distribute_transpiler.py 74.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
53 54 55 56 57 58 59 60 61
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
62 63


T
typhoonzero 已提交
64 65 66 67 68 69
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
70

T
typhoonzero 已提交
71 72
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
73 74


75 76 77 78
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
79
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
80
    """
81 82 83 84 85 86
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
87
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
88 89 90

    Args:
        var_list (list): List of variables.
91 92
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
93 94
        min_block_size (int): Minimum splitted block size.
    Returns:
95
        blocks (list[(varname, block_id, current_block_size)]): A list
96
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
97 98 99
    """
    blocks = []
    for var in var_list:
100
        split_count = slice_count
T
typhoonzero 已提交
101 102 103 104
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
105
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
106 107 108 109 110 111 112 113 114
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
115
        # update split_count after aligning
T
typhoonzero 已提交
116
        split_count = int(math.ceil(var_numel / float(block_size)))
117
        for block_id in range(split_count):
T
typhoonzero 已提交
118 119 120 121 122 123 124
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
125 126 127 128 129 130 131
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
132
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
133 134 135 136 137 138
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
139 140
    # supported modes: pserver, nccl2
    mode = "pserver"
141
    print_log = False
G
gongweibao 已提交
142 143


Y
gen rst  
yi.wu 已提交
144
class DistributeTranspiler(object):
Y
yi.wu 已提交
145 146 147 148
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
149
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
150

W
Wu Yi 已提交
151 152 153 154 155 156 157 158 159
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
160 161 162 163

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
164 165 166 167 168 169
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
170 171
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
172
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
173 174 175 176 177 178 179 180
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
181

W
Wu Yi 已提交
182 183 184 185 186 187 188 189 190 191 192
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
193
    """
Y
Yancey1989 已提交
194

G
gongweibao 已提交
195 196 197 198 199 200 201 202 203
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

204 205 206
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
207 208 209
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

237 238 239 240 241
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
242
                  sync_mode=True,
W
Wu Yi 已提交
243 244
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
245
        """
Y
yi.wu 已提交
246 247 248 249 250 251 252 253 254
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
255 256 257
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
258
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
259 260
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
261 262 263
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
264 265 266
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
267 268
        if startup_program is None:
            startup_program = default_startup_program()
269
        self.origin_program = program
W
Wu Yi 已提交
270 271
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

282 283 284 285 286 287 288
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
289
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
290
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
291
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
292
        self.grad_name_to_param_name = dict()
293 294
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
295
            self.grad_name_to_param_name[grad_var.name] = param_var.name
296

T
tangwei12 已提交
297 298 299 300 301 302
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

303
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
304
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        self._init_splited_vars()
306

G
gongweibao 已提交
307
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
308
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
309
        send_vars = []
310 311 312 313 314 315

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
316
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
317

G
gongweibao 已提交
318
        if not self.config.slice_var_up:
319 320
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
321

322
        self.grad_name_to_send_dummy_out = dict()
323
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
324
            eplist = ps_dispatcher.dispatch(splited_vars)
325

G
gongweibao 已提交
326
            if not self.config.slice_var_up:
327 328
                assert (len(splited_vars) == 1)

329
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
330
            if len(splited_vars) == 1:
331
                splited_grad_varname = splited_vars[0].name
332 333
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
334
            elif len(splited_vars) > 1:
335
                orig_var = program.global_block().vars[splited_grad_varname]
336 337
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
338
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
339
                index += 1
Y
Yancey1989 已提交
340 341
            else:
                AssertionError("Can not insert the send op by original "
342
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
343

W
Wu Yi 已提交
344 345
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
346
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
347

W
Wu Yi 已提交
348 349 350 351
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
352
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
353
                index=index + 1,
354
                type="send",
Y
update  
Yancey1989 已提交
355
                inputs={"X": splited_vars},
356
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
357 358
                attrs={
                    "epmap": eplist,
359
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
360 361 362 363
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
364
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
365
                })
Y
update  
Yancey1989 已提交
366 367
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
368 369

        if self.sync_mode:
W
Wu Yi 已提交
370 371
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
372 373 374 375
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
376
            input_deps = list(self.grad_name_to_send_dummy_out.values())
377

