distribute_transpiler.py 94.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41
    default_startup_program, Block, \
42
    Parameter, Variable, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
class VarStruct(object):
    """
    record part properties of a Variable in python.
    """

    def __init__(self, name, shape, dtype, type, lod_level, persistable):
        self.name = name
        self.shape = shape
        self.dtype = dtype
        self.type = type
        self.lod_level = lod_level
        self.persistable = persistable


class VarDistributed(object):
    """
    a class to record the var distributed on parameter servers.
    the class will record the relationship between origin var and slice var.
    the slice var's properties, such as type/shape/offset/endpoint.
    """

    def __init__(self,
                 origin_var,
                 slice_var,
                 is_slice=None,
                 block_id=None,
                 offset=None,
                 vtype=None,
                 endpoint=None):
        """
        Args:
            origin_var(Variable|VarStruct): origin var properties
            slice_var(Variable|VarStruct): slice var properties
            is_slice(bool|None): slice or not, slice_var=True/False and its block size > 8192 are the judgement standard.
            block_id(int|None): the number about the slice var.
            offset(int|None): if the slice var is sliced, offset is the numel before the var.
            vtype(str|None): a tag, such as Optimizer/Param/RemoteProfetch.
            endpoint(str|None): which parameter the slice var on, such as "127.0.0.1:1001"
        """

        if isinstance(origin_var, Variable):
            self.origin = self.__create_var_struct(origin_var)
        else:
            self.origin = origin_var

        if isinstance(slice_var, Variable):
            self.slice = self.__create_var_struct(slice_var)
        else:
            self.slice = slice_var

        if self.equal(self.origin, self.slice):
            self.is_slice = False
            self.block_id = 0
            self.offset = 0
        else:
            self.is_slice = True
            self.block_id = 0
            self.offset = 0

        if is_slice is not None:
            self.is_slice = is_slice
        if block_id is not None:
            self.block_id = block_id
        if offset is not None:
            self.offset = offset

        self.vtype = vtype
        self.endpoint = endpoint

    @staticmethod
    def __create_var_struct(var):
        return VarStruct(var.name, var.shape, var.dtype, var.type,
                         var.lod_level, var.persistable)

    @staticmethod
    def equal(var1, var2):
        """
        the two var is equal or not.
        Returns:
            bool: equal will return True else False
        """
        assert isinstance(var1, VarStruct) and isinstance(var2, VarStruct)

        return var1.name == var2.name and \
               var1.type == var2.type and \
               var1.shape == var2.shape and \
               var1.dtype == var2.dtype and \
               var1.lod_level == var2.lod_level and \
               var1.persistable == var2.persistable

    def __str__(self):
        origin_var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})". \
            format(i="{", e="}", name=self.origin.name, type=self.origin.type,
                   shape=self.origin.shape, dtype=self.origin.dtype)

        slice_var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})" \
                        ".slice({is_slice}).block({block_id}).offset({offset})". \
            format(i="{", e="}", name=self.slice.name, type=self.slice.type,
                   shape=self.slice.shape, dtype=self.slice.dtype,
                   is_slice=self.is_slice, block_id=self.block_id, offset=self.offset)

        return "var owned: {}, origin var: ( {} ), slice var: ( {} ), endpoint: {} ".format(
            self.vtype, origin_var_str, slice_var_str, self.endpoint)


class VarsDistributed(object):
    """
    a gather about VarDistributed with many methods to find distributed vars.
    through the class, we can get overview about the distributed parameters on parameter servers.
    this class may centralized and convenient for developer to manage and get variable's distribute.
    other module can also use this to find variables such io.py.
    """

    def __init__(self):
        self.distributed_vars = []

    def add_distributed_var(self,
                            origin_var,
                            slice_var,
                            is_slice=None,
                            block_id=None,
                            offset=None,
                            vtype=None,
                            endpoint=None):
        """
        add distributed var in this.

