distribute_transpiler.py 81.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140
    enable_dc_asgd = False
W
Wu Yi 已提交
141 142
    # supported modes: pserver, nccl2
    mode = "pserver"
143
    print_log = False
G
gongweibao 已提交
144 145


Y
gen rst  
yi.wu 已提交
146
class DistributeTranspiler(object):
Y
yi.wu 已提交
147 148 149 150
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
151
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
152

W
Wu Yi 已提交
153 154 155 156 157 158 159 160 161
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
162 163 164 165

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
166 167 168 169 170 171
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
172 173
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
174
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
175 176 177 178 179 180 181 182
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
183

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
195
    """
Y
Yancey1989 已提交
196

G
gongweibao 已提交
197 198 199 200 201 202 203 204 205
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

206 207 208
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
209 210 211
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
239
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
240 241 242 243
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
Q
Qiao Longfei 已提交
244 245
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
Q
Qiao Longfei 已提交
246 247 248
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
249 250
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
                                        endpint_map):
Q
Qiao Longfei 已提交
251 252 253 254
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
255 256 257 258 259 260 261
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
262

263 264 265 266 267
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
268
                  sync_mode=True,
W
Wu Yi 已提交
269 270
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
271
        """
Y
yi.wu 已提交
272 273 274 275 276 277 278
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
279 280
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
281 282
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
283 284 285
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
286
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
287 288
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
289 290 291
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
292 293 294
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
295 296
        if startup_program is None:
            startup_program = default_startup_program()
297
        self.origin_program = program
W
Wu Yi 已提交
298 299
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
300

W
Wu Yi 已提交
301 302 303 304 305 306 307 308 309
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

310 311 312 313 314 315 316
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
317
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
318 319
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
320
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
321
        self.grad_name_to_param_name = dict()
322 323
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
324
            self.grad_name_to_param_name[grad_var.name] = param_var.name
325

Q
Qiao Longfei 已提交
326
        # get all sparse update ops
Q
Qiao Longfei 已提交
327
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
328 329 330
            self.origin_program)
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
331 332 333 334 335 336
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

337
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
338
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
339
        self._init_splited_vars()
340

G
gongweibao 已提交
341
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
342
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
343
        send_vars = []
344 345 346 347 348 349

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
350
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
351

G
gongweibao 已提交
352
        if not self.config.slice_var_up:
353 354
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
355

356
        self.grad_name_to_send_dummy_out = dict()
357
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
358
            eplist = ps_dispatcher.dispatch(splited_vars)
359

G
gongweibao 已提交
360
            if not self.config.slice_var_up:
361 362
                assert (len(splited_vars) == 1)

363
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
364
            if len(splited_vars) == 1:
365
                splited_grad_varname = splited_vars[0].name
366 367
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
368
            elif len(splited_vars) > 1:
369
                orig_var = program.global_block().vars[splited_grad_varname]
370 371
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
372
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
373
                index += 1
Y
Yancey1989 已提交
374 375
            else:
                AssertionError("Can not insert the send op by original "
376
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
377

W
Wu Yi 已提交
378 379
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
380
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
381

W
Wu Yi 已提交
382 383 384 385
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
386
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
387
                index=index + 1,
388
                type="send",
Y
update  
Yancey1989 已提交
389
                inputs={"X": splited_vars},
390
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
391 392
                attrs={
                    "epmap": eplist,
393
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
394 395 396 397
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
398
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
399
                })
Y
update  
Yancey1989 已提交
400 401
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
402 403

        if self.sync_mode:
W
Wu Yi 已提交
404 405
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
406 407 408 409
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
410
            input_deps = list(self.grad_name_to_send_dummy_out.values())
411

Y
Yancey1989 已提交
412 413
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
414
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
415
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
416 417
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
418 419
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
420
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
421
                })
Y
Yancey1989 已提交
422

G
gongweibao 已提交
423
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
424
        recv_vars = []
Y
update  
Yancey1989 已提交
425
        for _, var in enumerate(send_vars):
426
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
427
        ps_dispatcher.reset()
Y
Yancey1989 已提交
428 429
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
430
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
431 432
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
433

