distribute_transpiler.py 113.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
19
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
20
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
21 22 23
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
109
        min_block_size (int): Minimum split block size.
110
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
S
swtkiwi 已提交
143 144
	:api_attr: Static Graph

145
    A configuration class that provide support for transpiler distributed jobs.
146 147 148
    Some important parameters are explained as follows:


H
haowang101779990 已提交
149 150
    .. py:attribute:: slice_var_up (bool)

151
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
152 153 154

    .. py:attribute:: split_method (PSDispatcher)

155 156 157 158
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
159 160 161

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
162
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
163 164

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
165
          We can use bandwidth efficiently when data size is larger than 2MB.If you
166 167 168 169
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
170

171 172 173
    Examples:
        .. code-block:: python

174 175 176
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

177 178
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
179 180
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
181 182 183 184 185
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
186
    enable_dc_asgd = False
187
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
188
    mode = "pserver"
189
    print_log = False
W
Wu Yi 已提交
190
    wait_port = True
Q
Qiao Longfei 已提交
191
    # split the send recv var in runtime
1
123malin 已提交
192 193
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
194

195 196
    # half_async
    half_async = False
T
tangwei12 已提交
197
    completely_not_async = False
198

199 200 201 202
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

203 204 205 206
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
T
tianshuo78520a 已提交
207
    #Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
208 209
    hierarchical_allreduce_inter_nranks = 0

210
    # if mode is collective
211
    # supported modes: grad_allreduce, local_sgd
212 213
    collective_mode = None

214 215 216 217 218
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
219
        return self.__runtime_split_send_recv
220 221 222 223 224

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
225
        if value and self.__sync_mode:
226 227 228
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
229
        self.__runtime_split_send_recv = value
230 231 232

    @property
    def sync_mode(self):
1
123malin 已提交
233
        return self.__sync_mode
234 235 236 237 238

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
239
        if value and self.__runtime_split_send_recv:
240 241 242
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
243 244 245 246 247 248 249 250 251 252 253
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
254

G
gongweibao 已提交
255

Y
gen rst  
yi.wu 已提交
256
class DistributeTranspiler(object):
Y
yi.wu 已提交
257
    """
S
swtkiwi 已提交
258 259
	:api_attr: Static Graph

Y
yi.wu 已提交
260 261 262
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
263
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
264

W
Wu Yi 已提交
265 266 267 268 269 270 271 272 273
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
274 275 276 277

    Examples:
        .. code-block:: python

278 279
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
280 281 282 283 284 285 286 287
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
288 289 290 291 292 293
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
294
            role = "PSERVER"
T
Tink_Y 已提交
295 296 297 298 299 300
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
301
                                                                pserver_program)
T
Tink_Y 已提交
302 303 304 305
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
306 307
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
308 309
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
310
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
311
            t = fluid.DistributeTranspiler(config=config)
312
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
313
            exe = fluid.ParallelExecutor(
314 315 316
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
317 318
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
319
    """
Y
Yancey1989 已提交
320

G
gongweibao 已提交
321 322 323 324 325
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
326
        self._set_server_config()
G
gongweibao 已提交
327 328 329 330

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
331
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
332 333 334 335 336 337
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

338 339 340
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
341 342
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
343
        self.counter_var = None
G
gongweibao 已提交
344

1
123malin 已提交
345 346 347 348 349 350 351 352 353 354
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
355 356 357 358
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
359 360
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
361 362 363 364 365 366
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
367 368
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
369 370 371

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
372 373 374 375 376 377 378 379 380

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
381 382 383 384
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
385 386 387 388 389
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
390 391 392 393 394
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
395 396 397 398 399 400 401
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
402 403 404 405 406
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

407 408 409 410 411 412 413 414 415 416 417 418
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
419
        elif collective_mode != "single_process_multi_thread":
420 421
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
422 423
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
424 425 426 427 428 429 430 431 432 433
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
434
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
435
        elif collective_mode == 'local_sgd':
436
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
437 438
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
439 440 441 442 443 444 445 446 447 448 449
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
450
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
451
        sparse_update_ops = []
T
tangwei12 已提交
452
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
453 454
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
455
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
456 457 458
                sparse_update_ops.append(op)
        return sparse_update_ops

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
534

535 536
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
537 538 539 540 541 542

