distribute_transpiler.py 58.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
from __future__ import print_function
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36

Y
Yancey1989 已提交
37
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
38
from .. import core, framework
T
typhoonzero 已提交
39
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
40
                        default_startup_program, Block, \
T
typhoonzero 已提交
41
                        Variable, Parameter, grad_var_name
42
from details import *
43 44 45

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
46
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
47 48 49
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
50 51


T
typhoonzero 已提交
52 53 54 55 56 57
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
58

T
typhoonzero 已提交
59 60
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
61 62


63 64 65 66
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


67
def slice_variable(var_list, slice_count, min_block_size=8192):
T
typhoonzero 已提交
68
    """
69 70 71 72 73 74
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
75
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
76 77 78

    Args:
        var_list (list): List of variables.
79 80
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
81 82
        min_block_size (int): Minimum splitted block size.
    Returns:
83
        blocks (list[(varname, block_id, current_block_size)]): A list
84
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
85 86 87
    """
    blocks = []
    for var in var_list:
88
        split_count = slice_count
T
typhoonzero 已提交
89 90 91 92
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
93
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
94 95 96 97 98 99 100 101 102
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
103
        # update split_count after aligning
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


Y
gen rst  
yi.wu 已提交
113
class DistributeTranspiler(object):
Y
yi.wu 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
148

149 150 151 152 153
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
154
                  slice_var_up=True,
155 156 157
                  split_method=RoundRobin,
                  sync_mode=True):
        """
Y
yi.wu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            slice_var_up (bool): Do Tensor slice for pservers, default is True.
            split_method (PSDispatcher): RoundRobin or HashName can be used
                try to choose the best method to balance loads for pservers.
            sync_mode (bool): Do sync training or not, default is True.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
188
        self._init_splited_vars(slice_var_up)
189

Y
Yancey1989 已提交
190 191
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
192
        send_vars = []
193 194 195 196 197 198

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
199
        grad_var_mapping_items = self.grad_var_mapping.items()
S
seiriosPlus 已提交
200 201 202
        if not slice_var_up:
            random.seed(self.trainer_num)
            random.shuffle(grad_var_mapping_items)
203 204

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
205
            eplist = ps_dispatcher.dispatch(splited_vars)
206

207
            if not slice_var_up:
208 209
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
210 211 212 213 214 215 216 217 218
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
219
                index += 1
Y
Yancey1989 已提交
220 221 222 223
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
224
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
225
                index=index + 1,
226
                type="send",
Y
update  
Yancey1989 已提交
227
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
228 229 230 231 232
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
233 234
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
235 236 237 238 239

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
240
                outputs={},
Y
Yancey1989 已提交
241 242
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
243 244
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
245
                })
Y
Yancey1989 已提交
246 247 248

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
249
        for _, var in enumerate(send_vars):
250
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
251
        ps_dispatcher.reset()
Y
Yancey1989 已提交
252 253
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
254
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
255 256
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
257

Y
Yancey1989 已提交
258
        # step4: Concat the parameters splits together after recv.
259
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
260 261 262 263 264 265 266 267
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
268 269 270 271 272
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
273

T
typhoonzero 已提交
274
        program.global_block().append_op(
Y
Yancey1989 已提交
275 276
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
277
            outputs={},
Q
qiaolongfei 已提交
278 279
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
280
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
281
            })
Y
Yancey1989 已提交
282

283
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
284 285
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
286
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
287
            program.global_block().append_op(
T
typhoonzero 已提交
288
                type="concat",
T
typhoonzero 已提交
289
                inputs={"X": splited_var},
T
typhoonzero 已提交
290
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
291
                attrs={"axis": 0})
T
typhoonzero 已提交
292

293
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
294 295
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
296
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
297

T
typhoonzero 已提交
298
    def get_trainer_program(self):
Y
yi.wu 已提交
299 300 301 302 303 304
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
305
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
306
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
307
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
308 309
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
310 311 312

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
313
        Get parameter server side program.
314

Y
yi.wu 已提交
315 316
        Args:
            endpoint (str): current parameter server endpoint.
317