Y
Yancey1989 已提交
434
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
435
        all_recv_outputs = []
436
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
437 438 439 440
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
441 442 443 444
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
445
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
446
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
447

W
Wu Yi 已提交
448 449 450 451 452 453 454 455 456
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
457 458 459
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
460 461
                self._update_remote_sparse_update_op(param_varname,
                                                     height_sections, eps)
Q
Qiao Longfei 已提交
462
            else:
Q
Qiao Longfei 已提交
463
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
464 465 466 467 468 469 470 471 472 473 474 475
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
476

Q
qiaolongfei 已提交
477
        if self.sync_mode:
W
Wu Yi 已提交
478
            # form a WAW dependency
Q
qiaolongfei 已提交
479 480 481
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
482
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
483 484
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
485
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
486 487
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
488

489
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
490 491
            if len(splited_var) <= 1:
                continue
492
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
493 494 495 496 497 498 499 500 501
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
502

G
gongweibao 已提交
503 504
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

505
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
506 507
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
508
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
509

W
Wu Yi 已提交
510
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
511 512 513 514 515 516
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
517
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
518
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
519
        lr_ops = self._get_lr_ops()
520
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
521 522
        delete_ops(self.origin_program.global_block(), lr_ops)

523 524
        # delete table init op
        if self.has_distributed_lookup_table:
525 526 527
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
528 529
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
530 531 532 533 534
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
535
            table_init_op = table_param_init_op[0]
536 537 538 539 540 541
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
542

543
        self.origin_program.__str__()
G
gongweibao 已提交
544

W
Wu Yi 已提交
545 546 547
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

548
        return self.origin_program
T
typhoonzero 已提交
549

W
Wu Yi 已提交
550
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
551 552 553 554
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
555
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
556
            eplist (list): A list of strings indicating
G
gongweibao 已提交
557 558 559 560

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
561
        startup_program = self.startup_program
G
gongweibao 已提交
562 563 564 565

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
566
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
587
                inputs={"X": []},
G
gongweibao 已提交
588 589 590 591 592 593
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
594 595
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
596 597 598
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
599
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
600 601 602 603 604
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
605
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
606
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
607 608
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
609
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
610
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
611 612 613 614 615 616 617 618 619 620
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
621 622 623 624 625 626 627 628
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
629 630
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
631
        Get parameter server side program.
632

Y
yi.wu 已提交
633 634
        Args:
            endpoint (str): current parameter server endpoint.
635

Y
yi.wu 已提交
636 637
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
638
        """
Y
yi.wu 已提交
639 640 641 642
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
643 644 645
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
646 647
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
648
        pserver_program.random_seed = self.origin_program.random_seed
649
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
650 651 652 653 654 655 656 657
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
658 659 660 661 662
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
663 664 665 666 667 668 669 670 671
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
672
            if self.sync_mode and self.trainer_num > 1:
673
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
674 675 676 677 678 679 680 681 682
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
683

Q
qiaolongfei 已提交
684
        # step 3
685
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
686 687 688
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
689
        # step 3.2
T
typhoonzero 已提交
690 691 692 693
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
694 695
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
696
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
697
        # step 3.3
W
Wu Yi 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
716
        # Iterate through the ops, and if an op and the optimize ops
717
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
718
        # append it into the sub program.
T
typhoonzero 已提交
719 720 721

        global_ops = []

Y
wip  
yi.wu 已提交
722 723
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
724
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
725
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
726
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
727
            elif op not in lr_ops:
Q
Qiyang Min 已提交
728
                self._append_pserver_non_opt_ops(block, op)
729 730 731 732 733 734

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
735

Y
Yancey1989 已提交
736
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
737 738 739 740 741 742 743 744
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
745
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
746 747 748

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
749
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
750 751

            # clone ops
Y
Yancey1989 已提交
752 753
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
754
                # clone sub_block of op
Y
Yancey1989 已提交
755
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
756 757