        Args:
            origin_var(Variable|VarStruct): origin var properties
            slice_var(Variable|VarStruct): slice var properties
            is_slice(bool|None): slice or not, slice_var=True/False and its block size > 8192 are the judgement standard.
            block_id(int|None): the number about the slice var.
            offset(int|None): if the slice var is sliced, offset is the numel before the var.
            vtype(str|None): a tag, such as Optimizer/Param/RemoteProfetch.
            endpoint(str|None): which parameter the slice var on, such as "127.0.0.1:1001"
        Returns:
            None
        """
        self.distributed_vars.append(
            VarDistributed(origin_var, slice_var, is_slice, block_id, offset,
                           vtype, endpoint))

    def get_distributed_var_by_slice(self, var_name):
        """
        get distributed var by conditions.

        Args:
            var_name(str): slice var name, such as "w.traier0.block1"
        Returns:
            VarDistributed: distributed var.
        """
        for dist_var in self.distributed_vars:
            if dist_var.slice.name == var_name:
                return dist_var
        return None

    @staticmethod
    def equal(var1, var2):
        """
        the two var is equal or not.
        Returns:
            bool: equal will return True else False
        """
        return var1.name == var2.name and \
               var1.type == var2.type and \
               var1.shape == var2.shape and \
               var1.dtype == var2.dtype and \
               var1.lod_level == var2.lod_level and \
               var1.persistable == var2.persistable

    def get_distributed_var_by_origin_and_ep(self, origin_var_name, endpoint):
        """
        get distributed var by conditions.

        Args:
            origin_var_name(str):
            endpoint(str): the parameter endpoint, such as "127.0.0.1:1001"
        Returns:
            VarDistributed: distributed var.
        """
        for dist_var in self.distributed_vars:
            if dist_var.origin.name == origin_var_name and dist_var.endpoint == endpoint:
                return dist_var
        return None

    def get_distributed_vars_by_vtypes(self, vtypes, groupby=False):
        """
        get distributed vars by conditions.

        Args:
            vtype(str|None): distributed var's vtype, such as "Optimizer", "RemotePrefetch"
            groupby(bool|False): group by origin var or not.

        Returns:
            list: distributed var list.
            dict: distributed var map when groupby=True
        """
        vtype_vars = []
        for var in self.distributed_vars:
            if var.vtype in vtypes:
                vtype_vars.append(var)
        if not groupby:
            return vtype_vars

        params_map = {}
        for var in vtype_vars:
            origin_var_name = var.origin.name

            if origin_var_name in params_map.keys():
                optimizers = params_map.get(origin_var_name)
            else:
                optimizers = []
            optimizers.append(var)
            params_map[origin_var_name] = optimizers
        return params_map

    def get_distributed_vars_by_ep(self, endpoint, vtype=None):
        """
        get distributed vars by conditions.

        Args:
            endpoint(str): the parameter server endpoint, such as "127.0.0.1:2001"
            vtype(str|None): distributed var's vtype, such as "Optimizer", "RemotePrefetch"

        Returns:
            list: distributed var list.
        """
        endpoint_vars = []
        for var in self.distributed_vars:
            if var.endpoint == endpoint:
                endpoint_vars.append(var)
        if not vtype:
            return endpoint_vars

        vtype_vars = []
        for var in endpoint_vars:
            if var.vtype == vtype:
                vtype_vars.append(var)
        return vtype_vars

    def overview(self):
        """
        get the overview string about all params on all parameter servers.

        Returns:
            Str: overview string.

        """
        vars_str = []
        for var in self.distributed_vars:
            vars_str.append(str(var))
        return "\n".join(vars_str)


T
typhoonzero 已提交
319 320 321 322 323 324
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
325

T
typhoonzero 已提交
326 327
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
328 329


330 331 332 333
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
334
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
335
    """
336 337 338 339 340 341
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
342
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
343 344 345

    Args:
        var_list (list): List of variables.
346 347
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
348 349
        min_block_size (int): Minimum splitted block size.
    Returns:
350
        blocks (list[(varname, block_id, current_block_size)]): A list
351
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
352 353 354
    """
    blocks = []
    for var in var_list:
355
        split_count = slice_count
T
typhoonzero 已提交
356 357 358 359
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
360
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
361 362 363 364 365 366 367 368 369
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
370
        # update split_count after aligning
T
typhoonzero 已提交
371
        split_count = int(math.ceil(var_numel / float(block_size)))
372
        for block_id in range(split_count):
T
typhoonzero 已提交
373 374 375 376 377 378 379
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
380 381
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
396
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
397 398
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
399 400 401 402 403
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
404
    enable_dc_asgd = False
W
Wu Yi 已提交
405 406
    # supported modes: pserver, nccl2
    mode = "pserver"
407
    print_log = False
W
Wu Yi 已提交
408
    wait_port = True
G
gongweibao 已提交
409 410


