distribute_transpiler.py 75.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
Q
Qiao Longfei 已提交
38
import logging
39

40
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
41
from .. import core, framework
T
typhoonzero 已提交
42
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
43 44
    default_startup_program, Block, \
    Parameter, grad_var_name
45 46
from .details import *
from functools import reduce
47 48 49

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
50
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
53
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
54
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
55 56 57 58 59 60 61 62 63
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
64 65


T
typhoonzero 已提交
66 67 68 69 70 71
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
72

T
typhoonzero 已提交
73 74
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
75 76


77 78 79 80
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
81
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
82
    """
83 84 85 86 87 88
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
89
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
90 91 92

    Args:
        var_list (list): List of variables.
93 94
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
95 96
        min_block_size (int): Minimum splitted block size.
    Returns:
97
        blocks (list[(varname, block_id, current_block_size)]): A list
98
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
99 100 101
    """
    blocks = []
    for var in var_list:
102
        split_count = slice_count
T
typhoonzero 已提交
103 104 105 106
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
107
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
108 109 110 111 112 113 114 115 116
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
117
        # update split_count after aligning
T
typhoonzero 已提交
118
        split_count = int(math.ceil(var_numel / float(block_size)))
119
        for block_id in range(split_count):
T
typhoonzero 已提交
120 121 122 123 124 125 126
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
127 128 129 130 131 132 133
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
134
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
135 136 137 138 139 140
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
141 142
    # supported modes: pserver, nccl2
    mode = "pserver"
143
    print_log = False
G
gongweibao 已提交
144 145


Y
gen rst  
yi.wu 已提交
146
class DistributeTranspiler(object):
Y
yi.wu 已提交
147 148 149 150
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
151
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
152

W
Wu Yi 已提交
153 154 155 156 157 158 159 160 161
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
162 163 164 165

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
166 167 168 169 170 171
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
172 173
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
174
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
175 176 177 178 179 180 181 182
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
183

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
195
    """
Y
Yancey1989 已提交
196

G
gongweibao 已提交
197 198 199 200 201 202 203 204 205
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

206 207 208
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
209 210 211
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

239 240 241 242 243
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
244
                  sync_mode=True,
W
Wu Yi 已提交
245 246
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
247
        """
Y
yi.wu 已提交
248 249 250 251 252 253 254 255 256
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
257 258 259
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
260
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
261 262
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
263 264 265
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
266 267 268
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
269 270
        if startup_program is None:
            startup_program = default_startup_program()
271
        self.origin_program = program
W
Wu Yi 已提交
272 273
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
274

W
Wu Yi 已提交
275 276 277 278 279 280 281 282 283
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

284 285 286 287 288 289 290
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
291
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
292
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
293
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
294
        self.grad_name_to_param_name = dict()
295 296
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
297
            self.grad_name_to_param_name[grad_var.name] = param_var.name
298

T
tangwei12 已提交
299 300 301 302 303 304
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

305
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
306
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
307
        self._init_splited_vars()
308

G
gongweibao 已提交
309
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
310
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
311
        send_vars = []
312 313 314 315 316 317

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
318
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
319

G
gongweibao 已提交
320
        if not self.config.slice_var_up:
321 322
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
323

324
        self.grad_name_to_send_dummy_out = dict()
325
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
326
            eplist = ps_dispatcher.dispatch(splited_vars)
327

G
gongweibao 已提交
328
            if not self.config.slice_var_up:
329 330
                assert (len(splited_vars) == 1)

331
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
332
            if len(splited_vars) == 1:
333
                splited_grad_varname = splited_vars[0].name
334 335
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
336
            elif len(splited_vars) > 1:
337
                orig_var = program.global_block().vars[splited_grad_varname]
338 339
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
340
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
341
                index += 1
Y
Yancey1989 已提交
342 343
            else:
                AssertionError("Can not insert the send op by original "
344
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
345

W
Wu Yi 已提交
346 347
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
348
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
349