            # reset the block of op
W
Wu Yi 已提交
758
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
759

760
        # append lr decay ops to the child block if exists
761
        lr_ops = self._get_lr_ops()
762 763
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
764
        if len(lr_ops) > 0:
W
Wu Yi 已提交
765
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
766
                pserver_program.num_blocks - 1)
767
            optimize_blocks.append(lr_decay_block)
768
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
769
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
770
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
771 772
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
773

T
typhoonzero 已提交
774
        # append op to the current block
Q
qiaolongfei 已提交
775
        grad_to_block_id = []
Q
qiaolongfei 已提交
776
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
777
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
778
            per_opt_block = pserver_program._create_block(pre_block_idx)
779
            optimize_blocks.append(per_opt_block)
780
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
781
            # append grad merging ops before clip and weight decay
782 783
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
784
            for _, op in enumerate(self.optimize_ops):
785 786 787 788 789
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
790 791 792
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
793 794 795 796 797 798
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
799
                            op not in global_ops:
800 801 802 803 804
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
805

W
Wu Yi 已提交
806
# dedup grad to ids list
W
Wu Yi 已提交
807
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
808
        # append global ops
809
        if global_ops:
W
Wu Yi 已提交
810
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
811
                pserver_program.num_blocks - 1)
812
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
813
            for glb_op in global_ops:
X
Xi Chen 已提交
814
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
815
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
816

817
        # process distributed lookup_table
Q
qiaolongfei 已提交
818
        prefetch_var_name_to_block_id = []
819 820
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
821
            table_opt_block = self._create_table_optimize_block(
822
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
823
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
824
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
825
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
826 827
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
828

T
tangwei12 已提交
829
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
830 831
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
832

833
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
834 835
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
836 837 838 839 840 841
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
842
        attrs = {
843
            "optimize_blocks": optimize_blocks,
844 845 846
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
847
            "grad_to_block_id": grad_to_block_id,
848
        }
T
tangwei12 已提交
849 850

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
851
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
852 853
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
854

T
tangwei12 已提交
855 856 857 858
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
859 860 861 862 863
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
864
            attrs=attrs)
865

T
tangwei12 已提交
866
        # add distributed attrs
T
tangwei12 已提交
867
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
868
            endpoint)
869

W
Wu Yi 已提交
870
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
871 872
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
873 874
        return pserver_program

W
Wu Yi 已提交
875 876 877 878 879 880
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
881

W
Wu Yi 已提交
882 883 884 885
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
886 887
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
888 889
        return pserver_prog, pserver_startup

890 891
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
892
                            pserver_program=None,
893
                            startup_program=None):
T
typhoonzero 已提交
894
        """
W
Wu Yi 已提交
895 896
        **Deprecated**

T
typhoonzero 已提交
897 898 899
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
900 901 902

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
903 904
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
905
                when initalizing
906

Y
yi.wu 已提交
907 908
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
909
        """
910 911 912
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
913
        if pserver_program != None:
914 915 916
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
917
        if startup_program != None:
918 919 920
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
921

T
typhoonzero 已提交
922
        s_prog = Program()
W
Wu Yi 已提交
923
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
924
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
925 926 927 928 929 930 931 932 933 934 935
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
936
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
937
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
938
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
939 940 941 942
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
943
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
944 945
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
946 947 948 949 950 951 952 953 954 955
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
956 957

            if op_on_pserver:
958 959 960
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
961 962 963
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
964
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
965 966 967 968
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
969
                    attrs=op.all_attrs())
W
Wu Yi 已提交
970 971 972 973 974 975 976 977 978
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
979 980

        # add slice vars
T
tangwei12 已提交
981
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
982

T
typhoonzero 已提交
983 984
        return s_prog

T
tangwei12 已提交
985 986 987
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
988
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
989
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
990
            if not block_name:
991 992
                continue

T
tangwei12 已提交
993
            block_idx = int(block_name.split(block_suffix)[1])
994 995
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
996
            skip_dim0 = 0
997 998
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
999 1000
                skip_dim0 += slice_var.shape[0]
            slice_vars_and_attrs.append([orig_var, skip_dim0, param])
1001