Y
gen rst  
yi.wu 已提交
411
class DistributeTranspiler(object):
Y
yi.wu 已提交
412 413 414 415
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
416
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
417

W
Wu Yi 已提交
418 419 420 421 422 423 424 425 426
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
427 428 429 430

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
444
                                                                pserver_program)
T
Tink_Y 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
459
    """
Y
Yancey1989 已提交
460

G
gongweibao 已提交
461 462 463 464 465 466 467 468 469
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

470 471 472
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
473 474 475
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
476 477 478 479
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
480
                         startup_program=None):
W
Wu Yi 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
503
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
504
        sparse_update_ops = []
505
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
506 507
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
508
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
509 510 511
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
512
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
513
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
514 515 516
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
517
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
518
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
519 520 521 522 523 524 525
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
526

527 528 529 530 531
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
532
                  sync_mode=True,
W
Wu Yi 已提交
533 534
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
535
        """
Y
yi.wu 已提交
536 537 538 539 540 541 542
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
543 544
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
545 546
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
547 548 549
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
550
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
551 552
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
553 554 555
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
556 557 558
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
559 560
        if startup_program is None:
            startup_program = default_startup_program()
561
        self.origin_program = program
W
Wu Yi 已提交
562 563
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
564

W
Wu Yi 已提交
565 566 567 568 569 570
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
571
                startup_program=startup_program)
W
Wu Yi 已提交
572 573
            return

574 575 576 577 578
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
579
        self.vars_overview = VarsDistributed()
580 581
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
582
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
583 584
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
585
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
586
        self.grad_name_to_param_name = dict()
587 588
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
589
            self.grad_name_to_param_name[grad_var.name] = param_var.name
590

Q
Qiao Longfei 已提交
591
        # get all sparse update ops
Q
Qiao Longfei 已提交
592
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
593
            self.origin_program)
Q
Qiao Longfei 已提交
594
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
595 596
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
597 598 599
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
600
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
601 602 603
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

604
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
605
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
606
        self._init_splited_vars()
607

G
gongweibao 已提交
608
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
609
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
610
        send_vars = []
611 612 613 614 615 616

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
617
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
618

G
gongweibao 已提交
619
        if not self.config.slice_var_up:
620 621
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
622

623
        self.grad_name_to_send_dummy_out = dict()
624
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
625
            eplist = ps_dispatcher.dispatch(splited_vars)
626

G
gongweibao 已提交
627
            if not self.config.slice_var_up:
628 629
                assert (len(splited_vars) == 1)

630
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
631
            if len(splited_vars) == 1:
632
                splited_grad_varname = splited_vars[0].name
633 634
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
635 636
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
637
                        grad_varname]
Q
Qiao Longfei 已提交
638 639 640 641
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
642
            elif len(splited_vars) > 1:
643
                orig_var = program.global_block().vars[splited_grad_varname]
644 645
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
646
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
647
                index += 1
Y
Yancey1989 已提交
648 649
            else:
                AssertionError("Can not insert the send op by original "
650
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
651

W
Wu Yi 已提交
652 653
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
654
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
655

W
Wu Yi 已提交
656 657 658 659
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
660
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
661
                index=index + 1,
662
                type="send",
Y
update  
Yancey1989 已提交
663
                inputs={"X": splited_vars},
664
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
665 666
                attrs={
                    "epmap": eplist,
667
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
668 669 670 671
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
672
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
673
                })
Y
update  
Yancey1989 已提交
674 675
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
676 677

        if self.sync_mode:
W
Wu Yi 已提交
678 679
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
680 681 682 683
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
684
            input_deps = list(self.grad_name_to_send_dummy_out.values())
685