W
Wu Yi 已提交
350 351 352 353
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
354
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
355
                index=index + 1,
356
                type="send",
Y
update  
Yancey1989 已提交
357
                inputs={"X": splited_vars},
358
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
359 360
                attrs={
                    "epmap": eplist,
361
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
362 363 364 365
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
366
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
367
                })
Y
update  
Yancey1989 已提交
368 369
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
370 371

        if self.sync_mode:
W
Wu Yi 已提交
372 373
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
374 375 376 377
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
378
            input_deps = list(self.grad_name_to_send_dummy_out.values())
379

Y
Yancey1989 已提交
380 381
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
382
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
383
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
384 385
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
386
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
387
                })
Y
Yancey1989 已提交
388

G
gongweibao 已提交
389
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
390
        recv_vars = []
Y
update  
Yancey1989 已提交
391
        for _, var in enumerate(send_vars):
392
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
393
        ps_dispatcher.reset()
Y
Yancey1989 已提交
394 395
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
396
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
397 398
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
399

Y
Yancey1989 已提交
400
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
401
        all_recv_outputs = []
402
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
403 404 405 406
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
407 408 409 410
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
411
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
412 413
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
414 415 416 417 418 419 420 421 422
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
423 424
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
425
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
426 427 428
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
429
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
430 431
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
432
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
433
                })
T
typhoonzero 已提交
434

Q
qiaolongfei 已提交
435
        if self.sync_mode:
W
Wu Yi 已提交
436
            # form a WAW dependency
Q
qiaolongfei 已提交
437 438 439
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
440
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
441 442 443 444
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
445

446
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
447 448
            if len(splited_var) <= 1:
                continue
449
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
450
            program.global_block().append_op(
T
typhoonzero 已提交
451
                type="concat",
T
typhoonzero 已提交
452
                inputs={"X": splited_var},
T
typhoonzero 已提交
453
                outputs={"Out": [orig_param]},
454 455 456 457
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
458

G
gongweibao 已提交
459 460
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

461
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
462 463
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
464
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
465

W
Wu Yi 已提交
466
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
467 468 469 470 471 472
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
473
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
474
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
475
        lr_ops = self._get_lr_ops()
476
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
477 478
        delete_ops(self.origin_program.global_block(), lr_ops)

479 480
        # delete table init op
        if self.has_distributed_lookup_table:
481 482 483
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
484 485
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
486 487 488 489 490
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
491
            table_init_op = table_param_init_op[0]
492 493 494 495 496 497
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
498

499
        self.origin_program.__str__()
G
gongweibao 已提交
500

W
Wu Yi 已提交
501 502 503
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

504
        return self.origin_program
T
typhoonzero 已提交
505

W
Wu Yi 已提交
506
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
507 508 509 510
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
511
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
512
            eplist (list): A list of strings indicating
G
gongweibao 已提交
513 514 515 516

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
517
        startup_program = self.startup_program
G
gongweibao 已提交
518 519 520 521

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
522
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
543
                inputs={"X": []},
G
gongweibao 已提交
544 545 546 547 548 549
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
550 551
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
552 553 554
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
555
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
556 557 558 559 560
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
561
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
562
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
563 564
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
565
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
566
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
567 568 569 570 571 572 573 574 575 576
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
577 578 579 580 581 582 583 584
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
585 586
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
587
        Get parameter server side program.
588

Y
yi.wu 已提交
589 590
        Args:
            endpoint (str): current parameter server endpoint.
591

Y
yi.wu 已提交
592 593
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
594
        """
Y
yi.wu 已提交
595 596 597 598
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
599 600 601
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
602 603
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
604
        pserver_program.random_seed = self.origin_program.random_seed
605
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
606 607 608 609 610 611 612 613
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
614 615 616 617 618
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
619 620 621 622 623 624 625 626 627
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
628
            if self.sync_mode and self.trainer_num > 1:
629
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
630 631 632 633 634 635 636 637 638
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
639

Q
qiaolongfei 已提交
640
        # step 3
641
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
642 643 644
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
645
        # step 3.2
T
typhoonzero 已提交
646 647 648 649
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
650 651
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
652
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
653
        # step 3.3
T
typhoonzero 已提交
654
        # Iterate through the ops, and if an op and the optimize ops
655
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
656
        # append it into the sub program.
T
typhoonzero 已提交
657 658 659

        global_ops = []