Y
yi.wu 已提交
318 319
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
320
        """
Y
yi.wu 已提交
321 322 323 324 325
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
326 327
        # step1
        pserver_program = Program()
328
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
329 330 331 332 333 334 335 336
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
337 338 339 340 341
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
342 343 344 345 346 347 348 349 350
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
351
            if self.sync_mode and self.trainer_num > 1:
352
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
353 354 355 356 357 358 359 360 361
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
362

Q
qiaolongfei 已提交
363
        # step 3
364
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
365 366 367
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
368
        # step 3.2
T
typhoonzero 已提交
369 370 371 372
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
373 374
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
375
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
376
        # step 3.3
T
typhoonzero 已提交
377
        # Iterate through the ops, and if an op and the optimize ops
378
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
379
        # append it into the sub program.
T
typhoonzero 已提交
380 381 382

        global_ops = []

Y
wip  
yi.wu 已提交
383 384
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
385
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
386
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
387
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
388
            elif op not in lr_ops:
Q
Qiyang Min 已提交
389
                self._append_pserver_non_opt_ops(block, op)
390 391 392 393 394 395

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
396

Y
Yancey1989 已提交
397
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
398 399 400 401 402 403 404 405
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
406
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
407 408 409 410 411 412

            # clone vars
            for var in origin_block.vars:
                new_sub_block.clone_variable(var)

            # clone ops
Y
Yancey1989 已提交
413 414
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
415
                # clone sub_block of op
Y
Yancey1989 已提交
416
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
417 418 419 420

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

421
        # append lr decay ops to the child block if exists
422
        lr_ops = self._get_lr_ops()
423 424
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
425
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
426 427
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
428
            optimize_blocks.append(lr_decay_block)
429
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
430
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
431
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
432 433
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
434

T
typhoonzero 已提交
435
        # append op to the current block
Q
qiaolongfei 已提交
436
        grad_to_block_id = []
Q
qiaolongfei 已提交
437
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
438
        for idx, opt_op in enumerate(opt_op_on_pserver):
439
            per_opt_block = pserver_program.create_block(pre_block_idx)
440
            optimize_blocks.append(per_opt_block)
441 442 443 444 445 446 447 448
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
449 450
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
451
                if ufind.is_connected(op, opt_op) and op not in global_ops:
452
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
453
                                           merged_var, lr_ops)
T
typhoonzero 已提交
454

W
Wu Yi 已提交
455 456
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
457
        # append global ops
458
        if global_ops:
Q
qiaolongfei 已提交
459 460
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
461
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
462
            for glb_op in global_ops:
X
Xi Chen 已提交
463
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
464
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
465

466
        # process distributed lookup_table
Q
qiaolongfei 已提交
467
        prefetch_var_name_to_block_id = []
468 469
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
470
            table_opt_block = self._create_table_optimize_block(
471
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
Q
qiaolongfei 已提交
472
            prefetch_var_name_to_block_id = self._create_prefetch_block(
473
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
474 475
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
476 477 478 479

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
480
            assert len(prefetch_var_name_to_block_id) > 0
481
        else:
Q
qiaolongfei 已提交
482
            assert len(prefetch_var_name_to_block_id) == 0
483

484
        attrs = {
485
            "optimize_blocks": optimize_blocks,
486 487 488
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
489
            "grad_to_block_id": grad_to_block_id,
490 491 492 493
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
494
            attrs['checkpint_block_id'] = checkpoint_block_id
495

T
typhoonzero 已提交
496 497 498 499 500
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
501
            attrs=attrs)
502

T
typhoonzero 已提交
503 504 505 506 507 508 509 510
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
511 512 513 514 515

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
516

Y
yi.wu 已提交
517 518
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
519 520
        """
        s_prog = Program()
T
typhoonzero 已提交
521
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
535
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
553 554 555
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
556 557 558 559 560 561 562 563 564 565 566
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

567 568
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

    def _init_splited_vars(self, slice_var_up):
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

        if slice_var_up:
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
            param_blocks = slice_variable(param_list,
                                          len(self.pserver_endpoints))
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
            grad_blocks = slice_variable(grad_list, 1)
            param_blocks = slice_variable(param_list, 1)
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

692
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
693 694
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
695
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
696 697 698 699 700 701 702 703 704
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
705 706 707 708 709 710 711 712 713

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

714
                    lookup_table_op_index = list(all_ops).index(op)
715 716 717
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
731 732 733