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
543

544 545 546 547 548
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
549
                  sync_mode=True,
W
Wu Yi 已提交
550 551
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
552
        """
553
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
554 555 556 557 558 559

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
560 561
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
562 563
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
564 565 566
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
567
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
568 569
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
570 571 572
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
573 574 575 576 577 578 579 580 581 582 583

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
584
        """
585 586 587 588 589 590 591 592 593

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

594 595
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
596 597
        if startup_program is None:
            startup_program = default_startup_program()
598
        self.origin_program = program
W
Wu Yi 已提交
599 600
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
601

W
Wu Yi 已提交
602 603
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
604
            self.origin_program._trainers_endpoints = trainers.split(",")
605 606
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
607 608 609 610 611
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
612
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
613 614 615 616 617 618 619 620 621 622 623
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
624 625 626 627
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
628 629
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
630 631
            return

632 633 634 635 636 637 638 639 640 641 642
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

643
        self.trainer_num = trainers
644
        self.sync_mode = sync_mode
645 646 647
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
648
        self.vars_overview = VarsDistributed()
649 650
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
651
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
652 653
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
654
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
655
        self.grad_name_to_param_name = dict()
656 657
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
658
            self.grad_name_to_param_name[grad_var.name] = param_var.name
659

Q
Qiao Longfei 已提交
660
        # get all sparse update ops
Q
Qiao Longfei 已提交
661
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
662
            self.origin_program)
Q
Qiao Longfei 已提交
663
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
664
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
665
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
666

T
tangwei12 已提交
667 668 669
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
670
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
671 672 673
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

T
tianshuo78520a 已提交
674 675
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
676
        self._init_splited_vars()
677

G
gongweibao 已提交
678
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
679
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
680
        send_vars = []
681 682 683 684 685 686

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
687
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
688

G
gongweibao 已提交
689
        if not self.config.slice_var_up:
690 691
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
692

693
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
694

695
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
696
            eplist = ps_dispatcher.dispatch(splited_vars)
697

G
gongweibao 已提交
698
            if not self.config.slice_var_up:
699 700
                assert (len(splited_vars) == 1)

701
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
702
            if len(splited_vars) == 1:
703
                splited_grad_varname = splited_vars[0].name
704 705
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
706

Y
Yancey1989 已提交
707
            elif len(splited_vars) > 1:
708
                orig_var = program.global_block().vars[splited_grad_varname]
709 710
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
711

Q
Qiao Longfei 已提交
712 713 714 715
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
716 717
            else:
                AssertionError("Can not insert the send op by original "
718
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
719

720 721 722 723 724 725 726
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
727 728
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
729
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
730

Q
Qiao Longfei 已提交
731 732 733 734 735
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
736

737
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
738 739 740 741 742 743
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
744 745 746 747 748
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
749 750
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
751 752
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
753
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
754
                index=index + 1,
755
                type="send",
Q
Qiao Longfei 已提交
756
                inputs={"X": send_input_vars},
757
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
758 759
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
760 761
                    "sections": sections,
                    "send_varnames": send_varnames,
762
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
763 764 765
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
766
                    ]
Y
Yancey1989 已提交
767
                })
Y
update  
Yancey1989 已提交
768 769
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
770

771 772 773 774 775 776 777
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
778

779
        if not self.sync_mode:
1
123malin 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
833

G
gongweibao 已提交
834
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
835
        recv_vars = []
Y
update  
Yancey1989 已提交
836
        for _, var in enumerate(send_vars):
837
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
838
        ps_dispatcher.reset()
Y
Yancey1989 已提交
839 840
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
841
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
842 843
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
844

845 846 847 848
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

849 850
        need_sparse_update_params = {}

Y
Yancey1989 已提交
851
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
852
        all_recv_outputs = []
853
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
854
            eps = []
Q
Qiao Longfei 已提交
855
            table_names = []
Y
Yancey1989 已提交
856 857 858
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
859
                table_names.append(var.name)
W
Wu Yi 已提交
860 861 862 863
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
864
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
865
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
866

T
tianshuo78520a 已提交
867 868
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
869 870 871 872 873 874 875
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
876
            if param_varname in self.sparse_param_to_height_sections:
877 878 879 880 881
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

882
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
883
            else:
Q
Qiao Longfei 已提交
884 885 886
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
887
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
888
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
889
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
890