Y
Yancey1989 已提交
378 379
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
380
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
381
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
382 383
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
384
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
385
                })
Y
Yancey1989 已提交
386

G
gongweibao 已提交
387
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
388
        recv_vars = []
Y
update  
Yancey1989 已提交
389
        for _, var in enumerate(send_vars):
390
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
391
        ps_dispatcher.reset()
Y
Yancey1989 已提交
392 393
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
394
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
395 396
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
397

Y
Yancey1989 已提交
398
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
399
        all_recv_outputs = []
400
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
401 402 403 404
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
405 406 407 408
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
409
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
410 411
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
412 413 414 415 416 417 418 419 420
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
423
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
424 425 426
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
427
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
428 429
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
430
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
431
                })
T
typhoonzero 已提交
432

Q
qiaolongfei 已提交
433
        if self.sync_mode:
W
Wu Yi 已提交
434
            # form a WAW dependency
Q
qiaolongfei 已提交
435 436 437
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
438
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
439 440 441 442
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
443

444
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
445 446
            if len(splited_var) <= 1:
                continue
447
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
448
            program.global_block().append_op(
T
typhoonzero 已提交
449
                type="concat",
T
typhoonzero 已提交
450
                inputs={"X": splited_var},
T
typhoonzero 已提交
451
                outputs={"Out": [orig_param]},
452 453 454 455
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
456

G
gongweibao 已提交
457 458
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

459
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
460 461
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
462
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
463

W
Wu Yi 已提交
464
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
465 466 467 468 469 470
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
471
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
472
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
473
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
474
        self.origin_program.__str__()
G
gongweibao 已提交
475

W
Wu Yi 已提交
476 477 478
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

479
        return self.origin_program
T
typhoonzero 已提交
480

W
Wu Yi 已提交
481
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
482 483 484 485
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
486
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
487
            eplist (list): A list of strings indicating
G
gongweibao 已提交
488 489 490 491

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
492
        startup_program = self.startup_program
G
gongweibao 已提交
493 494 495 496

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
497
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
518
                inputs={"X": []},
G
gongweibao 已提交
519 520 521 522 523 524
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
525 526
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
527 528 529
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
530
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
531 532 533 534 535
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
536
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
537
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
538 539
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
540
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
541
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
542 543 544 545 546 547 548 549 550 551
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
552 553 554 555 556 557 558 559
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
560 561
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
562
        Get parameter server side program.
563

Y
yi.wu 已提交
564 565
        Args:
            endpoint (str): current parameter server endpoint.
566

Y
yi.wu 已提交
567 568
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
569
        """
Y
yi.wu 已提交
570 571 572 573
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
574 575 576
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
577 578
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
579
        pserver_program.random_seed = self.origin_program.random_seed
580
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
581 582 583 584 585 586 587 588
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
589 590 591 592 593
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
594 595 596 597 598 599 600 601 602
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
603
            if self.sync_mode and self.trainer_num > 1:
604
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
605 606 607 608 609 610 611 612 613
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
614

Q
qiaolongfei 已提交
615
        # step 3
616
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
617 618 619
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
620
        # step 3.2
T
typhoonzero 已提交
621 622 623 624
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
625 626
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
627
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
628
        # step 3.3
T
typhoonzero 已提交
629
        # Iterate through the ops, and if an op and the optimize ops
630
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
631
        # append it into the sub program.
T
typhoonzero 已提交
632 633 634

        global_ops = []

Y
wip  
yi.wu 已提交
635 636
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
637
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
638
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
639
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
640
            elif op not in lr_ops:
Q
Qiyang Min 已提交
641
                self._append_pserver_non_opt_ops(block, op)
642 643 644 645 646 647

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
648

Y
Yancey1989 已提交
649
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
650 651 652 653 654 655 656 657
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
658
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
659 660 661

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
662
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
663 664

            # clone ops
Y
Yancey1989 已提交
665 666
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
667
                # clone sub_block of op
Y
Yancey1989 已提交
668
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
669 670