Y
Yancey1989 已提交
686 687
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
688
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
689
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
690 691
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
692 693
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
695
                })
Y
Yancey1989 已提交
696

G
gongweibao 已提交
697
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
698
        recv_vars = []
Y
update  
Yancey1989 已提交
699
        for _, var in enumerate(send_vars):
700
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
701
        ps_dispatcher.reset()
Y
Yancey1989 已提交
702 703
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
704
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
705 706
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
707

708 709 710 711
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
712
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
713
        all_recv_outputs = []
714
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
715
            eps = []
Q
Qiao Longfei 已提交
716
            table_names = []
Y
Yancey1989 已提交
717 718 719
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
720
                table_names.append(var.name)
W
Wu Yi 已提交
721 722 723 724
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
725
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
726
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
727

W
Wu Yi 已提交
728 729 730 731 732 733 734 735 736
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
737
            if param_varname in self.sparse_param_to_height_sections:
738 739 740 741 742 743

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
744 745
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
746 747
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
748
            else:
Q
Qiao Longfei 已提交
749
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
750 751 752 753 754 755 756 757 758 759 760 761
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
762

Q
qiaolongfei 已提交
763
        if self.sync_mode:
W
Wu Yi 已提交
764
            # form a WAW dependency
Q
qiaolongfei 已提交
765 766 767
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
768
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
769 770
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
771
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
772 773
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
774

775
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
776 777
            if len(splited_var) <= 1:
                continue
778
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
779 780 781 782 783 784 785 786 787
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
788

G
gongweibao 已提交
789 790
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

791
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
792 793
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
794
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
795

796 797 798
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
799
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
800 801 802 803 804 805
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
806
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
807
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
808

T
typhoonzero 已提交
809
        lr_ops = self._get_lr_ops()
810
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
811 812
        delete_ops(self.origin_program.global_block(), lr_ops)

813 814
        # delete table init op
        if self.has_distributed_lookup_table:
815 816 817
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
818 819
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
820 821 822 823 824
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
825
            table_init_op = table_param_init_op[0]
826 827 828 829 830 831
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
832

833
        self.origin_program.__str__()
G
gongweibao 已提交
834

W
Wu Yi 已提交
835 836 837
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

838
        return self.origin_program
T
typhoonzero 已提交
839

W
Wu Yi 已提交
840
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
841 842 843 844
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
845
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
846
            eplist (list): A list of strings indicating
G
gongweibao 已提交
847 848 849 850

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
851
        startup_program = self.startup_program
G
gongweibao 已提交
852 853 854 855

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
856
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
877
                inputs={"X": []},
G
gongweibao 已提交
878 879 880 881 882 883
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
884 885
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
886 887 888
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
889
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
890 891 892 893 894
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
895
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
896
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
897 898
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
899
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
900
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
901 902 903 904 905 906 907 908 909 910
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
911 912 913 914 915 916 917 918
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
919 920
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
921
        Get parameter server side program.
922

Y
yi.wu 已提交
923 924
        Args:
            endpoint (str): current parameter server endpoint.
925

Y
yi.wu 已提交
926 927
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
928
        """
Y
yi.wu 已提交
929 930 931 932
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
933 934 935
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
936 937
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
938
        pserver_program.random_seed = self.origin_program.random_seed
939 940
        pserver_program._copy_dist_param_info_from(self.origin_program)

941
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
942 943 944 945 946 947 948 949
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
950 951 952 953 954
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
955 956 957 958 959 960 961 962 963
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
964
            if self.sync_mode and self.trainer_num > 1:
965
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
966 967 968 969 970 971 972 973 974
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
975

Q
qiaolongfei 已提交
976
        # step 3
977
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
978 979 980
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
981
        # step 3.2
T
typhoonzero 已提交
982 983 984 985
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
986 987
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
988
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
989
        # step 3.3
W
Wu Yi 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1008
        # Iterate through the ops, and if an op and the optimize ops
1009
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1010
        # append it into the sub program.
T
typhoonzero 已提交
1011 1012 1013

        global_ops = []

Y
wip  
yi.wu 已提交
1014 1015
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1016
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1017
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1018
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
1019
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1020
                self._append_pserver_non_opt_ops(block, op)
1021