Q
Qiao Longfei 已提交
891 892 893 894 895 896
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
897
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
898 899 900
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
901
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
902
                    })
T
typhoonzero 已提交
903

904 905
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
906
        if self.sync_mode:
W
Wu Yi 已提交
907
            # form a WAW dependency
Q
qiaolongfei 已提交
908 909
            program.global_block().append_op(
                type="fetch_barrier",
910
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
911
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
912 913
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
914
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
915 916
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
917

918
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
919 920
            if len(splited_var) <= 1:
                continue
921
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
922
            if param_varname not in self.sparse_param_to_height_sections:
923
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
924 925 926 927 928 929 930 931
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
932

G
gongweibao 已提交
933 934
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

935
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
936 937
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
938
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
939

940 941 942
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1015
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1016
        """
C
Chengmo 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
1026 1027 1028

        Returns:
            Program: trainer side program.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1041
        """
T
typhoonzero 已提交
1042
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1043
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1044

T
tangwei12 已提交
1045 1046 1047 1048
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1049 1050
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1051
        self._delete_trainer_optimizer(is_startup=False)
1052

1053
        self.origin_program.__str__()
T
tangwei12 已提交
1054
        self.startup_program.__str__()
G
gongweibao 已提交
1055

W
Wu Yi 已提交
1056 1057 1058
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1059
        return self.origin_program
T
typhoonzero 已提交
1060

W
Wu Yi 已提交
1061
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1062 1063 1064 1065
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1066
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1067
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1068 1069 1070 1071

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1072
        startup_program = self.startup_program
G
gongweibao 已提交
1073 1074 1075

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1076 1077 1078 1079
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1080

M
minqiyang 已提交
1081
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1082 1083
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1104
                inputs={"X": []},
G
gongweibao 已提交
1105 1106 1107
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1108
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1109 1110 1111
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1112 1113
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1114 1115 1116
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1117
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1118 1119
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1120
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1121 1122 1123
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1124
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1125 1126
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1127
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1128 1129
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1130
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1131
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1142 1143 1144 1145 1146 1147 1148 1149
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1150 1151
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1152 1153 1154 1155 1156 1157
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1158

Y
yi.wu 已提交
1159 1160
        Args:
            endpoint (str): current parameter server endpoint.
1161

Y
yi.wu 已提交
1162 1163
        Returns:
            Program: the program for current parameter server to run.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1178
        """
Y
yi.wu 已提交
1179 1180 1181 1182
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1183 1184 1185
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1186 1187
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1188
        pserver_program.random_seed = self.origin_program.random_seed
1189 1190
        pserver_program._copy_dist_param_info_from(self.origin_program)

1191
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1192 1193 1194 1195 1196 1197 1198 1199
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1200 1201 1202 1203 1204
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
T
tangwei12 已提交
1214
            if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
1215
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1225

Q
qiaolongfei 已提交
1226
        # step 3
1227
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1228 1229 1230
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1231
        # step 3.2
T
typhoonzero 已提交
1232 1233 1234 1235
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1236 1237
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1238
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1239
        # step 3.3
W
Wu Yi 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1258
        # Iterate through the ops, and if an op and the optimize ops
1259
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1260
        # append it into the sub program.
T
typhoonzero 已提交
1261 1262 1263

        global_ops = []

1264 1265 1266
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1267 1268
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1269
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1270
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1271 1272
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1273
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1274
                self._append_pserver_non_opt_ops(block, op)
1275

Y
Yancey1989 已提交
1276
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1277 1278 1279 1280 1281 1282 1283 1284
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1285
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1286 1287 1288

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1289
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1290 1291

            # clone ops
Y
Yancey1989 已提交
1292 1293
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1294
                # clone sub_block of op
Y
Yancey1989 已提交
1295
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1296 1297

            # reset the block of op
W
Wu Yi 已提交
1298
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1299

1300
        # append lr decay ops to the child block if exists
1301
        lr_ops = self._get_lr_ops()
1302 1303
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1304 1305

        lr_decay_block_id = -1
1306
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1307
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1308
                pserver_program.num_blocks - 1)
1309
            optimize_blocks.append(lr_decay_block)
1310
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1311
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1312
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1313 1314
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1315
            lr_decay_block_id = lr_decay_block.idx
1316