Y
wip  
yi.wu 已提交
660 661
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
662
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
663
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
664
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
665
            elif op not in lr_ops:
Q
Qiyang Min 已提交
666
                self._append_pserver_non_opt_ops(block, op)
667 668 669 670 671 672

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
673

Y
Yancey1989 已提交
674
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
675 676 677 678 679 680 681 682
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
683
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
684 685 686

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
687
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
688 689

            # clone ops
Y
Yancey1989 已提交
690 691
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
692
                # clone sub_block of op
Y
Yancey1989 已提交
693
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
694 695

            # reset the block of op
W
Wu Yi 已提交
696
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
697

698
        # append lr decay ops to the child block if exists
699
        lr_ops = self._get_lr_ops()
700 701
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
702
        if len(lr_ops) > 0:
W
Wu Yi 已提交
703
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
704
                pserver_program.num_blocks - 1)
705
            optimize_blocks.append(lr_decay_block)
706
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
707
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
708
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
709 710
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
711

T
typhoonzero 已提交
712
        # append op to the current block
Q
qiaolongfei 已提交
713
        grad_to_block_id = []
Q
qiaolongfei 已提交
714
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
715
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
716
            per_opt_block = pserver_program._create_block(pre_block_idx)
717
            optimize_blocks.append(per_opt_block)
718
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
719
            # append grad merging ops before clip and weight decay
720 721
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
722
            for _, op in enumerate(self.optimize_ops):
723 724 725 726 727
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
728 729 730
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
731 732 733 734 735 736
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
737
                            op not in global_ops:
738 739 740 741 742
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
743

W
Wu Yi 已提交
744 745
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
746
        # append global ops
747
        if global_ops:
W
Wu Yi 已提交
748
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
749
                pserver_program.num_blocks - 1)
750
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
751
            for glb_op in global_ops:
X
Xi Chen 已提交
752
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
753
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
754

755
        # process distributed lookup_table
Q
qiaolongfei 已提交
756
        prefetch_var_name_to_block_id = []
757 758
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
759
            table_opt_block = self._create_table_optimize_block(
760
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
761
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
762
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
763
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
764 765
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
766

T
tangwei12 已提交
767
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
768 769
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
770

771
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
772 773
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
774 775 776 777 778 779
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
780
        attrs = {
781
            "optimize_blocks": optimize_blocks,
782 783 784
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
785
            "grad_to_block_id": grad_to_block_id,
786
        }
T
tangwei12 已提交
787 788

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
789
            attrs['checkpint_block_id'] = checkpoint_block_id
790

T
tangwei12 已提交
791 792 793 794
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
795 796 797 798 799
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
800
            attrs=attrs)
801

T
tangwei12 已提交
802
        # add distributed attrs
T
tangwei12 已提交
803
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
804
            endpoint)
805

W
Wu Yi 已提交
806
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
807 808
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
809 810
        return pserver_program

W
Wu Yi 已提交
811 812 813 814 815 816
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
817

W
Wu Yi 已提交
818 819 820 821
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
822 823
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
824 825
        return pserver_prog, pserver_startup

826 827
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
828
                            pserver_program=None,
829
                            startup_program=None):
T
typhoonzero 已提交
830
        """
W
Wu Yi 已提交
831 832
        **Deprecated**

T
typhoonzero 已提交
833 834 835
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
836 837 838

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
839 840
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
841
                when initalizing
842

Y
yi.wu 已提交
843 844
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
845
        """
846 847 848
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
849
        if pserver_program != None:
850 851 852
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
853
        if startup_program != None:
854 855 856
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
857

T
typhoonzero 已提交
858
        s_prog = Program()
W
Wu Yi 已提交
859
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
860
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
861 862 863 864 865 866 867 868 869 870 871
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
872
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
873
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
874
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
875 876 877 878
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
879
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
880 881
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
882 883 884 885 886 887 888 889 890 891
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
892 893

            if op_on_pserver:
894 895 896
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
897 898 899
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
900
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
901 902 903 904
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
905
                    attrs=op.all_attrs())
906 907

