distribute_transpiler.py 94.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41
    default_startup_program, Block, \
42
    Parameter, Variable, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
class VarStruct(object):
    """
    record part properties of a Variable in python.
    """

    def __init__(self, name, shape, dtype, type, lod_level, persistable):
        self.name = name
        self.shape = shape
        self.dtype = dtype
        self.type = type
        self.lod_level = lod_level
        self.persistable = persistable


class VarDistributed(object):
    """
    a class to record the var distributed on parameter servers.
    the class will record the relationship between origin var and slice var.
    the slice var's properties, such as type/shape/offset/endpoint.
    """

    def __init__(self,
                 origin_var,
                 slice_var,
                 is_slice=None,
                 block_id=None,
                 offset=None,
                 vtype=None,
                 endpoint=None):
        """
        Args:
            origin_var(Variable|VarStruct): origin var properties
            slice_var(Variable|VarStruct): slice var properties
            is_slice(bool|None): slice or not, slice_var=True/False and its block size > 8192 are the judgement standard.
            block_id(int|None): the number about the slice var.
            offset(int|None): if the slice var is sliced, offset is the numel before the var.
            vtype(str|None): a tag, such as Optimizer/Param/RemoteProfetch.
            endpoint(str|None): which parameter the slice var on, such as "127.0.0.1:1001"
        """

        if isinstance(origin_var, Variable):
            self.origin = self.__create_var_struct(origin_var)
        else:
            self.origin = origin_var

        if isinstance(slice_var, Variable):
            self.slice = self.__create_var_struct(slice_var)
        else:
            self.slice = slice_var

        if self.equal(self.origin, self.slice):
            self.is_slice = False
            self.block_id = 0
            self.offset = 0
        else:
            self.is_slice = True
            self.block_id = 0
            self.offset = 0

        if is_slice is not None:
            self.is_slice = is_slice
        if block_id is not None:
            self.block_id = block_id
        if offset is not None:
            self.offset = offset

        self.vtype = vtype
        self.endpoint = endpoint

    @staticmethod
    def __create_var_struct(var):
        return VarStruct(var.name, var.shape, var.dtype, var.type,
                         var.lod_level, var.persistable)

    @staticmethod
    def equal(var1, var2):
        """
        the two var is equal or not.
        Returns:
            bool: equal will return True else False
        """
        assert isinstance(var1, VarStruct) and isinstance(var2, VarStruct)

        return var1.name == var2.name and \
               var1.type == var2.type and \
               var1.shape == var2.shape and \
               var1.dtype == var2.dtype and \
               var1.lod_level == var2.lod_level and \
               var1.persistable == var2.persistable

    def __str__(self):
        origin_var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})". \
            format(i="{", e="}", name=self.origin.name, type=self.origin.type,
                   shape=self.origin.shape, dtype=self.origin.dtype)

        slice_var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})" \
                        ".slice({is_slice}).block({block_id}).offset({offset})". \
            format(i="{", e="}", name=self.slice.name, type=self.slice.type,
                   shape=self.slice.shape, dtype=self.slice.dtype,
                   is_slice=self.is_slice, block_id=self.block_id, offset=self.offset)

        return "var owned: {}, origin var: ( {} ), slice var: ( {} ), endpoint: {} ".format(
            self.vtype, origin_var_str, slice_var_str, self.endpoint)


class VarsDistributed(object):
    """
    a gather about VarDistributed with many methods to find distributed vars.
    through the class, we can get overview about the distributed parameters on parameter servers.
    this class may centralized and convenient for developer to manage and get variable's distribute.
    other module can also use this to find variables such io.py.
    """

    def __init__(self):
        self.distributed_vars = []

    def add_distributed_var(self,
                            origin_var,
                            slice_var,
                            is_slice=None,
                            block_id=None,
                            offset=None,
                            vtype=None,
                            endpoint=None):
        """
        add distributed var in this.