T
typhoonzero 已提交
1317
        # append op to the current block
Q
qiaolongfei 已提交
1318
        grad_to_block_id = []
Q
qiaolongfei 已提交
1319
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1320
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1321
            per_opt_block = pserver_program._create_block(pre_block_idx)
1322
            optimize_blocks.append(per_opt_block)
1323
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1324
            # append grad merging ops before clip and weight decay
1325 1326
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1327
            for _, op in enumerate(self.optimize_ops):
1328
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1329
                # merged_var should be the input var name of L2Decay
1330 1331 1332
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1333 1334 1335
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1336 1337 1338 1339 1340 1341
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1342
                            op not in global_ops:
1343 1344 1345 1346 1347
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1348

1349
        # dedup grad to ids list
W
Wu Yi 已提交
1350
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1351
        # append global ops
1352
        if global_ops:
W
Wu Yi 已提交
1353
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1354
                pserver_program.num_blocks - 1)
1355
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1356
            for glb_op in global_ops:
X
Xi Chen 已提交
1357
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1358
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1359

1360
        # process distributed lookup_table
Q
qiaolongfei 已提交
1361
        prefetch_var_name_to_block_id = []
1362 1363
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1364
            table_opt_block = self._create_table_optimize_block(
1365
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1366
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1367
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1368
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1369 1370
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1371

T
tangwei12 已提交
1372
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1373 1374
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1375

1376
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1377 1378
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1379 1380 1381 1382 1383 1384
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1385
        attrs = {
1386
            "optimize_blocks": optimize_blocks,
1387
            "endpoint": endpoint,
1388
            "pserver_id": self.pserver_endpoints.index(endpoint),
1389
            "Fanin": self.trainer_num,
1
123malin 已提交
1390
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1391
            "grad_to_block_id": grad_to_block_id,
1392
            "sparse_grad_to_param": sparse_grad_to_param,
1393
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1394 1395 1396 1397
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1398
        }
T
tangwei12 已提交
1399 1400

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1401
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1402 1403
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1404

T
tangwei12 已提交
1405 1406 1407 1408
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1409 1410 1411 1412 1413
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1414
            attrs=attrs)
1415

W
Wu Yi 已提交
1416
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1417 1418
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1419 1420
        return pserver_program

W
Wu Yi 已提交
1421 1422 1423
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1424 1425
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1426 1427 1428

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1429

W
Wu Yi 已提交
1430 1431
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1446 1447
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1448 1449
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1450 1451
        return pserver_prog, pserver_startup

1452 1453
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1454
                            pserver_program=None,
1455
                            startup_program=None):
T
typhoonzero 已提交
1456
        """
W
Wu Yi 已提交
1457 1458
        **Deprecated**

T
typhoonzero 已提交
1459 1460 1461
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1462 1463 1464

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1465 1466
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1467
                when initializing
1468

Y
yi.wu 已提交
1469 1470
        Returns:
            Program: parameter server side startup program.
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1486 1487
        """
        s_prog = Program()
W
Wu Yi 已提交
1488
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1489
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1501
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1502
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1503
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1504 1505 1506 1507
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1508
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1509 1510
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1521 1522

            if op_on_pserver:
1523 1524 1525
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1526
                if op.type in [
1527 1528
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1529
                ]:
W
Wu Yi 已提交
1530
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1531 1532 1533 1534
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1535
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1545

T
typhoonzero 已提交
1546 1547
        return s_prog

1548 1549
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1550
        block_suffix = "block"
1551 1552 1553
        block_idx = 0
        offset = 0
        is_slice = False
1554

1555
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1556

1557 1558
        if not block_name:
            return is_slice, block_idx, offset
1559

1560 1561 1562 1563
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1564 1565 1566 1567 1568
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1594 1595 1596 1597
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1635

Y
yi.wu 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1675
    def _init_splited_vars(self):
Y
yi.wu 已提交
1676
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1677 1678
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1699
        if self.config.slice_var_up:
Y
yi.wu 已提交
1700 1701
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1702 1703 1704
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1705
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1706 1707
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1708 1709 1710
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1711 1712 1713 1714
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1715 1716
        assert (len(grad_blocks) == len(param_blocks))

1717
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1718 1719
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1736
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1737 1738 1739 1740
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1741
        # dict(grad_splited_var -> param_splited_var)
1742
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1743 1744 1745
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1746
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1747
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1748 1749

