op
W
Wu Yi 已提交
966
                    program.global_block()._insert_op(
967
                        index=lookup_table_op_index,
968 969 970 971 972 973 974
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
975
                        outputs={"Out": prefetch_input_vars})
976 977

                    # insert prefetch_op
W
Wu Yi 已提交
978
                    program.global_block()._insert_op(
979
                        index=lookup_table_op_index + 1,
980
                        type="prefetch",
Q
qiaolongfei 已提交
981 982
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
983
                        attrs={
984
                            "epmap": pserver_endpoints,
985 986 987
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
988
                        })
989 990

                    # insert concat_op
W
Wu Yi 已提交
991
                    program.global_block()._insert_op(
992 993 994 995 996 997 998
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
999
                            'X': prefetch_output_vars
1000
                        },
1001 1002 1003 1004 1005
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1006
                        })
1007 1008

                    # delete lookup_table_op
1009
                    delete_ops(program.global_block(), [op])
1010 1011 1012
                    # break for loop
                    break

Y
Yancey1989 已提交
1013
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1014
        # 2. add split_ids_op and send_op to send gradient to pservers
1015 1016
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1017
        table_grad_name = grad_var_name(self.table_name)
1018 1019 1020 1021
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1022
                program.global_block()._insert_op(
1023 1024 1025 1026 1027
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1028
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1029
                program.global_block()._insert_op(
1030
                    index=op_index + 2,
1031
                    type="send",
1032
                    inputs={'X': self.trainer_side_table_grad_list},
1033
                    outputs={'Out': []},
Y
Yancey1989 已提交
1034
                    attrs={
1035
                        "sync_mode": True,
Y
Yancey1989 已提交
1036
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1037 1038 1039 1040 1041
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1042
                    })
1043 1044 1045 1046 1047 1048
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1077 1078

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1079
                                     pre_block_idx, grad_to_block_id):
1080 1081
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1082 1083
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1084

T
tangwei12 已提交
1085
        zero_dim = int(
T
tangwei12 已提交
1086 1087 1088 1089
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1090 1091
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1092
            shape=table_shape,
Y
Yancey1989 已提交
1093 1094 1095
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1096 1097
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1098
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1099
            self.origin_program.global_block().vars[grad_var_name(
1100
                self.table_name)])
1101 1102 1103 1104

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1105 1106
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1107
        ][0]
Q
qiaolongfei 已提交
1108
        table_opt_block = pserver_program.create_block(pre_block_idx)
1109

1110 1111 1112
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1113
            pserver_side_table_grad_list = [
1114 1115 1116 1117 1118 1119 1120 1121 1122
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1123
            # append sum op for pserver_side_table_grad_list
1124 1125
            table_opt_block.append_op(
                type="sum",
1126
                inputs={"X": pserver_side_table_grad_list},
1127 1128
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1129 1130
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1131
            origin_grad_name = grad_var.name
1132 1133
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1134 1135
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1136
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1137
            grad_var = pserver_program.global_block()._rename_var(
1138
                origin_grad_name, splited_grad_name)
1139 1140 1141 1142 1143 1144 1145 1146 1147

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1148
        # only support sgd now
1149 1150 1151 1152
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1153
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1154

1155 1156 1157
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1158 1159
        return table_opt_block

T
tangwei12 已提交
1160 1161 1162 1163 1164 1165
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1166
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1167
            name="kLookupTablePath",
T
tangwei12 已提交
1168 1169
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1170

T
tangwei12 已提交
1171
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1172
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1173 1174 1175 1176
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1177
            attrs={'file_path': "none"})
T
tangwei12 已提交
1178 1179 1180

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1181 1182 1183 1184 1185
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1186
        Create vars for each split.
T
typhoonzero 已提交
1187 1188
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1189 1190 1191 1192
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1193
        Returns:
1194
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1195
                from original var name to each var split.
T
typhoonzero 已提交
1196
        """
1197 1198

        # varname->[(block_id, current_block_size)]
1199
        block_map = collections.OrderedDict()
1200

1201
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1202 1203
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1204
            if varname not in block_map:
T
typhoonzero 已提交
1205
                block_map[varname] = []
1206
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1207

M
minqiyang 已提交
1208
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1209
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1210
            if len(splited) == 1:
1211
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1212 1213
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1214
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1215 1216 1217 1218 1219
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1220
                continue
T
typhoonzero 已提交
1221
            var_mapping[varname] = []
T
typhoonzero 已提交
1222 1223 1224 1225
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1226

T
typhoonzero 已提交
1227
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1228
                size = block[1]
M
minqiyang 已提交
1229
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1230 1231 1232
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1233
                new_var_name = ""
1234
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1235 1236 1237 1238 1239
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1240
                var = program.global_block().create_var(
T
typhoonzero 已提交
1241 1242
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1243
                    dtype=orig_var.dtype,
1244
                    type=orig_var.type,
T
typhoonzero 已提交
1245
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1246
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1247
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1248
        return var_mapping
T
done  
typhoonzero 已提交
1249

W
Wu Yi 已提交
1250
    def _create_splited_vars(self, source_var, block, tag):
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1261 1262 1263 1264 1265 1266
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1267
            persistable=persistable)
T
done  
typhoonzero 已提交
1268