        Args:
            origin_var(Variable|VarStruct): origin var properties
            slice_var(Variable|VarStruct): slice var properties
            is_slice(bool|None): slice or not, slice_var=True/False and its block size > 8192 are the judgement standard.
            block_id(int|None): the number about the slice var.
            offset(int|None): if the slice var is sliced, offset is the numel before the var.
            vtype(str|None): a tag, such as Optimizer/Param/RemoteProfetch.
            endpoint(str|None): which parameter the slice var on, such as "127.0.0.1:1001"
        Returns:
            None
        """
        self.distributed_vars.append(
            VarDistributed(origin_var, slice_var, is_slice, block_id, offset,
                           vtype, endpoint))

    def get_distributed_var_by_slice(self, var_name):
        """
        get distributed var by conditions.

        Args:
            var_name(str): slice var name, such as "w.traier0.block1"
        Returns:
            VarDistributed: distributed var.
        """
        for dist_var in self.distributed_vars:
            if dist_var.slice.name == var_name:
                return dist_var
        return None

    @staticmethod
    def equal(var1, var2):
        """
        the two var is equal or not.
        Returns:
            bool: equal will return True else False
        """
        return var1.name == var2.name and \
               var1.type == var2.type and \
               var1.shape == var2.shape and \
               var1.dtype == var2.dtype and \
               var1.lod_level == var2.lod_level and \
               var1.persistable == var2.persistable

    def get_distributed_var_by_origin_and_ep(self, origin_var_name, endpoint):
        """
        get distributed var by conditions.

        Args:
            origin_var_name(str):
            endpoint(str): the parameter endpoint, such as "127.0.0.1:1001"
        Returns:
            VarDistributed: distributed var.
        """
        for dist_var in self.distributed_vars:
            if dist_var.origin.name == origin_var_name and dist_var.endpoint == endpoint:
                return dist_var
        return None

    def get_distributed_vars_by_vtypes(self, vtypes, groupby=False):
        """
        get distributed vars by conditions.

        Args:
            vtype(str|None): distributed var's vtype, such as "Optimizer", "RemotePrefetch"
            groupby(bool|False): group by origin var or not.

        Returns:
            list: distributed var list.
            dict: distributed var map when groupby=True
        """
        vtype_vars = []
        for var in self.distributed_vars:
            if var.vtype in vtypes:
                vtype_vars.append(var)
        if not groupby:
            return vtype_vars

        params_map = {}
        for var in vtype_vars:
            origin_var_name = var.origin.name

            if origin_var_name in params_map.keys():
                optimizers = params_map.get(origin_var_name)
            else:
                optimizers = []
            optimizers.append(var)
            params_map[origin_var_name] = optimizers
        return params_map

    def get_distributed_vars_by_ep(self, endpoint, vtype=None):
        """
        get distributed vars by conditions.

        Args:
            endpoint(str): the parameter server endpoint, such as "127.0.0.1:2001"
            vtype(str|None): distributed var's vtype, such as "Optimizer", "RemotePrefetch"

        Returns:
            list: distributed var list.
        """
        endpoint_vars = []
        for var in self.distributed_vars:
            if var.endpoint == endpoint:
                endpoint_vars.append(var)
        if not vtype:
            return endpoint_vars

        vtype_vars = []
        for var in endpoint_vars:
            if var.vtype == vtype:
                vtype_vars.append(var)
        return vtype_vars

    def overview(self):
        """
        get the overview string about all params on all parameter servers.

        Returns:
            Str: overview string.

        """
        vars_str = []
        for var in self.distributed_vars:
            vars_str.append(str(var))
        return "\n".join(vars_str)


T
typhoonzero 已提交
319 320 321 322 323 324
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
325

T
typhoonzero 已提交
326 327
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
328 329


330 331 332 333
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
334
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
335
    """
336 337 338 339 340 341
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
342
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
343 344 345

    Args:
        var_list (list): List of variables.
346 347
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
348 349
        min_block_size (int): Minimum splitted block size.
    Returns:
350
        blocks (list[(varname, block_id, current_block_size)]): A list
351
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
352 353 354
    """
    blocks = []
    for var in var_list:
355
        split_count = slice_count
T
typhoonzero 已提交
356 357 358 359
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
360
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
361 362 363 364 365 366 367 368 369
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
370
        # update split_count after aligning
T
typhoonzero 已提交
371
        split_count = int(math.ceil(var_numel / float(block_size)))
372
        for block_id in range(split_count):
T
typhoonzero 已提交
373 374 375 376 377 378 379
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
380 381
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
396
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
397 398
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
399 400 401 402 403
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
404
    enable_dc_asgd = False
W
Wu Yi 已提交
405 406
    # supported modes: pserver, nccl2
    mode = "pserver"
407
    print_log = False
W
Wu Yi 已提交
408
    wait_port = True
G
gongweibao 已提交
409 410