            # reset the block of op
W
Wu Yi 已提交
671
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
672

673
        # append lr decay ops to the child block if exists
674
        lr_ops = self._get_lr_ops()
675 676
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
677
        if len(lr_ops) > 0:
W
Wu Yi 已提交
678
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
679
                pserver_program.num_blocks - 1)
680
            optimize_blocks.append(lr_decay_block)
681
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
682
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
683
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
684 685
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
686

T
typhoonzero 已提交
687
        # append op to the current block
Q
qiaolongfei 已提交
688
        grad_to_block_id = []
Q
qiaolongfei 已提交
689
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
690
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
691
            per_opt_block = pserver_program._create_block(pre_block_idx)
692
            optimize_blocks.append(per_opt_block)
693
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
694
            # append grad merging ops before clip and weight decay
695 696
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
697
            for _, op in enumerate(self.optimize_ops):
698 699 700 701 702
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
703 704 705
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
706 707 708 709 710 711 712 713 714 715 716 717
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
718

W
Wu Yi 已提交
719 720
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
721
        # append global ops
722
        if global_ops:
W
Wu Yi 已提交
723
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
724
                pserver_program.num_blocks - 1)
725
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
726
            for glb_op in global_ops:
X
Xi Chen 已提交
727
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
728
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
729

730
        # process distributed lookup_table
Q
qiaolongfei 已提交
731
        prefetch_var_name_to_block_id = []
732 733
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
734
            table_opt_block = self._create_table_optimize_block(
735
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
736
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
737
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
738
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
739 740
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
741

T
tangwei12 已提交
742
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
743 744
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
745

746
        attrs = {
747
            "optimize_blocks": optimize_blocks,
748 749 750
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
751
            "grad_to_block_id": grad_to_block_id,
752
        }
T
tangwei12 已提交
753 754

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
755
            attrs['checkpint_block_id'] = checkpoint_block_id
756

T
tangwei12 已提交
757 758 759 760
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
761 762 763 764 765
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
766
            attrs=attrs)
767

T
tangwei12 已提交
768
        # add distributed attrs
T
tangwei12 已提交
769
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
770
            endpoint)
771

W
Wu Yi 已提交
772
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
773 774
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
775 776
        return pserver_program

W
Wu Yi 已提交
777 778 779 780 781 782
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
783

W
Wu Yi 已提交
784 785 786 787 788 789 790
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

791 792
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
793
                            pserver_program=None,
794
                            startup_program=None):
T
typhoonzero 已提交
795
        """
W
Wu Yi 已提交
796 797
        **Deprecated**

T
typhoonzero 已提交
798 799 800
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
801 802 803

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
804 805
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
806
                when initalizing
807

Y
yi.wu 已提交
808 809
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
810
        """
811 812 813
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
814
        if pserver_program != None:
815 816 817
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
818
        if startup_program != None:
819 820 821
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
822

T
typhoonzero 已提交
823
        s_prog = Program()
W
Wu Yi 已提交
824
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
825
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
826 827 828 829 830 831 832 833 834 835 836
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
837
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
838
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
839
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
840 841 842 843
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
844
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
845 846
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
847 848 849 850 851 852 853 854 855 856
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
857 858

            if op_on_pserver:
859 860 861
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
862 863 864
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
865
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
866 867 868 869
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
870
                    attrs=op.all_attrs())
871 872

        # add slice vars
T
tangwei12 已提交
873
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
874

T
typhoonzero 已提交
875 876
        return s_prog

T
tangwei12 已提交
877 878 879
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
880
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
881
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
882
            if not block_name:
883 884
                continue

T
tangwei12 已提交
885
            block_idx = int(block_name.split(block_suffix)[1])
886 887 888 889 890 891
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
892
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
893

T
tangwei12 已提交
894
        return slice_vars_and_attrs
895

896 897
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
898 899 900 901 902 903 904 905 906
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
907
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
959
    def _init_splited_vars(self):
Y
yi.wu 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
983
        if self.config.slice_var_up:
Y
yi.wu 已提交
984 985
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
986 987 988
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
989
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
990 991
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
992 993 994
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
995 996 997 998
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
999 1000
        assert (len(grad_blocks) == len(param_blocks))