        # add slice vars
T
tangwei12 已提交
908
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
909

T
typhoonzero 已提交
910 911
        return s_prog

T
tangwei12 已提交
912 913 914
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
915
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
916
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
917
            if not block_name:
918 919
                continue

T
tangwei12 已提交
920
            block_idx = int(block_name.split(block_suffix)[1])
921 922 923 924 925 926
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
927
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
928

T
tangwei12 已提交
929
        return slice_vars_and_attrs
930

931 932
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
933 934 935 936 937 938 939 940 941
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
942
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
994
    def _init_splited_vars(self):
Y
yi.wu 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1018
        if self.config.slice_var_up:
Y
yi.wu 已提交
1019 1020
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1021 1022 1023
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1024
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1025 1026
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1027 1028 1029
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1030 1031 1032 1033
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1034 1035
        assert (len(grad_blocks) == len(param_blocks))

1036
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1037 1038
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1039
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1040 1041 1042 1043
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1044
        # dict(grad_splited_var -> param_splited_var)
1045
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1046 1047 1048
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1049
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1050
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1051 1052

        # create mapping of endpoint -> split var to create pserver side program
1053
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1063
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1064 1065
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1066
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1067
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1068 1069
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1070 1071
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1072 1073 1074 1075 1076 1077

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1078 1079
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1080
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1081 1082 1083
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1084 1085
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1086 1087
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1088 1089 1090
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1091
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1092
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1093 1094

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1095
                    self.all_out_emb_vars.append(out_var)
1096 1097

                    # delete lookup_table_op
1098
                    delete_ops(program.global_block(), [op])
1099 1100 1101
                    # break for loop
                    break

S
seiriosPlus 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1148
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1149
        # 2. add split_ids_op and send_op to send gradient to pservers
1150

1151 1152
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1153
        table_grad_name = grad_var_name(self.table_name)
1154 1155 1156 1157
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1158
                program.global_block()._insert_op(
1159 1160 1161 1162 1163
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1164 1165
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1166
                program.global_block()._insert_op(
1167
                    index=op_index + 2,
1168
                    type="send",
1169
                    inputs={'X': self.trainer_side_table_grad_list},
1170 1171 1172 1173 1174
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1175
                    attrs={
1176
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1177
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1178 1179 1180 1181 1182
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1183
                    })
1184 1185 1186 1187 1188 1189
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1190
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1216
        return prefetch_var_name_to_block_id
1217 1218

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1219
                                     pre_block_idx, grad_to_block_id):
1220
        # STEP: create table optimize block
1221
        table_opt_block = pserver_program._create_block(pre_block_idx)
1222
        # create table param and grad var in pserver program
1223 1224 1225 1226 1227 1228 1229
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1230 1231
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1232

T
tangwei12 已提交
1233
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1234 1235
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1236 1237 1238
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1239 1240
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1241
            shape=table_shape,
Y
Yancey1989 已提交
1242 1243 1244
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1245

1246 1247
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1248
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1249
            self.origin_program.global_block().vars[grad_var_name(
1250
                self.table_name)])
1251

1252 1253 1254
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1255

1256 1257 1258
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1259
            pserver_side_table_grad_list = [
1260 1261 1262 1263 1264 1265 1266 1267 1268
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1269
            # append sum op for pserver_side_table_grad_list
1270 1271
            table_opt_block.append_op(
                type="sum",
1272
                inputs={"X": pserver_side_table_grad_list},
1273 1274
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1275 1276
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1277
            origin_grad_name = grad_var.name
1278 1279
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1280 1281
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1282
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1283
            grad_var = pserver_program.global_block()._rename_var(
1284
                origin_grad_name, splited_grad_name)
1285 1286 1287 1288 1289 1290 1291

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1292
        # only support sgd now
1293 1294 1295
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1296
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1297

1298 1299 1300
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1301 1302
        return table_opt_block