Y
gen rst  
yi.wu 已提交
411
class DistributeTranspiler(object):
Y
yi.wu 已提交
412 413 414 415
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
416
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
417

W
Wu Yi 已提交
418 419 420 421 422 423 424 425 426
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
427 428 429 430

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
444
                                                                pserver_program)
T
Tink_Y 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
459
    """
Y
Yancey1989 已提交
460

G
gongweibao 已提交
461 462 463 464 465 466 467 468 469
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

470 471 472
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
473 474 475
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
476 477 478 479
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
480 481
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
482 483 484 485 486 487
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
488 489
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
506
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
507
        sparse_update_ops = []
508
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
509 510
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
511
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
512 513 514
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
515
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
516
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
517 518 519
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
520
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
521
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
522 523 524 525 526 527 528
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
529

530 531 532 533 534
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
535
                  sync_mode=True,
W
Wu Yi 已提交
536 537
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
538
        """
Y
yi.wu 已提交
539 540 541 542 543 544 545
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
546 547
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
548 549
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
550 551 552
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
553
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
554 555
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
556 557 558
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
559 560 561
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
562 563
        if startup_program is None:
            startup_program = default_startup_program()
564
        self.origin_program = program
W
Wu Yi 已提交
565 566
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
567

W
Wu Yi 已提交
568 569
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
570
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
571 572 573 574
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
575 576
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
577 578
            return

579 580 581 582 583
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
584
        self.vars_overview = VarsDistributed()
585 586
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
587
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
588 589
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
590
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
591
        self.grad_name_to_param_name = dict()
592 593
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
594
            self.grad_name_to_param_name[grad_var.name] = param_var.name
595

Q
Qiao Longfei 已提交
596
        # get all sparse update ops
Q
Qiao Longfei 已提交
597
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
598
            self.origin_program)
Q
Qiao Longfei 已提交
599
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
600 601
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
602 603 604
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
605
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
606 607 608
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

609
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
610
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
611
        self._init_splited_vars()
612

G
gongweibao 已提交
613
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
614
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
615
        send_vars = []
616 617 618 619 620 621

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
622
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
623

G
gongweibao 已提交
624
        if not self.config.slice_var_up:
625 626
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
627

628
        self.grad_name_to_send_dummy_out = dict()
629
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
630
            eplist = ps_dispatcher.dispatch(splited_vars)
631

G
gongweibao 已提交
632
            if not self.config.slice_var_up:
633 634
                assert (len(splited_vars) == 1)

635
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
636
            if len(splited_vars) == 1:
637
                splited_grad_varname = splited_vars[0].name
638 639
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
640 641
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
642
                        grad_varname]
Q
Qiao Longfei 已提交
643 644 645 646
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
647
            elif len(splited_vars) > 1:
648
                orig_var = program.global_block().vars[splited_grad_varname]
649 650
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
651
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
652
                index += 1
Y
Yancey1989 已提交
653 654
            else:
                AssertionError("Can not insert the send op by original "
655
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
656

W
Wu Yi 已提交
657 658
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
659
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
660

W
Wu Yi 已提交
661 662 663 664
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
665
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
666
                index=index + 1,
667
                type="send",
Y
update  
Yancey1989 已提交
668
                inputs={"X": splited_vars},
669
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
670 671
                attrs={
                    "epmap": eplist,
672
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
673 674 675 676
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
677
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
678
                })
Y
update  
Yancey1989 已提交
679 680
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
681 682

        if self.sync_mode:
W
Wu Yi 已提交
683 684
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
685 686 687 688
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
689
            input_deps = list(self.grad_name_to_send_dummy_out.values())
690