Y
Yancey1989 已提交
1022
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1023 1024 1025 1026 1027 1028 1029 1030
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1031
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1032 1033 1034

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1035
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1036 1037

            # clone ops
Y
Yancey1989 已提交
1038 1039
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1040
                # clone sub_block of op
Y
Yancey1989 已提交
1041
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1042 1043

            # reset the block of op
W
Wu Yi 已提交
1044
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1045

1046
        # append lr decay ops to the child block if exists
1047
        lr_ops = self._get_lr_ops()
1048 1049
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1050
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1051
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1052
                pserver_program.num_blocks - 1)
1053
            optimize_blocks.append(lr_decay_block)
1054
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1055
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1056
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1057 1058
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1059

T
typhoonzero 已提交
1060
        # append op to the current block
Q
qiaolongfei 已提交
1061
        grad_to_block_id = []
Q
qiaolongfei 已提交
1062
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1063
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1064
            per_opt_block = pserver_program._create_block(pre_block_idx)
1065
            optimize_blocks.append(per_opt_block)
1066
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1067
            # append grad merging ops before clip and weight decay
1068 1069
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1070
            for _, op in enumerate(self.optimize_ops):
1071
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1072
                # merged_var should be the input var name of L2Decay
1073 1074 1075
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1076 1077 1078
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1079 1080 1081 1082 1083 1084
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1085
                            op not in global_ops:
1086 1087 1088 1089 1090
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1091

1092
        # dedup grad to ids list
W
Wu Yi 已提交
1093
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1094
        # append global ops
1095
        if global_ops:
W
Wu Yi 已提交
1096
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1097
                pserver_program.num_blocks - 1)
1098
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1099
            for glb_op in global_ops:
X
Xi Chen 已提交
1100
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1101
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1102

1103
        # process distributed lookup_table
Q
qiaolongfei 已提交
1104
        prefetch_var_name_to_block_id = []
1105 1106
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1107
            table_opt_block = self._create_table_optimize_block(
1108
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1109
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1110
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1111
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1112 1113
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1114

T
tangwei12 已提交
1115
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1116 1117
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1118

1119
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1120 1121
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1122 1123 1124 1125 1126 1127
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1128
        attrs = {
1129
            "optimize_blocks": optimize_blocks,
1130 1131 1132
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1133
            "grad_to_block_id": grad_to_block_id,
1134
        }
T
tangwei12 已提交
1135 1136

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1137
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1138 1139
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1140

T
tangwei12 已提交
1141 1142 1143 1144
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1145 1146 1147 1148 1149
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1150
            attrs=attrs)
1151

W
Wu Yi 已提交
1152
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1153 1154
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1155 1156
        return pserver_program

W
Wu Yi 已提交
1157 1158 1159 1160 1161 1162
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1163

W
Wu Yi 已提交
1164 1165 1166 1167
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1168 1169
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1170 1171
        return pserver_prog, pserver_startup

1172 1173
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1174
                            pserver_program=None,
1175
                            startup_program=None):
T
typhoonzero 已提交
1176
        """
W
Wu Yi 已提交
1177 1178
        **Deprecated**

T
typhoonzero 已提交
1179 1180 1181
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1182 1183 1184

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1185 1186
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1187
                when initalizing
1188

Y
yi.wu 已提交
1189 1190
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
1191 1192
        """
        s_prog = Program()
W
Wu Yi 已提交
1193
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1194
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1206
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1207
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1208
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1209 1210 1211 1212
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1213
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1214 1215
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1226 1227

            if op_on_pserver:
1228 1229 1230
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1231 1232 1233
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1234
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1235 1236 1237 1238
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1239
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1249

T
typhoonzero 已提交
1250 1251
        return s_prog

1252 1253
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1254
        block_suffix = "block"
1255 1256 1257
        block_idx = 0
        offset = 0
        is_slice = False
1258

1259
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1260

1261 1262
        if not block_name:
            return is_slice, block_idx, offset
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

        orig_dim1_flatten = reduce(lambda x, y: x * y, slice_vars[0].shape[1:])