                    # insert split_ids_op
                    program.global_block().insert_op(
734
                        index=lookup_table_op_index,
735 736 737 738 739 740 741
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
742
                        outputs={"Out": prefetch_input_vars})
743 744 745

                    # insert prefetch_op
                    program.global_block().insert_op(
746
                        index=lookup_table_op_index + 1,
747
                        type="prefetch",
Q
qiaolongfei 已提交
748 749
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
750
                        attrs={
751
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
752 753
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
754 755 756

                    # insert concat_op
                    program.global_block().insert_op(
757 758 759 760 761 762 763
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
764
                            'X': prefetch_output_vars
765
                        },
766 767 768 769 770
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
771
                        })
772 773

                    # delete lookup_table_op
774
                    delete_ops(program.global_block(), [op])
775 776 777
                    # break for loop
                    break

Y
Yancey1989 已提交
778
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
779
        # 2. add split_ids_op and send_op to send gradient to pservers
780 781
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
782
        table_grad_name = grad_var_name(self.table_name)
783 784 785 786 787 788 789 790 791 792
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
793
                    outputs={"Out": self.trainer_side_table_grad_list})
794 795
                program.global_block().insert_op(
                    index=op_index + 2,
796
                    type="send",
797
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
798 799
                    outputs={},
                    attrs={
800
                        "sync_mode": True,
Y
Yancey1989 已提交
801 802 803
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
804 805 806 807 808 809
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
838 839

    def _create_table_optimize_block(self, pserver_index, pserver_program,
840
                                     pre_block_idx, grad_to_block_id):
841 842
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
843 844 845 846 847 848 849 850
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
851 852 853
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
854
            self.origin_program.global_block().vars[grad_var_name(
855
                self.table_name)])
856 857 858 859 860 861

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
862
        table_opt_block = pserver_program.create_block(pre_block_idx)
863 864 865
        # only support sgd now
        assert table_opt_op.type == "sgd"

866 867 868
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
869
            pserver_side_table_grad_list = [
870 871 872 873 874 875 876 877 878
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

879
            # append sum op for pserver_side_table_grad_list
880 881
            table_opt_block.append_op(
                type="sum",
882
                inputs={"X": pserver_side_table_grad_list},
883 884
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
885 886
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
887
            origin_grad_name = grad_var.name
888 889
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
890 891
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
892
                                 " grad_var:" + grad_var.name)
893 894
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

910 911 912
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

913 914
        return table_opt_block

T
tangwei12 已提交
915 916 917 918 919 920
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
921
        pserver_program.global_block().create_var(
T
tangwei12 已提交
922
            name="kLookupTablePath",
T
tangwei12 已提交
923 924
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
925

T
tangwei12 已提交
926
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
927
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
928 929 930 931
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
932
            attrs={'file_path': "none"})
T
tangwei12 已提交
933 934 935

        return checkpoint_save_block.idx

T
typhoonzero 已提交
936 937 938 939 940
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
941
        Create vars for each split.
T
typhoonzero 已提交
942 943
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
944 945 946 947
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
948 949
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
950
                from original var name to each var split.
T
typhoonzero 已提交
951
        """
952 953

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
954
        block_map = dict()
955

T
typhoonzero 已提交
956
        var_mapping = dict()
T
typhoonzero 已提交
957 958 959 960 961
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
962

T
typhoonzero 已提交
963
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
964
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
965
            if len(splited) == 1:
966
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
967 968 969 970 971 972 973 974
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
975
                continue
T
typhoonzero 已提交
976 977

            var_mapping[varname] = []
T
typhoonzero 已提交
978 979 980 981
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
982

T
typhoonzero 已提交
983
            for i, block in enumerate(splited):
T
typhoonzero 已提交
984
                size = block[1]
T
typhoonzero 已提交
985 986 987 988
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
989
                new_var_name = ""
990
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
991 992 993 994 995
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
996
                var = program.global_block().create_var(
T
typhoonzero 已提交
997 998
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
999
                    dtype=orig_var.dtype,
1000
                    type=orig_var.type,
T
typhoonzero 已提交
1001
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1002
                var_mapping[varname].append(var)
T
typhoonzero 已提交
1003
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
1004
        return var_mapping
T
done  
typhoonzero 已提交
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1017 1018 1019 1020 1021 1022 1023
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1024
            persistable=persistable)
T
done  
typhoonzero 已提交
1025