Y
Yancey1989 已提交
691 692
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
693
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
694
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
695 696
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
697 698
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
699
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
700
                })
Y
Yancey1989 已提交
701

G
gongweibao 已提交
702
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
703
        recv_vars = []
Y
update  
Yancey1989 已提交
704
        for _, var in enumerate(send_vars):
705
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
706
        ps_dispatcher.reset()
Y
Yancey1989 已提交
707 708
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
709
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
710 711
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
712

713 714 715 716
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
717
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
718
        all_recv_outputs = []
719
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
720
            eps = []
Q
Qiao Longfei 已提交
721
            table_names = []
Y
Yancey1989 已提交
722 723 724
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
725
                table_names.append(var.name)
W
Wu Yi 已提交
726 727 728 729
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
730
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
731
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
732

W
Wu Yi 已提交
733 734 735 736 737 738 739 740 741
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
742
            if param_varname in self.sparse_param_to_height_sections:
743 744 745 746 747 748

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
749 750
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
751 752
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
753
            else:
Q
Qiao Longfei 已提交
754
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
755 756 757 758 759 760 761 762 763 764 765 766
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
767

Q
qiaolongfei 已提交
768
        if self.sync_mode:
W
Wu Yi 已提交
769
            # form a WAW dependency
Q
qiaolongfei 已提交
770 771 772
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
773
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
774 775
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
776
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
777 778
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
779

780
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
781 782
            if len(splited_var) <= 1:
                continue
783
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
784 785 786 787 788 789 790 791 792
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
793

G
gongweibao 已提交
794 795
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

796
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
797 798
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
799
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
800

801 802 803
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
804
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
805 806 807 808 809 810
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
811
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
812
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
813

T
typhoonzero 已提交
814
        lr_ops = self._get_lr_ops()
815
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
816 817
        delete_ops(self.origin_program.global_block(), lr_ops)

818 819
        # delete table init op
        if self.has_distributed_lookup_table:
820 821 822
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
823 824
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
825 826 827 828 829
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
830
            table_init_op = table_param_init_op[0]
831 832 833 834 835 836
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
837

838
        self.origin_program.__str__()
G
gongweibao 已提交
839

W
Wu Yi 已提交
840 841 842
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

843
        return self.origin_program
T
typhoonzero 已提交
844

W
Wu Yi 已提交
845
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
846 847 848 849
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
850
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
851
            eplist (list): A list of strings indicating
G
gongweibao 已提交
852 853 854 855

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
856
        startup_program = self.startup_program
G
gongweibao 已提交
857 858 859 860

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
861
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
882
                inputs={"X": []},
G
gongweibao 已提交
883 884 885 886 887 888
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
889 890
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
891 892 893
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
894
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
895 896 897 898 899
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
900
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
901
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
902 903
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
904
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
905
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
906 907 908 909 910 911 912 913 914 915
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
916 917 918 919 920 921 922 923
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
924 925
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
926
        Get parameter server side program.
927

Y
yi.wu 已提交
928 929
        Args:
            endpoint (str): current parameter server endpoint.
930

Y
yi.wu 已提交
931 932
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
933
        """
Y
yi.wu 已提交
934 935 936 937
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
938 939 940
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
941 942
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
943
        pserver_program.random_seed = self.origin_program.random_seed
944 945
        pserver_program._copy_dist_param_info_from(self.origin_program)

946
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
947 948 949 950 951 952 953 954
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
955 956 957 958 959
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
960 961 962 963 964 965 966 967 968
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
969
            if self.sync_mode and self.trainer_num > 1:
970
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
971 972 973 974 975 976 977 978 979
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
980

Q
qiaolongfei 已提交
981
        # step 3
982
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
983 984 985
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
986
        # step 3.2
T
typhoonzero 已提交
987 988 989 990
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
991 992
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
993
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
994
        # step 3.3
W
Wu Yi 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1013
        # Iterate through the ops, and if an op and the optimize ops
1014
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1015
        # append it into the sub program.
T
typhoonzero 已提交
1016 1017 1018

        global_ops = []

Y
wip  
yi.wu 已提交
1019 1020
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1021
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1022
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1023
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
1024
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1025
                self._append_pserver_non_opt_ops(block, op)
1026