T
tangwei12 已提交
1002
        return slice_vars_and_attrs
1003

1004 1005
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1045
    def _init_splited_vars(self):
Y
yi.wu 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1069
        if self.config.slice_var_up:
Y
yi.wu 已提交
1070 1071
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1072 1073 1074
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1075
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1076 1077
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1078 1079 1080
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1081 1082 1083 1084
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1085 1086
        assert (len(grad_blocks) == len(param_blocks))

1087
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1088 1089
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1090
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1091 1092 1093 1094
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1095
        # dict(grad_splited_var -> param_splited_var)
1096
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1097 1098 1099
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1100
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1101
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1102 1103

        # create mapping of endpoint -> split var to create pserver side program
1104
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1114
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1115 1116
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1117
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1118
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1119 1120
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1121 1122
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1123 1124 1125 1126 1127 1128

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1129 1130
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1131
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1132 1133 1134
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1135 1136
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1137 1138
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1139 1140 1141
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1142
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1143
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1144 1145

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1146
                    self.all_out_emb_vars.append(out_var)
1147 1148

                    # delete lookup_table_op
1149
                    delete_ops(program.global_block(), [op])
1150 1151 1152
                    # break for loop
                    break

S
seiriosPlus 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1199
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1200
        # 2. add split_ids_op and send_op to send gradient to pservers
1201

1202 1203
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1204
        table_grad_name = grad_var_name(self.table_name)
1205 1206 1207 1208
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1209
                program.global_block()._insert_op(
1210 1211 1212 1213 1214
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1215 1216
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1217
                program.global_block()._insert_op(
1218
                    index=op_index + 2,
1219
                    type="send",
1220
                    inputs={'X': self.trainer_side_table_grad_list},
1221 1222 1223 1224 1225
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1226
                    attrs={
1227
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1228
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1229
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1230 1231 1232 1233 1234
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1235
                    })
1236 1237 1238 1239 1240 1241
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1242
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1268
        return prefetch_var_name_to_block_id
1269 1270

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1271
                                     pre_block_idx, grad_to_block_id):
1272
        # STEP: create table optimize block
1273
        table_opt_block = pserver_program._create_block(pre_block_idx)
1274
        # create table param and grad var in pserver program
1275 1276
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1277 1278
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1279 1280
        ][0]

Y
Yancey1989 已提交
1281 1282
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1283

T
tangwei12 已提交
1284
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1285 1286
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1287 1288 1289
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1290 1291
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1292
            shape=table_shape,
Y
Yancey1989 已提交
1293 1294 1295
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1296

1297 1298
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1299
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1300
            self.origin_program.global_block().vars[grad_var_name(
1301
                self.table_name)])
1302

1303 1304 1305
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1306

1307 1308 1309
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1310
            pserver_side_table_grad_list = [
1311 1312 1313 1314 1315 1316 1317 1318 1319
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1320
            # append sum op for pserver_side_table_grad_list
1321 1322
            table_opt_block.append_op(
                type="sum",
1323
                inputs={"X": pserver_side_table_grad_list},
1324 1325
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1326 1327
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1328
            origin_grad_name = grad_var.name
1329 1330
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1331 1332
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1333
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1334
            grad_var = pserver_program.global_block()._rename_var(
1335
                origin_grad_name, splited_grad_name)
1336 1337 1338 1339 1340 1341 1342

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1343
        # only support sgd now
1344 1345 1346
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1347
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1348

1349 1350 1351
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1352 1353
        return table_opt_block

T
tangwei12 已提交
1354 1355 1356 1357 1358
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1359
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1360
            name="kLookupTablePath",
T
tangwei12 已提交
1361 1362
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1363

W
Wu Yi 已提交
1364
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1365
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1366 1367 1368 1369
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1370
            attrs={'file_path': "none"})
T
tangwei12 已提交
1371 1372 1373

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1374 1375 1376 1377 1378
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1379
        Create vars for each split.
T
typhoonzero 已提交
1380 1381
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1382 1383 1384 1385
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1386
        Returns:
1387
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1388
                from original var name to each var split.
T
typhoonzero 已提交
1389
        """
1390 1391