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1332

Y
yi.wu 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1372
    def _init_splited_vars(self):
Y
yi.wu 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1396
        if self.config.slice_var_up:
Y
yi.wu 已提交
1397 1398
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1399 1400 1401
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1402
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1403 1404
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1405 1406 1407
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1408 1409 1410 1411
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1412 1413
        assert (len(grad_blocks) == len(param_blocks))

1414
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1415 1416
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1433
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1434 1435 1436 1437
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1438
        # dict(grad_splited_var -> param_splited_var)
1439
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1440 1441 1442
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1443
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1444
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1445 1446

        # create mapping of endpoint -> split var to create pserver side program
1447
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1457
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1458 1459
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1460
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1461
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1462 1463
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1464 1465
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1466 1467 1468 1469 1470 1471

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1472 1473
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1474
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1475 1476 1477
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1478 1479
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1480 1481
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1482 1483 1484
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1485
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1486
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1487 1488

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1489
                    self.all_out_emb_vars.append(out_var)
1490 1491

                    # delete lookup_table_op
1492
                    delete_ops(program.global_block(), [op])
1493 1494 1495
                    # break for loop
                    break

S
seiriosPlus 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1542
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1543
        # 2. add split_ids_op and send_op to send gradient to pservers
1544

1545 1546
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1547
        table_grad_name = grad_var_name(self.table_name)
1548 1549 1550 1551
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1552
                program.global_block()._insert_op(
1553 1554 1555 1556 1557
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1558 1559
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1560
                program.global_block()._insert_op(
1561
                    index=op_index + 2,
1562
                    type="send",
1563
                    inputs={'X': self.trainer_side_table_grad_list},
1564 1565 1566 1567 1568
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1569
                    attrs={
1570
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1571
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1572
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1573 1574 1575 1576 1577
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1578
                    })
1579 1580 1581 1582 1583 1584
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1585
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1611
        return prefetch_var_name_to_block_id
1612 1613

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1614
                                     pre_block_idx, grad_to_block_id):
1615
        # STEP: create table optimize block
1616
        table_opt_block = pserver_program._create_block(pre_block_idx)
1617
        # create table param and grad var in pserver program
1618 1619
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1620 1621 1622
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1623 1624
        ][0]

Y
Yancey1989 已提交
1625 1626
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1627

T
tangwei12 已提交
1628
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1629 1630
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1631 1632 1633
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1634 1635
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1636
            shape=table_shape,
Y
Yancey1989 已提交
1637 1638 1639
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1640

1641 1642
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1643
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1644
            self.origin_program.global_block().vars[grad_var_name(
1645
                self.table_name)])
1646

1647 1648 1649
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1650

1651 1652 1653
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1654
            pserver_side_table_grad_list = [
1655 1656 1657 1658 1659 1660 1661 1662 1663
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1664
            # append sum op for pserver_side_table_grad_list
1665 1666
            table_opt_block.append_op(
                type="sum",
1667
                inputs={"X": pserver_side_table_grad_list},
1668 1669
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1670 1671
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1672
            origin_grad_name = grad_var.name
1673 1674
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1675 1676
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1677
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1678
            grad_var = pserver_program.global_block()._rename_var(
1679
                origin_grad_name, splited_grad_name)
1680 1681 1682 1683 1684 1685 1686

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1687
        # only support sgd now
1688 1689 1690
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1691
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1692

1693 1694 1695
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1696 1697
        return table_opt_block

T
tangwei12 已提交
1698 1699 1700 1701 1702
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1703
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1704
            name="kLookupTablePath",
T
tangwei12 已提交
1705 1706
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1707

W
Wu Yi 已提交
1708
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1709
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1710 1711 1712 1713
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1714
            attrs={'file_path': "none"})
T
tangwei12 已提交
1715 1716 1717

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1718 1719 1720 1721 1722
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1723
        Create vars for each split.
T
typhoonzero 已提交
1724 1725
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1726 1727 1728 1729
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1730
        Returns:
1731
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1732
                from original var name to each var split.
T
typhoonzero 已提交
1733
        """
1734 1735