Y
Yancey1989 已提交
1027
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1028 1029 1030 1031 1032 1033 1034 1035
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1036
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1037 1038 1039

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1040
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1041 1042

            # clone ops
Y
Yancey1989 已提交
1043 1044
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1045
                # clone sub_block of op
Y
Yancey1989 已提交
1046
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1047 1048

            # reset the block of op
W
Wu Yi 已提交
1049
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1050

1051
        # append lr decay ops to the child block if exists
1052
        lr_ops = self._get_lr_ops()
1053 1054
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1055
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1056
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1057
                pserver_program.num_blocks - 1)
1058
            optimize_blocks.append(lr_decay_block)
1059
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1060
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1061
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1062 1063
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1064

T
typhoonzero 已提交
1065
        # append op to the current block
Q
qiaolongfei 已提交
1066
        grad_to_block_id = []
Q
qiaolongfei 已提交
1067
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1068
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1069
            per_opt_block = pserver_program._create_block(pre_block_idx)
1070
            optimize_blocks.append(per_opt_block)
1071
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1072
            # append grad merging ops before clip and weight decay
1073 1074
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1075
            for _, op in enumerate(self.optimize_ops):
1076
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1077
                # merged_var should be the input var name of L2Decay
1078 1079 1080
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1081 1082 1083
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1084 1085 1086 1087 1088 1089
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1090
                            op not in global_ops:
1091 1092 1093 1094 1095
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1096

1097
        # dedup grad to ids list
W
Wu Yi 已提交
1098
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1099
        # append global ops
1100
        if global_ops:
W
Wu Yi 已提交
1101
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1102
                pserver_program.num_blocks - 1)
1103
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1104
            for glb_op in global_ops:
X
Xi Chen 已提交
1105
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1106
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1107

1108
        # process distributed lookup_table
Q
qiaolongfei 已提交
1109
        prefetch_var_name_to_block_id = []
1110 1111
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1112
            table_opt_block = self._create_table_optimize_block(
1113
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1114
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1115
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1116
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1117 1118
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1119

T
tangwei12 已提交
1120
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1121 1122
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1123

1124
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1125 1126
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1127 1128 1129 1130 1131 1132
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1133
        attrs = {
1134
            "optimize_blocks": optimize_blocks,
1135 1136 1137
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1138
            "grad_to_block_id": grad_to_block_id,
1139
        }
T
tangwei12 已提交
1140 1141

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1142
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1143 1144
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1145

T
tangwei12 已提交
1146 1147 1148 1149
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1150 1151 1152 1153 1154
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1155
            attrs=attrs)
1156

W
Wu Yi 已提交
1157
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1158 1159
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1160 1161
        return pserver_program

W
Wu Yi 已提交
1162 1163 1164 1165 1166 1167
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1168

W
Wu Yi 已提交
1169 1170 1171 1172
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1173 1174
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1175 1176
        return pserver_prog, pserver_startup

1177 1178
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1179
                            pserver_program=None,
1180
                            startup_program=None):
T
typhoonzero 已提交
1181
        """
W
Wu Yi 已提交
1182 1183
        **Deprecated**

T
typhoonzero 已提交
1184 1185 1186
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1187 1188 1189

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1190 1191
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1192
                when initalizing
1193

Y
yi.wu 已提交
1194 1195
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
1196 1197
        """
        s_prog = Program()
W
Wu Yi 已提交
1198
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1199
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1211
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1212
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1213
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1214 1215 1216 1217
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1218
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1219 1220
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1231 1232

            if op_on_pserver:
1233 1234 1235
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1236 1237 1238
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1239
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1240 1241 1242 1243
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1244
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1254

T
typhoonzero 已提交
1255 1256
        return s_prog

1257 1258
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1259
        block_suffix = "block"
1260 1261 1262
        block_idx = 0
        offset = 0
        is_slice = False
1263

1264
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1265

1266 1267
        if not block_name:
            return is_slice, block_idx, offset
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

        orig_dim1_flatten = reduce(lambda x, y: x * y, slice_vars[0].shape[1:])