        # create mapping of endpoint -> split var to create pserver side program
1750
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1760
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1761 1762
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1763
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1764
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1765 1766
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1767 1768
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1769 1770 1771 1772 1773 1774

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1775 1776
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1777
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1778 1779 1780
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1781 1782
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1783 1784
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1785 1786 1787
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1788
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1789
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1790 1791

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1792
                    self.all_out_emb_vars.append(out_var)
1793 1794

                    # delete lookup_table_op
1795
                    delete_ops(program.global_block(), [op])
1796 1797 1798
                    # break for loop
                    break

S
seiriosPlus 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1845
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1846
        # 2. add split_ids_op and send_op to send gradient to pservers
1847

1848 1849
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1850
        table_grad_name = grad_var_name(self.table_name)
1851 1852 1853 1854
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1855
                program.global_block()._insert_op(
1856 1857 1858 1859 1860
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1861 1862
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1863
                program.global_block()._insert_op(
1864
                    index=op_index + 2,
1865
                    type="send",
1866
                    inputs={'X': self.trainer_side_table_grad_list},
1867 1868 1869 1870 1871
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1872 1873
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1874
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1875 1876 1877 1878 1879
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1880
                    })
1881 1882 1883 1884 1885 1886
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1887
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1913
        return prefetch_var_name_to_block_id
1914 1915

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1916
                                     pre_block_idx, grad_to_block_id):
1917
        # STEP: create table optimize block
1918
        table_opt_block = pserver_program._create_block(pre_block_idx)
1919
        # create table param and grad var in pserver program
1920 1921
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1922 1923 1924
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1925 1926
        ][0]

Y
Yancey1989 已提交
1927 1928
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1929

T
tangwei12 已提交
1930
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1931 1932
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1933 1934 1935
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1936 1937
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1938
            shape=table_shape,
Y
Yancey1989 已提交
1939 1940 1941
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1942

1943 1944
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1945
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1946
            self.origin_program.global_block().vars[grad_var_name(
1947
                self.table_name)])
1948

1949 1950 1951
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1952

1953 1954 1955
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1956
            pserver_side_table_grad_list = [
1957 1958 1959 1960 1961 1962 1963 1964 1965
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1966
            # append sum op for pserver_side_table_grad_list
1967 1968
            table_opt_block.append_op(
                type="sum",
1969
                inputs={"X": pserver_side_table_grad_list},
1970 1971
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1972
        else:
T
tianshuo78520a 已提交
1973
            # in async_mode, for table gradient, it also need to be split to each parameter server
1974
            origin_grad_name = grad_var.name
1975 1976
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1977 1978
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1979
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1980
            grad_var = pserver_program.global_block()._rename_var(
1981
                origin_grad_name, splited_grad_name)
1982 1983 1984 1985 1986 1987 1988

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1989
        # only support sgd now
1990 1991 1992
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1993
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1994

1995 1996 1997
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1998 1999
        return table_opt_block

T
tangwei12 已提交
2000 2001 2002 2003 2004
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
2005
        pserver_program.global_block().create_var(
T
tangwei12 已提交
2006
            name="kLookupTablePath",
T
tangwei12 已提交
2007 2008
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
2009

W
Wu Yi 已提交
2010
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2011
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
2012 2013 2014 2015
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
2016
            attrs={'file_path': "none"})
T
tangwei12 已提交
2017 2018 2019

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2020 2021 2022 2023 2024
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2025
        Create vars for each split.
T
typhoonzero 已提交
2026 2027
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2028 2029 2030 2031
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2032
        Returns:
2033
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2034
                from original var name to each var split.
T
typhoonzero 已提交
2035
        """
2036 2037

        # varname->[(block_id, current_block_size)]
2038
        block_map = collections.OrderedDict()
2039

2040
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2041 2042
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2043
            if varname not in block_map:
T
typhoonzero 已提交
2044
                block_map[varname] = []
2045
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2046

T
tianshuo78520a 已提交
2047
        for varname, split in six.iteritems(block_map):
T
typhoonzero 已提交
2048
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2049
            if len(split) == 1:
2050
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2051
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2052
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2053
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2054 2055 2056 2057 2058
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2059
                continue
T
typhoonzero 已提交
2060
            var_mapping[varname] = []
T
typhoonzero 已提交
2061 2062 2063 2064
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2065