T
tangwei12 已提交
1303 1304 1305 1306 1307 1308
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1309
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1310
            name="kLookupTablePath",
T
tangwei12 已提交
1311 1312
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1313

W
Wu Yi 已提交
1314
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1315
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1316 1317 1318 1319
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1320
            attrs={'file_path': "none"})
T
tangwei12 已提交
1321 1322 1323

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1324 1325 1326 1327 1328
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1329
        Create vars for each split.
T
typhoonzero 已提交
1330 1331
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1332 1333 1334 1335
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1336
        Returns:
1337
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1338
                from original var name to each var split.
T
typhoonzero 已提交
1339
        """
1340 1341

        # varname->[(block_id, current_block_size)]
1342
        block_map = collections.OrderedDict()
1343

1344
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1345 1346
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1347
            if varname not in block_map:
T
typhoonzero 已提交
1348
                block_map[varname] = []
1349
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1350

M
minqiyang 已提交
1351
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1352
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1353
            if len(splited) == 1:
1354
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1355
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1356
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1357
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1358 1359 1360 1361 1362
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1363
                continue
T
typhoonzero 已提交
1364
            var_mapping[varname] = []
T
typhoonzero 已提交
1365 1366 1367 1368
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1369

T
typhoonzero 已提交
1370
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1371
                size = block[1]
M
minqiyang 已提交
1372
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1373 1374 1375
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1376
                new_var_name = ""
1377
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1378
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1379
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1380 1381
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1382
                                   (varname, i)
T
typhoonzero 已提交
1383
                var = program.global_block().create_var(
T
typhoonzero 已提交
1384 1385
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1386
                    dtype=orig_var.dtype,
1387
                    type=orig_var.type,
T
typhoonzero 已提交
1388
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1389
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1390
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1391
        return var_mapping
T
done  
typhoonzero 已提交
1392

1393
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1394 1395 1396 1397 1398 1399
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1400
            persistable=persistable)
T
done  
typhoonzero 已提交
1401

Y
Yancey1989 已提交
1402
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1403 1404 1405 1406
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1407
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1408 1409 1410 1411
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1412 1413 1414 1415
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1416 1417 1418 1419
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1420
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1421 1422 1423 1424
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1425 1426 1427 1428
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1429 1430 1431
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1432

T
typhoonzero 已提交
1433 1434 1435 1436
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1437
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1450
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1451 1452
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1453 1454
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1455
                return param_shape
1456 1457 1458
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1459 1460
        elif op_type == "sgd":
            pass
1461 1462 1463 1464
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1465 1466
        return orig_shape

1467 1468
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1469
        orig_var_name = ""
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1480
        else:
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1503
            return None
1504 1505 1506 1507
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1508
        else:
1509
            merged_var_name = orig_varname
1510 1511

        merged_var = pserver_block.vars[merged_var_name]
1512 1513 1514
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1515
            for i in range(self.trainer_num):
1516
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1517
                                   (merged_var_name, i)
1518 1519 1520 1521
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1522 1523
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1524 1525 1526 1527 1528
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1529
        return merged_var
T
typhoonzero 已提交
1530

1531
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1532
                            grad_to_block_id, origin_program, merged_var):
1533
        program = optimize_block.program
T
typhoonzero 已提交
1534
        pserver_block = program.global_block()
1535
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1546
        for key in opt_op.input_names:
T
typhoonzero 已提交
1547 1548 1549
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1550
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1551 1552
                if not param_block:
                    return
T
typhoonzero 已提交
1553
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1554
                    name=param_block.name,
T
typhoonzero 已提交
1555
                    persistable=True,
T
typhoonzero 已提交
1556 1557 1558
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1559
            elif key == "LearningRate":
1560
                # learning rate variable has already be created by non-optimize op,
1561
                # don't create it once again.
1562
                lr_varname = opt_op.input(key)[0]
1563
                if lr_varname in pserver_block.vars:
1564 1565 1566 1567 1568 1569 1570 1571 1572
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1573