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1337

Y
yi.wu 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1377
    def _init_splited_vars(self):
Y
yi.wu 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1401
        if self.config.slice_var_up:
Y
yi.wu 已提交
1402 1403
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1404 1405 1406
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1407
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1408 1409
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1410 1411 1412
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1413 1414 1415 1416
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1417 1418
        assert (len(grad_blocks) == len(param_blocks))

1419
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1420 1421
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1438
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1439 1440 1441 1442
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1443
        # dict(grad_splited_var -> param_splited_var)
1444
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1445 1446 1447
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1448
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1449
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1450 1451

        # create mapping of endpoint -> split var to create pserver side program
1452
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1462
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1463 1464
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1465
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1466
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1467 1468
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1469 1470
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1471 1472 1473 1474 1475 1476

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1477 1478
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1479
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1480 1481 1482
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1483 1484
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1485 1486
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1487 1488 1489
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1490
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1491
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1492 1493

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1494
                    self.all_out_emb_vars.append(out_var)
1495 1496

                    # delete lookup_table_op
1497
                    delete_ops(program.global_block(), [op])
1498 1499 1500
                    # break for loop
                    break

S
seiriosPlus 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1547
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1548
        # 2. add split_ids_op and send_op to send gradient to pservers
1549

1550 1551
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1552
        table_grad_name = grad_var_name(self.table_name)
1553 1554 1555 1556
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1557
                program.global_block()._insert_op(
1558 1559 1560 1561 1562
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1563 1564
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1565
                program.global_block()._insert_op(
1566
                    index=op_index + 2,
1567
                    type="send",
1568
                    inputs={'X': self.trainer_side_table_grad_list},
1569 1570 1571 1572 1573
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1574
                    attrs={
1575
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1576
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1577
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1578 1579 1580 1581 1582
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1583
                    })
1584 1585 1586 1587 1588 1589
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1590
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1616
        return prefetch_var_name_to_block_id
1617 1618

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1619
                                     pre_block_idx, grad_to_block_id):
1620
        # STEP: create table optimize block
1621
        table_opt_block = pserver_program._create_block(pre_block_idx)
1622
        # create table param and grad var in pserver program
1623 1624
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1625 1626 1627
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1628 1629
        ][0]

Y
Yancey1989 已提交
1630 1631
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1632

T
tangwei12 已提交
1633
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1634 1635
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1636 1637 1638
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1639 1640
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1641
            shape=table_shape,
Y
Yancey1989 已提交
1642 1643 1644
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1645

1646 1647
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1648
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1649
            self.origin_program.global_block().vars[grad_var_name(
1650
                self.table_name)])
1651

1652 1653 1654
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1655

1656 1657 1658
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1659
            pserver_side_table_grad_list = [
1660 1661 1662 1663 1664 1665 1666 1667 1668
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1669
            # append sum op for pserver_side_table_grad_list
1670 1671
            table_opt_block.append_op(
                type="sum",
1672
                inputs={"X": pserver_side_table_grad_list},
1673 1674
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1675 1676
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1677
            origin_grad_name = grad_var.name
1678 1679
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1680 1681
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1682
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1683
            grad_var = pserver_program.global_block()._rename_var(
1684
                origin_grad_name, splited_grad_name)
1685 1686 1687 1688 1689 1690 1691

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1692
        # only support sgd now
1693 1694 1695
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1696
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1697

1698 1699 1700
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1701 1702
        return table_opt_block

T
tangwei12 已提交
1703 1704 1705 1706 1707
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1708
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1709
            name="kLookupTablePath",
T
tangwei12 已提交
1710 1711
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1712

W
Wu Yi 已提交
1713
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1714
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1715 1716 1717 1718
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1719
            attrs={'file_path': "none"})
T
tangwei12 已提交
1720 1721 1722

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1723 1724 1725 1726 1727
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1728
        Create vars for each split.
T
typhoonzero 已提交
1729 1730
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1731 1732 1733 1734
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1735
        Returns:
1736
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1737
                from original var name to each var split.
T
typhoonzero 已提交
1738
        """
1739 1740