1001
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1002 1003
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1004
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1005 1006 1007 1008
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1009
        # dict(grad_splited_var -> param_splited_var)
1010
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1011 1012 1013
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1014
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1015
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1016 1017

        # create mapping of endpoint -> split var to create pserver side program
1018
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1028
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1029 1030
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1031
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
1041 1042 1043 1044 1045 1046 1047 1048 1049

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

1050
                    lookup_table_op_index = list(all_ops).index(op)
1051 1052 1053
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1054
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
1055
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1056 1057 1058 1059 1060 1061
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1062
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1063 1064 1065 1066
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1067 1068

                    # insert split_ids_op
W
Wu Yi 已提交
1069
                    program.global_block()._insert_op(
1070
                        index=lookup_table_op_index,
1071 1072 1073 1074 1075 1076 1077
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1078
                        outputs={"Out": prefetch_input_vars})
1079 1080

                    # insert prefetch_op
W
Wu Yi 已提交
1081
                    program.global_block()._insert_op(
1082
                        index=lookup_table_op_index + 1,
1083
                        type="prefetch",
Q
qiaolongfei 已提交
1084 1085
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1086
                        attrs={
1087
                            "epmap": pserver_endpoints,
1088 1089 1090
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1091
                        })
1092 1093

                    # insert concat_op
W
Wu Yi 已提交
1094
                    program.global_block()._insert_op(
1095 1096 1097 1098 1099 1100 1101
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1102
                            'X': prefetch_output_vars
1103
                        },
1104 1105 1106 1107 1108
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1109
                        })
1110 1111

                    # delete lookup_table_op
1112
                    delete_ops(program.global_block(), [op])
1113 1114 1115
                    # break for loop
                    break

Y
Yancey1989 已提交
1116
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1117
        # 2. add split_ids_op and send_op to send gradient to pservers
1118 1119
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1120
        table_grad_name = grad_var_name(self.table_name)
1121 1122 1123 1124
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1125
                program.global_block()._insert_op(
1126 1127 1128 1129 1130
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1131
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1132
                program.global_block()._insert_op(
1133
                    index=op_index + 2,
1134
                    type="send",
1135
                    inputs={'X': self.trainer_side_table_grad_list},
1136 1137 1138 1139 1140
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1141
                    attrs={
Q
qiaolongfei 已提交
1142
                        "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1143
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1144 1145 1146 1147 1148
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1149
                    })
1150 1151 1152 1153 1154 1155
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1156 1157
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1158
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1184 1185

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1186
                                     pre_block_idx, grad_to_block_id):
1187 1188
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1189 1190
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1191

T
tangwei12 已提交
1192
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1193 1194
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1195 1196 1197
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1198 1199
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1200
            shape=table_shape,
Y
Yancey1989 已提交
1201 1202 1203
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1204 1205
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1206
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1207
            self.origin_program.global_block().vars[grad_var_name(
1208
                self.table_name)])
1209 1210 1211 1212

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1213 1214
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1215
        ][0]
W
Wu Yi 已提交
1216
        table_opt_block = pserver_program._create_block(pre_block_idx)
1217

1218 1219 1220
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1221
            pserver_side_table_grad_list = [
1222 1223 1224 1225 1226 1227 1228 1229 1230
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1231
            # append sum op for pserver_side_table_grad_list
1232 1233
            table_opt_block.append_op(
                type="sum",
1234
                inputs={"X": pserver_side_table_grad_list},
1235 1236
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1237 1238
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1239
            origin_grad_name = grad_var.name
1240 1241
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1242 1243
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1244
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1245
            grad_var = pserver_program.global_block()._rename_var(
1246
                origin_grad_name, splited_grad_name)
1247 1248 1249 1250 1251 1252 1253 1254 1255

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1256
        # only support sgd now
1257 1258 1259 1260
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1261
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1262

1263 1264 1265
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1266 1267
        return table_opt_block