Y
Yancey1989 已提交
1269
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1270 1271 1272 1273
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1274
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1284
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1294

T
typhoonzero 已提交
1295 1296 1297 1298
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1299
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1315 1316
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1317 1318 1319 1320 1321
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1322 1323
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1324
        orig_var_name = ""
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1335
        else:
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1363
        else:
1364 1365 1366 1367 1368 1369
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1370
            for i in range(self.trainer_num):
1371 1372 1373 1374 1375 1376 1377
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1378 1379
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1380 1381 1382 1383 1384 1385 1386 1387
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1388

1389
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1390
                            grad_to_block_id, origin_program, merged_var):
1391
        program = optimize_block.program
T
typhoonzero 已提交
1392
        pserver_block = program.global_block()
1393
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1404
        for key in opt_op.input_names:
T
typhoonzero 已提交
1405 1406 1407
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1408
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1409 1410
                if not param_block:
                    return
T
typhoonzero 已提交
1411
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1412
                    name=param_block.name,
T
typhoonzero 已提交
1413
                    persistable=True,
T
typhoonzero 已提交
1414 1415 1416
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1417
            elif key == "LearningRate":
1418
                # learning rate variable has already be created by non-optimize op,
1419
                # don't create it once again.
1420
                lr_varname = opt_op.input(key)[0]
1421
                if lr_varname in pserver_block.vars:
1422 1423 1424 1425 1426 1427 1428 1429 1430
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1431

T
typhoonzero 已提交
1432
        for key in opt_op.input_names:
1433
            new_shape = None
W
Wu Yi 已提交
1434
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1435
                continue
1436
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1437 1438 1439 1440
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1441
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1442 1443 1444 1445 1446
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1447

1448
        # change output's ParamOut variable
1449 1450
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1451
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1452

1453
        optimize_block.append_op(
T
typhoonzero 已提交
1454 1455
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1456
            outputs=outputs,
G
gongweibao 已提交
1457
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1458

1459 1460
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1461
        for _, g in six.iteritems(var_dict):
1462 1463 1464 1465 1466 1467
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1468 1469 1470
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1471
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1472 1473 1474 1475
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1476
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1477 1478 1479

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1480
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1481 1482 1483 1484
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1485
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1486

Y
Yancey1989 已提交
1487
        return block.append_op(
G
gongweibao 已提交
1488
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1489 1490

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1491
        program = optimize_block.program
1492
        # Append the ops for parameters that do not need to be optimized/updated
1493 1494
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1495
        for key, varlist in six.iteritems(inputs):
1496 1497
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1498
            for var in varlist:
1499 1500 1501 1502 1503 1504
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1505
                elif var.name not in program.global_block().vars:
1506
                    program.global_block().create_var(
T
typhoonzero 已提交
1507 1508 1509 1510 1511
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1512 1513
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1514
        for key, varlist in six.iteritems(outputs):
1515 1516 1517
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1518 1519 1520 1521
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1522
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1523
                    program.global_block()._clone_variable(var)
1524

Y
Yancey1989 已提交
1525
        return optimize_block.append_op(
T
typhoonzero 已提交
1526
            type=opt_op.type,
T
typhoonzero 已提交
1527 1528
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1529
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1530

1531 1532 1533 1534
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1535 1536
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1537 1538 1539 1540 1541 1542
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1543 1544
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1545 1546 1547 1548 1549 1550
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1551
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1552 1553
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1554 1555 1556 1557 1558 1559 1560
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1561
        if op.input("Param")[0] in param_names:
1562 1563 1564
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1565
                param = op.input("Param")[0]
T
typhoonzero 已提交
1566
                if same_or_split_var(n, param) and n != param:
1567 1568 1569
                    return True
            return False

T
typhoonzero 已提交
1570
    def _get_input_map_from_op(self, varmap, op):
1571
        """Returns a dict from op input name to the vars in varmap."""
1572
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1584
        """Returns a dict from op output name to the vars in varmap."""
1585
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1595 1596 1597 1598 1599 1600

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1601
            if self._is_optimizer_op(op):
1602 1603 1604 1605
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1606
        block = self.origin_program.global_block()
1607 1608 1609 1610 1611
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1612

1613 1614 1615 1616 1617
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1618
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1619 1620 1621 1622 1623 1624
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1625 1626
                    # we only need to append op for once
                    break
1627
        return lr_ops
Y
Yancey1989 已提交
1628

W
Wu Yi 已提交
1629 1630 1631 1632 1633
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1634 1635
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1636 1637 1638
            return True
        return False

Y
Yancey1989 已提交
1639
    def _get_optimize_pass(self):
1640
        """
1641
        Get optimizer operators, parameters and gradients from origin_program
1642 1643 1644 1645
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1646 1647 1648
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1649
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1650
        for op in block.ops:
W
Wu Yi 已提交
1651
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1652
                opt_ops.append(op)
1653 1654 1655 1656 1657
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1658 1659
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1660 1661 1662 1663
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1664 1665 1666
            else:
                pass
        return opt_ops, params_grads