        # varname->[(block_id, current_block_size)]
1741
        block_map = collections.OrderedDict()
1742

1743
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1744 1745
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1746
            if varname not in block_map:
T
typhoonzero 已提交
1747
                block_map[varname] = []
1748
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1749

M
minqiyang 已提交
1750
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1751
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1752
            if len(splited) == 1:
1753
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1754
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1755
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1756
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1757 1758 1759 1760 1761
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1762
                continue
T
typhoonzero 已提交
1763
            var_mapping[varname] = []
T
typhoonzero 已提交
1764 1765 1766 1767
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1768

T
typhoonzero 已提交
1769
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1770
                size = block[1]
M
minqiyang 已提交
1771
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1772 1773 1774
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1775
                new_var_name = ""
1776
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1777
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1778
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1779 1780
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1781
                                   (varname, i)
T
typhoonzero 已提交
1782
                var = program.global_block().create_var(
T
typhoonzero 已提交
1783 1784
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1785
                    dtype=orig_var.dtype,
1786
                    type=orig_var.type,
T
typhoonzero 已提交
1787
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1788
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1789
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1790
        return var_mapping
T
done  
typhoonzero 已提交
1791

1792
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1793 1794 1795 1796 1797 1798
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1799
            persistable=persistable)
T
done  
typhoonzero 已提交
1800

Y
Yancey1989 已提交
1801
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1802 1803 1804 1805
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1806
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1807
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1808 1809
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1810
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1811 1812 1813 1814
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1815 1816 1817 1818
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1819 1820 1821 1822
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1823
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1824 1825 1826 1827
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1828 1829 1830 1831
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1832 1833 1834
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1835

T
typhoonzero 已提交
1836 1837 1838 1839
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1840
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1853
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1854 1855
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1856 1857
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1858
                return param_shape
1859 1860 1861
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1862 1863 1864
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1865 1866
        elif op_type == "sgd":
            pass
1867 1868 1869 1870
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1871 1872
        return orig_shape

1873 1874
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1875
        orig_var_name = ""
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1886
        else:
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1909
            return None
1910 1911 1912 1913
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1914
        else:
1915
            merged_var_name = orig_varname
1916 1917

        merged_var = pserver_block.vars[merged_var_name]
1918 1919 1920
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1921
            for i in range(self.trainer_num):
1922
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1923
                                   (merged_var_name, i)
1924 1925 1926 1927
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1928 1929
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1930 1931 1932 1933 1934
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1935
        return merged_var
T
typhoonzero 已提交
1936

W
Wu Yi 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1999
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2000
                            grad_to_block_id, origin_program, merged_var):
2001
        program = optimize_block.program
T
typhoonzero 已提交
2002
        pserver_block = program.global_block()
2003
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2014 2015 2016 2017
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2018
        for key in opt_op.input_names:
T
typhoonzero 已提交
2019
            if key == "Grad":
W
Wu Yi 已提交
2020 2021 2022
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2033
            elif key == "Param":
W
Wu Yi 已提交
2034
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2035 2036
                if not param_block:
                    return
T
typhoonzero 已提交
2037
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2038
                    name=param_block.name,
T
typhoonzero 已提交
2039
                    persistable=True,
T
typhoonzero 已提交
2040 2041 2042
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2043
            elif key == "LearningRate":
2044
                # learning rate variable has already be created by non-optimize op,
2045
                # don't create it once again.
2046
                lr_varname = opt_op.input(key)[0]
2047
                if lr_varname in pserver_block.vars:
2048 2049 2050 2051 2052 2053 2054 2055 2056
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2057

T
typhoonzero 已提交
2058
        for key in opt_op.input_names:
2059
            new_shape = None
W
Wu Yi 已提交
2060
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2061
                continue
2062
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2063
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2064
            # update accumulator variable shape
2065 2066
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2067
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2068 2069 2070 2071 2072
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2073

2074
        # change output's ParamOut variable
2075 2076
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2077
        outputs["ParamOut"] = new_inputs["Param"]
2078
        optimize_block.append_op(
T
typhoonzero 已提交
2079 2080
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2081
            outputs=outputs,
G
gongweibao 已提交
2082
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2095
        grad_block = None
M
minqiyang 已提交
2096
        for _, g in six.iteritems(var_dict):
2097
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2098
                # skip per trainer vars
2099
                if g.name.find(".trainer_") == -1:
2100
                    # only param or grads have splited blocks
2101 2102
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2103 2104
                        grad_block = g
                        break
2105 2106
        return grad_block