T
tangwei12 已提交
1268 1269 1270 1271 1272 1273
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1274
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1275
            name="kLookupTablePath",
T
tangwei12 已提交
1276 1277
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1278

W
Wu Yi 已提交
1279
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1280
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1281 1282 1283 1284
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1285
            attrs={'file_path': "none"})
T
tangwei12 已提交
1286 1287 1288

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1289 1290 1291 1292 1293
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1294
        Create vars for each split.
T
typhoonzero 已提交
1295 1296
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1297 1298 1299 1300
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1301
        Returns:
1302
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1303
                from original var name to each var split.
T
typhoonzero 已提交
1304
        """
1305 1306

        # varname->[(block_id, current_block_size)]
1307
        block_map = collections.OrderedDict()
1308

1309
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1310 1311
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1312
            if varname not in block_map:
T
typhoonzero 已提交
1313
                block_map[varname] = []
1314
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1315

M
minqiyang 已提交
1316
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1317
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1318
            if len(splited) == 1:
1319
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1320
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1321
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1322
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1323 1324 1325 1326 1327
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1328
                continue
T
typhoonzero 已提交
1329
            var_mapping[varname] = []
T
typhoonzero 已提交
1330 1331 1332 1333
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1334

T
typhoonzero 已提交
1335
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1336
                size = block[1]
M
minqiyang 已提交
1337
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1338 1339 1340
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1341
                new_var_name = ""
1342
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1343
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1344
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1345 1346
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1347
                                   (varname, i)
T
typhoonzero 已提交
1348
                var = program.global_block().create_var(
T
typhoonzero 已提交
1349 1350
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1351
                    dtype=orig_var.dtype,
1352
                    type=orig_var.type,
T
typhoonzero 已提交
1353
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1354
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1355
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1356
        return var_mapping
T
done  
typhoonzero 已提交
1357

W
Wu Yi 已提交
1358
    def _create_splited_vars(self, source_var, block, tag):
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1369 1370 1371 1372 1373 1374
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1375
            persistable=persistable)
T
done  
typhoonzero 已提交
1376

Y
Yancey1989 已提交
1377
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1378 1379 1380 1381
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1382
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1383 1384 1385 1386
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1387 1388 1389 1390
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1391 1392 1393 1394
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1395
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1396 1397 1398 1399
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1400 1401 1402 1403
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1404 1405 1406
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1407

T
typhoonzero 已提交
1408 1409 1410 1411
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1412
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1428 1429
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1430 1431 1432 1433 1434
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1435 1436
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1437
        orig_var_name = ""
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1448
        else:
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1471
            return None
1472 1473 1474 1475
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1476
        else:
1477
            merged_var_name = orig_varname
1478 1479

        merged_var = pserver_block.vars[merged_var_name]
1480 1481 1482
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1483
            for i in range(self.trainer_num):
1484
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1485
                                   (merged_var_name, i)
1486 1487 1488 1489 1490
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1491 1492
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1493 1494 1495 1496 1497
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1498
        return merged_var
T
typhoonzero 已提交
1499

1500
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1501
                            grad_to_block_id, origin_program, merged_var):
1502
        program = optimize_block.program
T
typhoonzero 已提交
1503
        pserver_block = program.global_block()
1504
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1515
        for key in opt_op.input_names:
T
typhoonzero 已提交
1516 1517 1518
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1519
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1520 1521
                if not param_block:
                    return
T
typhoonzero 已提交
1522
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1523
                    name=param_block.name,
T
typhoonzero 已提交
1524
                    persistable=True,
T
typhoonzero 已提交
1525 1526 1527
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1528
            elif key == "LearningRate":
1529
                # learning rate variable has already be created by non-optimize op,
1530
                # don't create it once again.
1531
                lr_varname = opt_op.input(key)[0]
1532
                if lr_varname in pserver_block.vars:
1533 1534 1535 1536 1537 1538 1539 1540 1541
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1542