        # varname->[(block_id, current_block_size)]
1736
        block_map = collections.OrderedDict()
1737

1738
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1739 1740
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1741
            if varname not in block_map:
T
typhoonzero 已提交
1742
                block_map[varname] = []
1743
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1744

M
minqiyang 已提交
1745
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1746
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1747
            if len(splited) == 1:
1748
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1749
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1750
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1751
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1752 1753 1754 1755 1756
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1757
                continue
T
typhoonzero 已提交
1758
            var_mapping[varname] = []
T
typhoonzero 已提交
1759 1760 1761 1762
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1763

T
typhoonzero 已提交
1764
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1765
                size = block[1]
M
minqiyang 已提交
1766
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1767 1768 1769
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1770
                new_var_name = ""
1771
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1772
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1773
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1774 1775
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1776
                                   (varname, i)
T
typhoonzero 已提交
1777
                var = program.global_block().create_var(
T
typhoonzero 已提交
1778 1779
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1780
                    dtype=orig_var.dtype,
1781
                    type=orig_var.type,
T
typhoonzero 已提交
1782
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1783
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1784
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1785
        return var_mapping
T
done  
typhoonzero 已提交
1786

1787
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1788 1789 1790 1791 1792 1793
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1794
            persistable=persistable)
T
done  
typhoonzero 已提交
1795

Y
Yancey1989 已提交
1796
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1797 1798 1799 1800
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1801
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1802
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1803 1804
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1805
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1806 1807 1808 1809
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1810 1811 1812 1813
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1814 1815 1816 1817
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1818
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1819 1820 1821 1822
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1823 1824 1825 1826
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1827 1828 1829
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1830

T
typhoonzero 已提交
1831 1832 1833 1834
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1835
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1848
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1849 1850
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1851 1852
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1853
                return param_shape
1854 1855 1856
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1857 1858 1859
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1860 1861
        elif op_type == "sgd":
            pass
1862 1863 1864 1865
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1866 1867
        return orig_shape

1868 1869
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1870
        orig_var_name = ""
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1881
        else:
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1904
            return None
1905 1906 1907 1908
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1909
        else:
1910
            merged_var_name = orig_varname
1911 1912

        merged_var = pserver_block.vars[merged_var_name]
1913 1914 1915
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1916
            for i in range(self.trainer_num):
1917
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1918
                                   (merged_var_name, i)
1919 1920 1921 1922
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1923 1924
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1925 1926 1927 1928 1929
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1930
        return merged_var
T
typhoonzero 已提交
1931

W
Wu Yi 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1994
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1995
                            grad_to_block_id, origin_program, merged_var):
1996
        program = optimize_block.program
T
typhoonzero 已提交
1997
        pserver_block = program.global_block()
1998
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2009 2010 2011 2012
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2013
        for key in opt_op.input_names:
T
typhoonzero 已提交
2014
            if key == "Grad":
W
Wu Yi 已提交
2015 2016 2017
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2028
            elif key == "Param":
W
Wu Yi 已提交
2029
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2030 2031
                if not param_block:
                    return
T
typhoonzero 已提交
2032
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2033
                    name=param_block.name,
T
typhoonzero 已提交
2034
                    persistable=True,
T
typhoonzero 已提交
2035 2036 2037
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2038
            elif key == "LearningRate":
2039
                # learning rate variable has already be created by non-optimize op,
2040
                # don't create it once again.
2041
                lr_varname = opt_op.input(key)[0]
2042
                if lr_varname in pserver_block.vars:
2043 2044 2045 2046 2047 2048 2049 2050 2051
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2052

T
typhoonzero 已提交
2053
        for key in opt_op.input_names:
2054
            new_shape = None
W
Wu Yi 已提交
2055
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2056
                continue
2057
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2058
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2059
            # update accumulator variable shape
2060 2061
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2062
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2063 2064 2065 2066 2067
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2068

2069
        # change output's ParamOut variable
2070 2071
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2072
        outputs["ParamOut"] = new_inputs["Param"]
2073
        optimize_block.append_op(
T
typhoonzero 已提交
2074 2075
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2076
            outputs=outputs,
G
gongweibao 已提交
2077
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2090
        grad_block = None
M
minqiyang 已提交
2091
        for _, g in six.iteritems(var_dict):
2092
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2093
                # skip per trainer vars
2094
                if g.name.find(".trainer_") == -1:
2095
                    # only param or grads have splited blocks
2096 2097
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2098 2099
                        grad_block = g
                        break
2100 2101
        return grad_block