        # varname->[(block_id, current_block_size)]
1392
        block_map = collections.OrderedDict()
1393

1394
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1395 1396
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1397
            if varname not in block_map:
T
typhoonzero 已提交
1398
                block_map[varname] = []
1399
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1400

M
minqiyang 已提交
1401
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1402
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1403
            if len(splited) == 1:
1404
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1405
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1406
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1407
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1408 1409 1410 1411 1412
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1413
                continue
T
typhoonzero 已提交
1414
            var_mapping[varname] = []
T
typhoonzero 已提交
1415 1416 1417 1418
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1419

T
typhoonzero 已提交
1420
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1421
                size = block[1]
M
minqiyang 已提交
1422
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1423 1424 1425
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1426
                new_var_name = ""
1427
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1428
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1429
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1430 1431
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1432
                                   (varname, i)
T
typhoonzero 已提交
1433
                var = program.global_block().create_var(
T
typhoonzero 已提交
1434 1435
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1436
                    dtype=orig_var.dtype,
1437
                    type=orig_var.type,
T
typhoonzero 已提交
1438
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1439
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1440
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1441
        return var_mapping
T
done  
typhoonzero 已提交
1442

1443
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1444 1445 1446 1447 1448 1449
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1450
            persistable=persistable)
T
done  
typhoonzero 已提交
1451

Y
Yancey1989 已提交
1452
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1453 1454 1455 1456
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1457
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1458
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1459 1460
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1461
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1462 1463 1464 1465
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1466 1467 1468 1469
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1470 1471 1472 1473
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1474
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1475 1476 1477 1478
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1479 1480 1481 1482
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1483 1484 1485
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1486

T
typhoonzero 已提交
1487 1488 1489 1490
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1491
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1504
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1505 1506
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1507 1508
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1509
                return param_shape
1510 1511 1512
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1513 1514 1515
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1516 1517
        elif op_type == "sgd":
            pass
1518 1519 1520 1521
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1522 1523
        return orig_shape

1524 1525
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1526
        orig_var_name = ""
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1537
        else:
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1560
            return None
1561 1562 1563 1564
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1565
        else:
1566
            merged_var_name = orig_varname
1567 1568

        merged_var = pserver_block.vars[merged_var_name]
1569 1570 1571
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1572
            for i in range(self.trainer_num):
1573
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1574
                                   (merged_var_name, i)
1575 1576 1577 1578
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1579 1580
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1581 1582 1583 1584 1585
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1586
        return merged_var
T
typhoonzero 已提交
1587

W
Wu Yi 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1650
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1651
                            grad_to_block_id, origin_program, merged_var):
1652
        program = optimize_block.program
T
typhoonzero 已提交
1653
        pserver_block = program.global_block()
1654
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1665 1666 1667 1668
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1669
        for key in opt_op.input_names:
T
typhoonzero 已提交
1670
            if key == "Grad":
W
Wu Yi 已提交
1671 1672 1673 1674
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1675
            elif key == "Param":
W
Wu Yi 已提交
1676
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1677 1678
                if not param_block:
                    return
T
typhoonzero 已提交
1679
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1680
                    name=param_block.name,
T
typhoonzero 已提交
1681
                    persistable=True,
T
typhoonzero 已提交
1682 1683 1684
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1685
            elif key == "LearningRate":
1686
                # learning rate variable has already be created by non-optimize op,
1687
                # don't create it once again.
1688
                lr_varname = opt_op.input(key)[0]
1689
                if lr_varname in pserver_block.vars:
1690 1691 1692 1693 1694 1695 1696 1697 1698
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1699

T
typhoonzero 已提交
1700
        for key in opt_op.input_names:
1701
            new_shape = None
W
Wu Yi 已提交
1702
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1703
                continue
1704
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1705 1706 1707 1708
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1709
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1710 1711 1712 1713 1714
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1715

1716
        # change output's ParamOut variable
1717 1718
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1719
        outputs["ParamOut"] = new_inputs["Param"]
1720
        optimize_block.append_op(
T
typhoonzero 已提交
1721 1722
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1723
            outputs=outputs,
G
gongweibao 已提交
1724
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1737
        grad_block = None
M
minqiyang 已提交
1738
        for _, g in six.iteritems(var_dict):
1739
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1740
                # skip per trainer vars
1741
                if g.name.find(".trainer_") == -1:
1742 1743 1744 1745 1746
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1747 1748
        return grad_block