Y
Yancey1989 已提交
1026
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1051

T
typhoonzero 已提交
1052 1053 1054 1055
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1056
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1079 1080
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1081
        orig_var_name = ""
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1092
        else:
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1120
        else:
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1135 1136
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1137 1138 1139 1140 1141 1142 1143 1144
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1145

1146
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1147
                            grad_to_block_id, origin_program, merged_var):
1148
        program = optimize_block.program
T
typhoonzero 已提交
1149
        pserver_block = program.global_block()
T
typhoonzero 已提交
1150
        new_inputs = dict()
T
typhoonzero 已提交
1151 1152
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1153
        for key in opt_op.input_names:
T
typhoonzero 已提交
1154 1155 1156 1157 1158 1159
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1160
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1161 1162 1163 1164
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1165
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1166
                    name=param_block.name,
T
typhoonzero 已提交
1167
                    persistable=True,
T
typhoonzero 已提交
1168 1169 1170
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1171
            elif key == "LearningRate":
1172
                # learning rate variable has already be created by non-optimize op,
1173
                # don't create it once again.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1185

T
typhoonzero 已提交
1186
        for key in opt_op.input_names:
1187 1188
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1189
                continue
1190
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1191 1192 1193 1194
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1195
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1196 1197 1198 1199 1200
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1201

1202
        # change output's ParamOut variable
1203 1204
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1205
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1206

1207
        optimize_block.append_op(
T
typhoonzero 已提交
1208 1209
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1210
            outputs=outputs,
T
typhoonzero 已提交
1211 1212
            attrs=opt_op.attrs)

1213 1214 1215 1216 1217 1218 1219 1220 1221
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in inputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
                    block.clone_variable(var)

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in outputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
                    block.clone_variable(var)

Y
Yancey1989 已提交
1241
        return block.append_op(
Q
Qiyang Min 已提交
1242 1243 1244
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.attrs)

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1245
        program = optimize_block.program
1246
        # Append the ops for parameters that do not need to be optimized/updated
1247 1248
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1249
        for key, varlist in inputs.iteritems():
1250 1251
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1252
            for var in varlist:
1253 1254 1255 1256 1257 1258 1259
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1260
                    program.global_block().create_var(
T
typhoonzero 已提交
1261 1262 1263 1264 1265
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1266 1267
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1268
        for key, varlist in outputs.iteritems():
1269 1270 1271
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1272 1273 1274 1275 1276 1277
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1278

Y
Yancey1989 已提交
1279
        return optimize_block.append_op(
T
typhoonzero 已提交
1280
            type=opt_op.type,
T
typhoonzero 已提交
1281 1282
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1283 1284
            attrs=opt_op.attrs)

1285 1286 1287 1288
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1289 1290
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1305
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1306 1307
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1308 1309 1310 1311 1312 1313 1314
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1315
        if op.input("Param")[0] in param_names:
1316 1317 1318
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1319
                param = op.input("Param")[0]
T
typhoonzero 已提交
1320
                if same_or_split_var(n, param) and n != param:
1321 1322 1323
                    return True
            return False

T
typhoonzero 已提交
1324
    def _get_input_map_from_op(self, varmap, op):
1325
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1338
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1349 1350 1351 1352 1353 1354

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1355
            if self._is_optimizer_op(op):
1356 1357 1358 1359
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1360
        block = self.origin_program.global_block()
1361 1362 1363 1364 1365
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1366

1367 1368 1369 1370 1371
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1372
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1373 1374 1375 1376 1377 1378
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1379 1380
                    # we only need to append op for once
                    break
1381
        return lr_ops
Y
Yancey1989 已提交
1382

W
Wu Yi 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

Y
Yancey1989 已提交
1393
    def _get_optimize_pass(self):
1394
        """
1395
        Get optimizer operators, parameters and gradients from origin_program
1396 1397 1398 1399
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1400 1401 1402
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1403
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1404
        for op in block.ops:
W
Wu Yi 已提交
1405
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1406
                opt_ops.append(op)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1418 1419 1420
            else:
                pass
        return opt_ops, params_grads