Q
Qiyang Min 已提交
2102 2103 2104
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2105
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2106 2107 2108 2109
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2110
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2111 2112 2113

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2114
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2115 2116 2117 2118
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2119
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2120

Y
Yancey1989 已提交
2121
        return block.append_op(
G
gongweibao 已提交
2122
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2123 2124

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2125
        program = optimize_block.program
2126
        # Append the ops for parameters that do not need to be optimized/updated
2127 2128
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2129
        for key, varlist in six.iteritems(inputs):
2130 2131
            if not isinstance(varlist, list):
                varlist = [varlist]
2132 2133 2134
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2135
                # for inputs/outputs
2136
                grad_block = self._get_pserver_grad_param_var(
2137 2138
                    var, program.global_block().vars)
                if grad_block:
2139
                    varlist[i] = grad_block
2140
                elif var.name not in program.global_block().vars:
2141 2142 2143 2144 2145
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2146

2147 2148
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2149
        for key, varlist in six.iteritems(outputs):
2150 2151
            if not isinstance(varlist, list):
                varlist = [varlist]
2152 2153 2154
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2155 2156
                    var, program.global_block().vars)
                if grad_block:
2157
                    varlist[i] = grad_block
2158
                elif var.name not in program.global_block().vars:
2159 2160 2161 2162 2163
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2164

Y
Yancey1989 已提交
2165
        return optimize_block.append_op(
T
typhoonzero 已提交
2166
            type=opt_op.type,
T
typhoonzero 已提交
2167 2168
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2169
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2170

2171 2172 2173 2174
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2175
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2176
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2177 2178 2179 2180 2181 2182
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2183 2184
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2185 2186 2187 2188 2189 2190
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2191
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2192
        if "Param" in op.input_names and \
T
tangwei12 已提交
2193
                "LearningRate" in op.input_names:
2194 2195 2196 2197 2198 2199 2200
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2201
        if op.input("Param")[0] in param_names:
2202 2203 2204
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2205
                param = op.input("Param")[0]
T
typhoonzero 已提交
2206
                if same_or_split_var(n, param) and n != param:
2207 2208 2209
                    return True
            return False

T
typhoonzero 已提交
2210
    def _get_input_map_from_op(self, varmap, op):
2211
        """Returns a dict from op input name to the vars in varmap."""
2212
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2224
        """Returns a dict from op output name to the vars in varmap."""
2225
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2235 2236

    def _get_lr_ops(self):
2237 2238 2239
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2240 2241 2242 2243
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2244 2245 2246 2247 2248
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2249 2250 2251 2252
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2253
            if self._is_optimizer_op(op):
2254 2255 2256 2257
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2258
        block = self.origin_program.global_block()
2259 2260 2261 2262 2263
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2264

2265 2266 2267 2268 2269
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2270
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2271 2272 2273 2274 2275 2276
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2277 2278
                    # we only need to append op for once
                    break
2279
        return lr_ops
Y
Yancey1989 已提交
2280

W
Wu Yi 已提交
2281 2282 2283 2284 2285
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2286 2287
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2288 2289 2290
            return True
        return False

Y
Yancey1989 已提交
2291
    def _get_optimize_pass(self):
2292
        """
2293
        Get optimizer operators, parameters and gradients from origin_program
2294 2295 2296 2297
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
2298 2299 2300
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2301 2302
        # tmp set to dedup
        optimize_params = set()
2303
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2304
        for op in block.ops:
W
Wu Yi 已提交
2305
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2306
                opt_ops.append(op)
2307 2308 2309 2310 2311 2312
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2313 2314
                        params_grads.append([
                            origin_var_dict[param_name],
2315
                            origin_var_dict[grad_name]
2316
                        ])
Y
Yancey1989 已提交
2317 2318 2319
            else:
                pass
        return opt_ops, params_grads