Q
Qiyang Min 已提交
2107 2108 2109
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2110
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2111 2112 2113 2114
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2115
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2116 2117 2118

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2119
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2120 2121 2122 2123
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2124
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2125

Y
Yancey1989 已提交
2126
        return block.append_op(
G
gongweibao 已提交
2127
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2128 2129

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2130
        program = optimize_block.program
2131
        # Append the ops for parameters that do not need to be optimized/updated
2132 2133
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2134
        for key, varlist in six.iteritems(inputs):
2135 2136
            if not isinstance(varlist, list):
                varlist = [varlist]
2137 2138 2139
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2140
                # for inputs/outputs
2141
                grad_block = self._get_pserver_grad_param_var(
2142 2143
                    var, program.global_block().vars)
                if grad_block:
2144
                    varlist[i] = grad_block
2145
                elif var.name not in program.global_block().vars:
2146 2147 2148 2149 2150
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2151

2152 2153
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2154
        for key, varlist in six.iteritems(outputs):
2155 2156
            if not isinstance(varlist, list):
                varlist = [varlist]
2157 2158 2159
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2160 2161
                    var, program.global_block().vars)
                if grad_block:
2162
                    varlist[i] = grad_block
2163
                elif var.name not in program.global_block().vars:
2164 2165 2166 2167 2168
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2169

Y
Yancey1989 已提交
2170
        return optimize_block.append_op(
T
typhoonzero 已提交
2171
            type=opt_op.type,
T
typhoonzero 已提交
2172 2173
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2174
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2175

2176 2177 2178 2179
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2180
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2181
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2182 2183 2184 2185 2186 2187
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2188 2189
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2190 2191 2192 2193 2194 2195
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2196
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2197
        if "Param" in op.input_names and \
T
tangwei12 已提交
2198
                "LearningRate" in op.input_names:
2199 2200 2201 2202 2203 2204 2205
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2206
        if op.input("Param")[0] in param_names:
2207 2208 2209
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2210
                param = op.input("Param")[0]
T
typhoonzero 已提交
2211
                if same_or_split_var(n, param) and n != param:
2212 2213 2214
                    return True
            return False

T
typhoonzero 已提交
2215
    def _get_input_map_from_op(self, varmap, op):
2216
        """Returns a dict from op input name to the vars in varmap."""
2217
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2229
        """Returns a dict from op output name to the vars in varmap."""
2230
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2240 2241

    def _get_lr_ops(self):
2242 2243 2244
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2245 2246 2247 2248
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2249 2250 2251 2252 2253
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2254 2255 2256 2257
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2258
            if self._is_optimizer_op(op):
2259 2260 2261 2262
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2263
        block = self.origin_program.global_block()
2264 2265 2266 2267 2268
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2269

2270 2271 2272 2273 2274
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2275
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2276 2277 2278 2279 2280 2281
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2282 2283
                    # we only need to append op for once
                    break
2284
        return lr_ops
Y
Yancey1989 已提交
2285

W
Wu Yi 已提交
2286 2287 2288 2289 2290
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2291 2292
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2293 2294 2295
            return True
        return False

Y
Yancey1989 已提交
2296
    def _get_optimize_pass(self):
2297
        """
2298
        Get optimizer operators, parameters and gradients from origin_program
2299 2300 2301 2302
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
2303 2304 2305
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2306 2307
        # tmp set to dedup
        optimize_params = set()
2308
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2309
        for op in block.ops:
W
Wu Yi 已提交
2310
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2311
                opt_ops.append(op)
2312 2313 2314 2315 2316 2317
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2318 2319
                        params_grads.append([
                            origin_var_dict[param_name],
2320
                            origin_var_dict[grad_name]
2321
                        ])
Y
Yancey1989 已提交
2322 2323 2324
            else:
                pass
        return opt_ops, params_grads