Q
Qiyang Min 已提交
1749 1750 1751
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1752
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1753 1754 1755 1756
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1757
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1758 1759 1760

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1761
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1762 1763 1764 1765
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1766
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1767

Y
Yancey1989 已提交
1768
        return block.append_op(
G
gongweibao 已提交
1769
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1770 1771

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1772
        program = optimize_block.program
1773
        # Append the ops for parameters that do not need to be optimized/updated
1774 1775
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1776
        for key, varlist in six.iteritems(inputs):
1777 1778
            if not isinstance(varlist, list):
                varlist = [varlist]
1779 1780 1781
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1782
                # for inputs/outputs
1783
                grad_block = self._get_pserver_grad_param_var(
1784 1785
                    var, program.global_block().vars)
                if grad_block:
1786
                    varlist[i] = grad_block
1787
                elif var.name not in program.global_block().vars:
1788 1789 1790 1791 1792
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1793

1794 1795
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1796
        for key, varlist in six.iteritems(outputs):
1797 1798
            if not isinstance(varlist, list):
                varlist = [varlist]
1799 1800 1801
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1802 1803
                    var, program.global_block().vars)
                if grad_block:
1804
                    varlist[i] = grad_block
1805
                elif var.name not in program.global_block().vars:
1806 1807 1808 1809 1810
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1811

Y
Yancey1989 已提交
1812
        return optimize_block.append_op(
T
typhoonzero 已提交
1813
            type=opt_op.type,
T
typhoonzero 已提交
1814 1815
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1816
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1817

1818 1819 1820 1821
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1822
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1823
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1824 1825 1826 1827 1828 1829
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1830 1831
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1832 1833 1834 1835 1836 1837
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1838
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1839
        if "Param" in op.input_names and \
T
tangwei12 已提交
1840
                "LearningRate" in op.input_names:
1841 1842 1843 1844 1845 1846 1847
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1848
        if op.input("Param")[0] in param_names:
1849 1850 1851
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1852
                param = op.input("Param")[0]
T
typhoonzero 已提交
1853
                if same_or_split_var(n, param) and n != param:
1854 1855 1856
                    return True
            return False

T
typhoonzero 已提交
1857
    def _get_input_map_from_op(self, varmap, op):
1858
        """Returns a dict from op input name to the vars in varmap."""
1859
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1871
        """Returns a dict from op output name to the vars in varmap."""
1872
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1882 1883

    def _get_lr_ops(self):
1884 1885 1886
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1887 1888 1889 1890
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1891 1892 1893 1894 1895
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1896 1897 1898 1899
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1900
            if self._is_optimizer_op(op):
1901 1902 1903 1904
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1905
        block = self.origin_program.global_block()
1906 1907 1908 1909 1910
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1911

1912 1913 1914 1915 1916
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1917
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1918 1919 1920 1921 1922 1923
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1924 1925
                    # we only need to append op for once
                    break
1926
        return lr_ops
Y
Yancey1989 已提交
1927

W
Wu Yi 已提交
1928 1929 1930 1931 1932
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1933 1934
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1935 1936 1937
            return True
        return False

Y
Yancey1989 已提交
1938
    def _get_optimize_pass(self):
1939
        """
1940
        Get optimizer operators, parameters and gradients from origin_program
1941 1942 1943 1944
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1945 1946 1947
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1948 1949
        # tmp set to dedup
        optimize_params = set()
1950
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1951
        for op in block.ops:
W
Wu Yi 已提交
1952
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1953
                opt_ops.append(op)
1954 1955 1956 1957 1958 1959
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1960 1961
                        params_grads.append([
                            origin_var_dict[param_name],
1962
                            origin_var_dict[grad_name]
1963
                        ])
Y
Yancey1989 已提交
1964 1965 1966
            else:
                pass
        return opt_ops, params_grads