T
typhoonzero 已提交
1574
        for key in opt_op.input_names:
1575
            new_shape = None
W
Wu Yi 已提交
1576
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1577
                continue
1578
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1579 1580 1581 1582
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1583
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1584 1585 1586 1587 1588
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1589

1590
        # change output's ParamOut variable
1591 1592
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1593
        outputs["ParamOut"] = new_inputs["Param"]
1594
        optimize_block.append_op(
T
typhoonzero 已提交
1595 1596
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1597
            outputs=outputs,
G
gongweibao 已提交
1598
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1599

1600 1601
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1602
        for _, g in six.iteritems(var_dict):
1603 1604 1605 1606 1607 1608
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1609 1610 1611
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1612
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1613 1614 1615 1616
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1617
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1618 1619 1620

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1621
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1622 1623 1624 1625
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1626
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1627

Y
Yancey1989 已提交
1628
        return block.append_op(
G
gongweibao 已提交
1629
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1630 1631

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1632
        program = optimize_block.program
1633
        # Append the ops for parameters that do not need to be optimized/updated
1634 1635
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1636
        for key, varlist in six.iteritems(inputs):
1637 1638
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1639
            for var in varlist:
1640 1641 1642 1643 1644 1645
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1646
                elif var.name not in program.global_block().vars:
1647
                    program.global_block().create_var(
T
typhoonzero 已提交
1648 1649 1650 1651 1652
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1653 1654
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1655
        for key, varlist in six.iteritems(outputs):
1656 1657 1658
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1659 1660 1661 1662
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1663
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1664
                    program.global_block()._clone_variable(var)
1665

Y
Yancey1989 已提交
1666
        return optimize_block.append_op(
T
typhoonzero 已提交
1667
            type=opt_op.type,
T
typhoonzero 已提交
1668 1669
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1670
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1671

1672 1673 1674 1675
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1676
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1677
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1678 1679 1680 1681 1682 1683
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1684 1685
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1686 1687 1688 1689 1690 1691
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1692
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1693
        if "Param" in op.input_names and \
T
tangwei12 已提交
1694
                "LearningRate" in op.input_names:
1695 1696 1697 1698 1699 1700 1701
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1702
        if op.input("Param")[0] in param_names:
1703 1704 1705
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1706
                param = op.input("Param")[0]
T
typhoonzero 已提交
1707
                if same_or_split_var(n, param) and n != param:
1708 1709 1710
                    return True
            return False

T
typhoonzero 已提交
1711
    def _get_input_map_from_op(self, varmap, op):
1712
        """Returns a dict from op input name to the vars in varmap."""
1713
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1725
        """Returns a dict from op output name to the vars in varmap."""
1726
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1736 1737

    def _get_lr_ops(self):
1738 1739 1740
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1741 1742 1743 1744
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1745 1746 1747 1748 1749
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1750 1751 1752 1753
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1754
            if self._is_optimizer_op(op):
1755 1756 1757 1758
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1759
        block = self.origin_program.global_block()
1760 1761 1762 1763 1764
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1765

1766 1767 1768 1769 1770
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1771
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1772 1773 1774 1775 1776 1777
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1778 1779
                    # we only need to append op for once
                    break
1780
        return lr_ops
Y
Yancey1989 已提交
1781

W
Wu Yi 已提交
1782 1783 1784 1785 1786
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1787 1788
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1789 1790 1791
            return True
        return False

Y
Yancey1989 已提交
1792
    def _get_optimize_pass(self):
1793
        """
1794
        Get optimizer operators, parameters and gradients from origin_program
1795 1796 1797 1798
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1799 1800 1801
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1802 1803
        # tmp set to dedup
        optimize_params = set()
1804
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1805
        for op in block.ops:
W
Wu Yi 已提交
1806
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1807
                opt_ops.append(op)
1808 1809 1810 1811 1812 1813
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1814 1815
                        params_grads.append([
                            origin_var_dict[param_name],
1816
                            origin_var_dict[grad_name]
1817
                        ])
Y
Yancey1989 已提交
1818 1819 1820
            else:
                pass
        return opt_ops, params_grads