T
tianshuo78520a 已提交
2066
            for i, block in enumerate(split):
T
typhoonzero 已提交
2067
                size = block[1]
M
minqiyang 已提交
2068
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2069 2070 2071
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2072
                new_var_name = ""
2073
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2074
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2075
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2076 2077
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2078
                                   (varname, i)
T
typhoonzero 已提交
2079
                var = program.global_block().create_var(
T
typhoonzero 已提交
2080 2081
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2082
                    dtype=orig_var.dtype,
2083
                    type=orig_var.type,
T
tianshuo78520a 已提交
2084
                    shape=splited_shape)  # flattend split var
T
typhoonzero 已提交
2085
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2086
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2087
        return var_mapping
T
done  
typhoonzero 已提交
2088

2089
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2090 2091 2092 2093 2094 2095
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2096
            persistable=persistable)
T
done  
typhoonzero 已提交
2097

Q
Qiao Longfei 已提交
2098 2099 2100 2101 2102 2103 2104
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2105
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2106 2107
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2108
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2109
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2110
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2111 2112
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2113
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2114 2115 2116 2117
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2118 2119 2120 2121
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2122
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2123
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2124 2125 2126 2127
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2128
                attrs={
Q
Qiao Longfei 已提交
2129
                    "sections": height_sections,
2130 2131
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2132 2133 2134
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2135

T
typhoonzero 已提交
2136 2137 2138 2139
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2140
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2153
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2154 2155
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2156 2157
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2158
                return param_shape
2159 2160 2161
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2162 2163 2164
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2165 2166
        elif op_type == "sgd":
            pass
2167 2168 2169 2170
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2171 2172
        return orig_shape

2173 2174
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2175
        orig_var_name = ""
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2186
        else:
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2209
            return None
2210 2211 2212 2213
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2214
        else:
2215
            merged_var_name = orig_varname
2216 2217

        merged_var = pserver_block.vars[merged_var_name]
2218
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
T
tangwei12 已提交
2219
        if self.sync_mode or self.config.completely_not_async and self.trainer_num > 1:
2220
            vars2merge = []
2221
            for i in range(self.trainer_num):
2222
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2223
                                   (merged_var_name, i)
2224 2225 2226 2227
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2228 2229
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2230 2231 2232 2233 2234
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2235
        return merged_var
T
typhoonzero 已提交
2236

W
Wu Yi 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2299
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2300 2301
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2302
        program = optimize_block.program
T
typhoonzero 已提交
2303
        pserver_block = program.global_block()
2304
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2315 2316 2317 2318
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2319
        for key in opt_op.input_names:
T
typhoonzero 已提交
2320
            if key == "Grad":
W
Wu Yi 已提交
2321 2322 2323
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2334
            elif key == "Param":
W
Wu Yi 已提交
2335
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2336 2337
                if not param_block:
                    return
T
typhoonzero 已提交
2338
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2339
                    name=param_block.name,
T
typhoonzero 已提交
2340
                    persistable=True,
T
typhoonzero 已提交
2341 2342 2343
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2344
            elif key == "LearningRate":
2345
                # learning rate variable has already be created by non-optimize op,
2346
                # don't create it once again.
2347
                lr_varname = opt_op.input(key)[0]
2348
                if lr_varname in pserver_block.vars:
2349 2350 2351 2352 2353 2354 2355 2356 2357
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2358

T
typhoonzero 已提交
2359
        for key in opt_op.input_names:
2360
            new_shape = None
2361 2362 2363 2364
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2365
                continue
2366
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2367
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2368
            # update accumulator variable shape
2369 2370
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2371
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2372 2373 2374 2375 2376
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2377

2378
        # change output's ParamOut variable
2379 2380
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2381
        outputs["ParamOut"] = new_inputs["Param"]
2382
        optimize_block.append_op(
T
typhoonzero 已提交
2383 2384
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2385
            outputs=outputs,
G
gongweibao 已提交
2386
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2387