T
typhoonzero 已提交
1543
        for key in opt_op.input_names:
1544
            new_shape = None
W
Wu Yi 已提交
1545
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1546
                continue
1547
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1548 1549 1550 1551
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1552
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1553 1554 1555 1556 1557
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1558

1559
        # change output's ParamOut variable
1560 1561
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1562
        outputs["ParamOut"] = new_inputs["Param"]
1563
        optimize_block.append_op(
T
typhoonzero 已提交
1564 1565
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1566
            outputs=outputs,
G
gongweibao 已提交
1567
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1568

1569 1570
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1571
        for _, g in six.iteritems(var_dict):
1572 1573 1574 1575 1576 1577
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1578 1579 1580
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1581
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1582 1583 1584 1585
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1586
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1587 1588 1589

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1590
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1591 1592 1593 1594
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1595
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1596

Y
Yancey1989 已提交
1597
        return block.append_op(
G
gongweibao 已提交
1598
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1599 1600

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1601
        program = optimize_block.program
1602
        # Append the ops for parameters that do not need to be optimized/updated
1603 1604
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1605
        for key, varlist in six.iteritems(inputs):
1606 1607
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1608
            for var in varlist:
1609 1610 1611 1612 1613 1614
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1615
                elif var.name not in program.global_block().vars:
1616
                    program.global_block().create_var(
T
typhoonzero 已提交
1617 1618 1619 1620 1621
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1622 1623
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1624
        for key, varlist in six.iteritems(outputs):
1625 1626 1627
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1628 1629 1630 1631
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1632
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1633
                    program.global_block()._clone_variable(var)
1634

Y
Yancey1989 已提交
1635
        return optimize_block.append_op(
T
typhoonzero 已提交
1636
            type=opt_op.type,
T
typhoonzero 已提交
1637 1638
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1639
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1640

1641 1642 1643 1644
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1645
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1646
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1647 1648 1649 1650 1651 1652
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1653 1654
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1655 1656 1657 1658 1659 1660
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1661
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1662
        if "Param" in op.input_names and \
T
tangwei12 已提交
1663
                "LearningRate" in op.input_names:
1664 1665 1666 1667 1668 1669 1670
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1671
        if op.input("Param")[0] in param_names:
1672 1673 1674
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1675
                param = op.input("Param")[0]
T
typhoonzero 已提交
1676
                if same_or_split_var(n, param) and n != param:
1677 1678 1679
                    return True
            return False

T
typhoonzero 已提交
1680
    def _get_input_map_from_op(self, varmap, op):
1681
        """Returns a dict from op input name to the vars in varmap."""
1682
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1694
        """Returns a dict from op output name to the vars in varmap."""
1695
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1705 1706

    def _get_lr_ops(self):
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
            if int(op.attr(RPC_OP_ROLE_ATTR_NAME)) == int(
                    LR_SCHED_OP_ROLE_ATTR_VALUE):
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1717 1718 1719 1720
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1721
            if self._is_optimizer_op(op):
1722 1723 1724 1725
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1726
        block = self.origin_program.global_block()
1727 1728 1729 1730 1731
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1732

1733 1734 1735 1736 1737
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1738
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1739 1740 1741 1742 1743 1744
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1745 1746
                    # we only need to append op for once
                    break
1747
        return lr_ops
Y
Yancey1989 已提交
1748

W
Wu Yi 已提交
1749 1750 1751 1752 1753
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1754 1755
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1756 1757 1758
            return True
        return False

Y
Yancey1989 已提交
1759
    def _get_optimize_pass(self):
1760
        """
1761
        Get optimizer operators, parameters and gradients from origin_program
1762 1763 1764 1765
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1766 1767 1768
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1769 1770
        # tmp set to dedup
        optimize_params = set()
1771
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1772
        for op in block.ops:
W
Wu Yi 已提交
1773
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1774
                opt_ops.append(op)
1775 1776 1777 1778 1779 1780
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1781 1782
                        params_grads.append([
                            origin_var_dict[param_name],
1783
                            origin_var_dict[grad_name]
1784
                        ])
Y
Yancey1989 已提交
1785 1786 1787
            else:
                pass
        return opt_ops, params_grads