2388 2389 2390 2391 2392 2393
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2394 2395 2396 2397 2398 2399
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2400
            a@GRAD -> a@GRAD (a is not split)
2401
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2402
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2403 2404
            _generated_var_123 -> None
        """
2405
        grad_block = None
M
minqiyang 已提交
2406
        for _, g in six.iteritems(var_dict):
2407
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2408
                # skip per trainer vars
2409
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2410
                    # only param or grads have split blocks
2411 2412
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2413 2414
                        grad_block = g
                        break
2415 2416
        return grad_block

Q
Qiyang Min 已提交
2417 2418 2419
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2420
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2421 2422 2423 2424
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2425
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2426 2427 2428

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2429
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2430 2431 2432 2433
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2434
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2435

Y
Yancey1989 已提交
2436
        return block.append_op(
G
gongweibao 已提交
2437
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2438 2439

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2440
        program = optimize_block.program
2441
        # Append the ops for parameters that do not need to be optimized/updated
2442 2443
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2444
        for key, varlist in six.iteritems(inputs):
2445 2446
            if not isinstance(varlist, list):
                varlist = [varlist]
2447 2448
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2449
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2450
                # for inputs/outputs
2451
                grad_block = self._get_pserver_grad_param_var(
2452 2453
                    var, program.global_block().vars)
                if grad_block:
2454
                    varlist[i] = grad_block
2455
                elif var.name not in program.global_block().vars:
2456 2457 2458 2459 2460
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2461

2462 2463
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2464
        for key, varlist in six.iteritems(outputs):
2465 2466
            if not isinstance(varlist, list):
                varlist = [varlist]
2467 2468 2469
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2470 2471
                    var, program.global_block().vars)
                if grad_block:
2472
                    varlist[i] = grad_block
2473
                elif var.name not in program.global_block().vars:
2474 2475 2476 2477 2478
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2479

Y
Yancey1989 已提交
2480
        return optimize_block.append_op(
T
typhoonzero 已提交
2481
            type=opt_op.type,
T
typhoonzero 已提交
2482 2483
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2484
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2485

2486 2487 2488 2489
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2490
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2491
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2492 2493 2494 2495 2496 2497
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2498 2499
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2500 2501 2502 2503 2504 2505
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2506
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2507
        if "Param" in op.input_names and \
T
tangwei12 已提交
2508
                "LearningRate" in op.input_names:
2509 2510 2511 2512 2513 2514 2515
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2516
        if op.input("Param")[0] in param_names:
2517 2518 2519
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2520
                param = op.input("Param")[0]
T
typhoonzero 已提交
2521
                if same_or_split_var(n, param) and n != param:
2522 2523 2524
                    return True
            return False

T
typhoonzero 已提交
2525
    def _get_input_map_from_op(self, varmap, op):
2526
        """Returns a dict from op input name to the vars in varmap."""
2527
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2539
        """Returns a dict from op output name to the vars in varmap."""
2540
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2550 2551

    def _get_lr_ops(self):
2552 2553
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2554
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2555 2556 2557 2558
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2605 2606 2607 2608 2609
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2610 2611 2612 2613
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2614
            if self._is_optimizer_op(op):
2615 2616 2617 2618
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2619
        block = self.origin_program.global_block()
2620 2621 2622 2623 2624
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2625

2626 2627 2628 2629 2630
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2631
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2632 2633 2634 2635 2636 2637
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2638 2639
                    # we only need to append op for once
                    break
2640
        return lr_ops
Y
Yancey1989 已提交
2641

W
Wu Yi 已提交
2642 2643 2644 2645 2646
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2647 2648
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2649 2650 2651
            return True
        return False

Y
Yancey1989 已提交
2652
    def _get_optimize_pass(self):
2653
        """
2654
        Get optimizer operators, parameters and gradients from origin_program
2655 2656
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2657
            params_grads (dict): parameter->gradient.
2658
        """
Y
Yancey1989 已提交
2659 2660 2661
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2662 2663
        # tmp set to dedup
        optimize_params = set()
2664
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2665
        for op in block.ops:
W
Wu Yi 已提交
2666
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2677
                opt_ops.append(op)
2678 2679 2680 2681 2682 2683
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2684 2685
                        params_grads.append([
                            origin_var_dict[param_name],
2686
                            origin_var_dict[grad_name]
2687
                        ])
Y
Yancey1989 已提交
2688 2689
            else:
                pass
C
Chengmo 已提交
2690 2691 2692 2693 2694 2695

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2696
        return opt_ops, params_grads
C
Chengmo 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads