pybind.cc 124.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
P
phlrain 已提交
56
#include "paddle/fluid/framework/new_exec.h"
H
hong 已提交
57
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
60
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
62
#include "paddle/fluid/operators/py_func_op.h"
63
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/platform/cpu_info.h"
65
#include "paddle/fluid/platform/device_context.h"
66
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
67
#include "paddle/fluid/platform/enforce.h"
68
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
69
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
70 71
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
72
#include "paddle/fluid/pybind/io.h"
73 74 75
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
76
#include "paddle/fluid/pybind/box_helper_py.h"
77
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
82
#include "paddle/fluid/pybind/generator_py.h"
83
#include "paddle/fluid/pybind/global_value_getter_setter.h"
84
#include "paddle/fluid/pybind/gloo_context_py.h"
85
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
86
#include "paddle/fluid/pybind/heter_wrapper_py.h"
87
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
88
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
89
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
91
#include "paddle/fluid/pybind/pybind_boost_headers.h"
92

P
phlrain 已提交
93

94
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
96
#endif
97
#include "paddle/fluid/framework/data_type.h"
98 99
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
100
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
101
#include "paddle/fluid/pybind/tensor_py.h"
102
#include "paddle/fluid/string/to_string.h"
103 104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
105
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
106
#endif
107
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
108
#include "paddle/fluid/platform/cuda_profiler.h"
109
#endif
Y
Yi Wang 已提交
110
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
111 112
#endif

113 114
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
115
#include "paddle/fluid/platform/npu_profiler.h"
116 117
#endif

118 119 120 121
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
122 123 124 125
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
126
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
127 128 129
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
130 131
#include "pybind11/stl.h"

132
DECLARE_bool(use_mkldnn);
133

Q
Qiao Longfei 已提交
134 135
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
136 137 138
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
139

140
namespace paddle {
141
namespace pybind {
142
bool IsCompiledWithCUDA() {
143 144 145 146 147 148 149 150 151
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
152 153 154 155 156 157
  return false;
#else
  return true;
#endif
}

158 159 160 161 162 163 164 165
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

182 183 184 185 186 187 188 189
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197 198 199 200
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

201 202 203 204 205 206 207 208 209 210 211
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

270
bool IsCompiledWithBrpc() {
271
#ifndef PADDLE_WITH_DISTRIBUTE
272 273
  return false;
#endif
274
  return true;
275 276
}

Y
update  
Yancey1989 已提交
277
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
278
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
279 280 281 282 283 284
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
285 286 287 288 289 290 291 292 293 294
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
317 318 319
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
333 334
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
335 336
    }
    vec_res.emplace_back(
337
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
338 339 340 341 342 343 344 345 346 347 348 349
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
350 351
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
352 353 354 355 356 357 358 359 360 361 362 363
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
364 365 366
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
367 368 369 370
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
371 372
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
373 374 375 376
  }
  return vec_res;
}

377 378 379 380 381 382 383 384
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
385 386
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
387 388 389 390 391 392 393 394 395 396 397 398 399
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
400 401 402
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
403 404 405 406 407
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
408 409 410 411 412
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
413 414
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
415 416 417
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
418 419 420 421 422 423 424 425 426
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
427 428
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
429 430 431 432 433
  }

  return;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

458 459 460 461 462 463
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
464 465 466
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
467
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
468

469 470
  AssertStaticGraphAndDygraphGradMakerNoDiff();

471
  m.doc() = "C++ core of PaddlePaddle";
472

473 474 475 476
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

477
  BindException(&m);
Y
Yu Yang 已提交
478

479 480
  m.def("set_num_threads", &platform::SetNumThreads);

481
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
482 483 484
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
485 486 487 488 489
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
490
    framework::Tensor tensor;
6
633WHU 已提交
491 492 493 494

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
495
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
496 497 498 499 500 501
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
502

503 504 505 506 507 508
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

509 510 511 512 513 514
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
515 516
  });

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
542 543 544 545 546 547
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
548
  m.def(
S
sneaxiy 已提交
549
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
550 551 552 553
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
554 555 556
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
573 574 575
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
576
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
577

578
  m.def("_set_fuse_parameter_group_size",
579
        &paddle::framework::ir::SetFuseParameterGroupsSize);
580
  m.def("_set_fuse_parameter_memory_size",
581
        &paddle::framework::ir::SetFuseParameterMemorySize);
582

S
sneaxiy 已提交
583 584 585
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

586 587
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

588 589 590
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

591
  BindImperative(&m);
592

593 594 595
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
596
      .def("_is_initialized",
597
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
598
      .def("_get_dims",
599
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
600
      .def("_set_dims",
601
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
602
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
603
           })
Y
yuyang18 已提交
604
      .def("_set_layout",
605
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
606 607
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
608
      .def("_alloc_float",
609
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
610
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
611
           })
612
      .def("_alloc_float",
613
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
614 615
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
616
      .def("_alloc_float",
617
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
618
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
619
           })
620 621 622 623
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
624
      .def("_alloc_double",
625
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
626 627
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
628
      .def("_alloc_int",
629
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
630
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
631
           })
632
      .def("_alloc_int",
633
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
634 635
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
636
      .def("_alloc_int",
637
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
638
             self.mutable_data<int>(place);
Q
qijun 已提交
639
           })
Y
yuyang18 已提交
640
      .def("_alloc_int",
641 642
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
643 644
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
645
      .def("_alloc_float",
646 647
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
648 649
             self.mutable_data<float>(place);
           })
650
      .def("_mutable_data",
651
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
652 653 654
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
655
      .def("_mutable_data",
656
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
657 658 659
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
660
      .def("_mutable_data",
661
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
662 663 664 665
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
666
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
667 668 669
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
670
      .def("_clear", &framework::Tensor::clear)
671 672 673 674 675
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
676
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
677
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
678 679
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
680
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
681
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
682 683
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
684
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
685 686
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
687 688 689 690
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
691
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
692
          LoDTensor is to be set.
693 694
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
708

709 710 711
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
728
      .def("_to_dlpack",
729
           [](framework::Tensor &self) {
6
633WHU 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
750 751 752 753
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
754 755
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
756
      .def("_layout",
757 758 759 760
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
761
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
762
      .def("__str__", [](const framework::Tensor &self) {
763 764 765 766
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
767

L
Leo Chen 已提交
768
  // TODO(cql): add reference: en_user_guide_lod_tensor
769
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
844 845 846 847 848 849 850

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
851 852

        )DOC")
853 854
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
855 856 857 858 859 860 861 862 863
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
864 865
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
866 867 868 869
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
870 871
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
872
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
873
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
874 875
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
876 877 878
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
879
      .def("set_lod",
880
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
881
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
882
             LoD new_lod;
883 884
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
885 886
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
887 888
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
889
             self.set_lod(new_lod);
S
sneaxiy 已提交
890 891 892 893 894
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
895 896 897 898
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
899 900 901 902 903 904 905 906 907 908

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
909
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
910
           )DOC")
911 912 913 914 915 916 917 918 919 920 921
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
922 923
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
924 925 926 927 928
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
929
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
930 931
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
932
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
933

L
Leo Chen 已提交
934
           For example, if recursive_sequence_lengths=[[2, 3]], which means
935
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
936
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
937 938

           Args:
L
Leo Chen 已提交
939 940 941 942
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
943 944 945 946 947 948 949 950 951 952

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
953 954
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
955
           )DOC")
956 957 958 959 960 961 962 963
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
964 965 966 967 968
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
969 970
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
971 972 973 974 975 976 977 978 979 980
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
981
           )DOC")
G
gongweibao 已提交
982
      // Set above comments of set_lod.
983 984 985 986 987 988 989 990
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
991 992
           },
           R"DOC(
L
Leo Chen 已提交
993 994
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
995 996

           Returns:
L
Leo Chen 已提交
997
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1009 1010 1011 1012 1013 1014 1015 1016
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1017
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1018 1019

           Returns:
L
Leo Chen 已提交
1020
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1032 1033 1034 1035 1036 1037 1038
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1039
           )DOC")
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1058
#ifdef _WIN32
1059
      });
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1110

Q
qijun 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1122 1123
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1124 1125
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1126 1127
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1128
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1129 1130 1131 1132 1133 1134
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1135
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1136
      .def("rows", [](SelectedRows &self) {
1137 1138 1139 1140 1141
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1142
      });
Q
qijun 已提交
1143

1144
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1145 1146 1147

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1148
      .def(py::init<>())
1149
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1150
      .def("set_int",
1151 1152
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1153 1154 1155 1156 1157 1158 1159
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1160
      .def("get_tensor",
1161 1162
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1163 1164
           },
           py::return_value_policy::reference)
1165 1166 1167 1168
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1169 1170 1171
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1172 1173 1174 1175 1176
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1177 1178 1179
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1180 1181 1182
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1183
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1184 1185 1186 1187 1188
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1189
#endif
Y
Refine  
Yu Yang 已提交
1190 1191
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1192 1193 1194 1195
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1196 1197
             return self.GetMutable<framework::ReaderHolder>();
           },
1198 1199 1200 1201 1202
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1203

S
sneaxiy 已提交
1204
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1205

S
sneaxiy 已提交
1206
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1220
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1221 1222 1223 1224 1225 1226
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1227 1228
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1229
      .def("var",
1230
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1231
             return self.Var(name);
Y
Yu Yang 已提交
1232
           },
S
sneaxiy 已提交
1233 1234
           py::arg("name"),
           R"DOC(
1235
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1236

1237
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1238
           current scope, the variable would be created. Otherwise,
1239
           return the existing variable.
S
sneaxiy 已提交
1240 1241

           Args:
1242 1243
               name (str): the variable name.

S
sneaxiy 已提交
1244
           Returns:
1245
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1246 1247 1248 1249
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1250
           Find variable named :code:`name` in the current scope or
1251
           its parent scope. Return None if not found. 
1252

S
sneaxiy 已提交
1253 1254
           Args:
               name (str): the variable name.
1255

S
sneaxiy 已提交
1256
           Returns:
1257
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1258
           )DOC",
1259
           py::return_value_policy::reference)
1260
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1261 1262 1263 1264 1265 1266
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1267
           py::return_value_policy::reference)
S
sneaxiy 已提交
1268 1269 1270
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1271 1272
           )DOC")
      .def("_kids", &Scope::kids);
1273

S
sneaxiy 已提交
1274 1275 1276 1277 1278 1279
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1280 1281
        R"DOC(
        Create a new scope.
1282

S
sneaxiy 已提交
1283 1284 1285
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1286 1287
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1288 1289
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1290 1291
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1292 1293 1294 1295
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1296 1297
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1298 1299
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1300 1301 1302
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1303 1304
    return ret_values;
  });
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1334 1335 1336
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1337 1338 1339 1340 1341
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1342 1343 1344
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1359
  m.def("prune", [](const ProgramDesc &origin,
1360
                    const std::set<std::string> &feeded_var_names,
1361
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1362
    ProgramDesc prog_with_targets(origin);
1363

1364
    for (const auto &t : targets) {
1365
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1366
    }
1367
    proto::ProgramDesc pruned_desc;
1368 1369 1370 1371
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1372
  });
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1390 1391 1392 1393
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1394 1395 1396
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1397 1398
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1399

Q
qijun 已提交
1400
  // clang-format off
Y
Yu Yang 已提交
1401
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1402 1403
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1404
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1405 1406
                    return new paddle::platform::CPUDeviceContext();
                  })
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1431
      .def_static("create",
D
dzhwinter 已提交
1432
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1433
                      -> paddle::platform::DeviceContext* {
1434
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1435 1436 1437 1438
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1439
#else
Q
qijun 已提交
1440
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1441
#endif
C
chengduoZH 已提交
1442 1443 1444 1445
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1446
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1447 1448 1449 1450
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1451 1452 1453 1454
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1455
// clang-format on
1456
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1457 1458
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1459
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1460 1461 1462 1463 1464

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1465
    The memory of CUDAPlace with different dev_id is not accessible.
1466 1467 1468 1469 1470 1471 1472 1473
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1474 1475 1476 1477

    Examples:
        .. code-block:: python

1478 1479 1480
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1481

1482
        )DOC")
S
sneaxiy 已提交
1483 1484
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1485
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1510 1511
             new (&self) platform::CUDAPlace(dev_id);
#else
1512 1513 1514 1515 1516 1517 1518 1519 1520
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1521 1522
#endif
           })
1523
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1524 1525
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1526 1527 1528 1529
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1530
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1531
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1532 1533
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1534 1535 1536
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1537
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1538
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1585
#ifdef PADDLE_WITH_XPU
1586 1587 1588 1589 1590 1591 1592
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1593 1594 1595
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1596
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1597
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1598 1599 1600
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1601

1602
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1603
    CPUPlace is a descriptor of a device.
1604
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1605 1606 1607 1608

    Examples:
        .. code-block:: python

1609 1610
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1611

1612
        )DOC")
1613
      .def(py::init<>())
S
sneaxiy 已提交
1614 1615
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1616
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1617
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1618 1619 1620 1621
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1622
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1623
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1624

1625
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1626 1627 1628 1629 1630 1631
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1632 1633 1634 1635

    Examples:
        .. code-block:: python

1636 1637
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1638

1639
        )DOC")
S
sneaxiy 已提交
1640
      .def("__init__",
S
sneaxiy 已提交
1641
           [](platform::CUDAPinnedPlace &self) {
1642
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1643 1644 1645
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1646
#endif
S
sneaxiy 已提交
1647
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1648
           })
S
sneaxiy 已提交
1649 1650 1651 1652
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1653 1654
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1655 1656
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1657 1658 1659 1660
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1661
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1662 1663
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1706
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1723 1724
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1725 1726 1727 1728
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1729
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1730
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1731
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1732 1733
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1734 1735
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1736 1737
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1738 1739
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1740 1741 1742 1743
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1744 1745
      .def("gpu_device_id",
           [](platform::Place &self) {
1746
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1747
           })
1748 1749 1750 1751
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1752 1753 1754 1755
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1756 1757
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1758 1759 1760 1761
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1762 1763 1764 1765
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1766
      .def("set_place",
D
dzhwinter 已提交
1767
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1768
             self = gpu_place;
C
chengduoZH 已提交
1769
           })
1770 1771 1772 1773 1774
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1775 1776 1777 1778
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1779 1780
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1781

Y
Yu Yang 已提交
1782
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1783 1784 1785 1786 1787
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1788 1789 1790 1791 1792 1793 1794
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1795 1796
            return OpRegistry::CreateOp(desc);
          })
1797
      .def("run",
1798
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1799
              const platform::CPUPlace &place) { self.Run(scope, place); })
1800 1801 1802
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1803 1804 1805
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1806 1807
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1808
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1809 1810 1811 1812 1813
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1814 1815 1816 1817 1818 1819 1820
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1821 1822
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1823
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1824
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1825 1826 1827 1828
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1829

1830 1831 1832
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1833 1834 1835 1836 1837 1838 1839 1840 1841
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1842
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1843
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1844
      .def("close", &Executor::Close)
1845 1846
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1847 1848
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1849 1850 1851 1852
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1853
             pybind11::gil_scoped_release release;
1854 1855 1856 1857 1858 1859 1860
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1861 1862 1863
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1864
              std::map<std::string, FetchType *> *fetch_targets,
1865 1866 1867 1868 1869 1870 1871 1872
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1873
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1874 1875 1876 1877 1878 1879 1880
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1891
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1892 1893
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1894
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1895 1896
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1897
      });
S
sneaxiy 已提交
1898

P
phlrain 已提交
1899
  py::class_<framework::InterpreterCore>(m, "InterpreterCore")
P
phlrain 已提交
1900
      .def(py::init<const platform::Place &, const ProgramDesc &, const ProgramDesc &>())
P
phlrain 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
      .def("run", [](InterpreterCore &self, const std::unordered_map<std::string, py::array>& input_dict, std::vector<std::string> vec_fetch_name) {
        pybind11::gil_scoped_release release;
        std::vector<framework::Tensor> vec_tensor;
        std::vector<std::string> vec_name;
        //vec_tensor.reserve( feed.size() );
        //vec_tensor.reserve( feed.size ()) ;
        
        //auto new_res = input_dict.cast<py::array>();

        for ( auto & item : input_dict )
        {
          //cerr << "test flag  " << test_flag << endl;
P
phlrain 已提交
1913
          //cerr << item.first << endl;
P
phlrain 已提交
1914 1915 1916 1917
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, item.second,
                                                    platform::CPUPlace(), false);
                                                
P
phlrain 已提交
1918 1919
          //cerr << t.dims() << endl;
          //cerr << t.data<float>()[0] << endl;
P
phlrain 已提交
1920 1921 1922 1923 1924 1925 1926

          vec_name.push_back( item.first );
          vec_tensor.push_back( t );
        }
      
        
        
P
phlrain 已提交
1927 1928 1929
        //std::cerr << "11" << std::endl;
        std::vector<framework::Tensor> vec_out;
        self.run(vec_name, vec_tensor, vec_fetch_name, vec_out);
P
phlrain 已提交
1930 1931
        //self.Run(prog, scope, block_id, create_local_scope, create_vars,
        //         fetch_vars);
P
phlrain 已提交
1932 1933 1934 1935 1936 1937
        std::vector< py::array> vec_ret;
        for( size_t i = 0; i < vec_out.size(); ++i )
        {
          vec_ret.push_back( TensorToPyArray(vec_out[i], true) ) ;
        }
        return vec_ret;
P
phlrain 已提交
1938 1939
      });

D
dzhwinter 已提交
1940
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1941
  m.def("init_glog", framework::InitGLOG);
1942 1943
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1944
  m.def("init_devices", []() { framework::InitDevices(); });
1945

1946
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1947
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1948
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1949
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1950
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1951
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1952
  m.def("supports_bfloat16", SupportsBfloat16);
1953
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1954
  m.def("op_supported_infos", OpSupportedInfos);
1955
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1956
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1957 1958 1959
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1979 1980 1981 1982 1983 1984 1985
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1995
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1996 1997 1998 1999 2000
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2001

2002
  m.def("set_feed_variable", framework::SetFeedVariable);
2003 2004 2005 2006 2007
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2008
            return py::cast(BOOST_GET(LoDTensor, var));
2009
          } else {
2010
            return py::cast(BOOST_GET(LoDTensorArray, var));
2011 2012
          }
        });
2013
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2014

X
Xin Pan 已提交
2015 2016
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2017 2018 2019 2020 2021
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2022
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2023

Y
Yu Yang 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2033
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2034
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2035 2036 2037

    Examples:
        .. code-block:: python
2038

Z
Zeng Jinle 已提交
2039 2040 2041 2042
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2043 2044
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2045 2046 2047 2048 2049 2050
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2051 2052 2053 2054
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2055 2056 2057
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2058 2059 2060 2061 2062 2063
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2064 2065
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2066 2067 2068 2069 2070 2071
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2094

2095 2096 2097 2098 2099 2100 2101 2102
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2103
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2104 2105
                 res[i] = py::cast(std::move(data));
               } else {
2106
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2122
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2123 2124 2125 2126 2127 2128 2129 2130
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2131
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2132 2133 2134 2135 2136 2137 2138 2139 2140
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2141 2142
        )DOC")
      .def("_move_to_list",
2143
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2144 2145 2146 2147
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2148
                 if (data_is_lod_tensor(self[i][j])) {
2149
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2150 2151
                   tmp[j] = py::cast(std::move(var));
                 } else {
2152
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2153 2154 2155 2156 2157 2158
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2168
  m.def("op_support_gpu", OpSupportGPU);
2169
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2170
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2171

2172
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2173 2174 2175
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2176 2177 2178 2179
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2180
#endif
P
peizhilin 已提交
2181
#endif
Y
Yu Yang 已提交
2182

2183 2184
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2185
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2206 2207 2208 2209 2210 2211
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2212 2213 2214 2215
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2216
      .value("kAll", platform::ProfilerState::kAll)
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2228
  m.def("set_tracer_option", platform::SetTracerOption);
2229 2230
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2231
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2232
  m.def("reset_profiler", platform::ResetProfiler);
2233
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2234 2235 2236
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2237

2238 2239
  m.def("size_of_dtype", framework::SizeOfType);

2240
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2241 2242
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2243 2244
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2245 2246
#endif  // PADDLE_WITH_CUDA

2247 2248 2249
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2250 2251
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2252
      .def("has", &ir::Pass::Has)
2253 2254 2255
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2256
           })
2257
      .def(
2258
          "set",
2259 2260 2261
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2262 2263
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2264 2265
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2280 2281
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2282
        self.Apply(graph.get());
F
flame 已提交
2283
      });
2284

X
fix  
Xin Pan 已提交
2285 2286
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2301
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2302

Y
yuyang18 已提交
2303
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2304 2305 2306 2307
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2308 2309 2310
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2311 2312 2313
    Examples:
        .. code-block:: python

2314 2315 2316 2317 2318 2319 2320 2321 2322
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2323

2324 2325
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2326

2327
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2328 2329
          sgd_optimizer.minimize(avg_loss)

2330
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2331 2332
          exec_strategy.num_threads = 4

2333 2334 2335
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2336 2337
        )DOC");

2338 2339 2340 2341
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2342

Y
yuyang18 已提交
2343
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2344 2345 2346 2347 2348
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2349
          },
2350 2351
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2352 2353 2354 2355 2356 2357 2358
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2372
      .def_property(
2373 2374
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2375
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2376 2377 2378
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2379 2380 2381 2382 2383
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2384 2385 2386
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2387 2388
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2389 2390 2391 2392 2393 2394 2395
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2396 2397 2398 2399
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2400
                because the temp variable's shape maybe the same between two iterations.
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2411

2412 2413 2414 2415 2416 2417 2418
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2419
              )DOC")
Q
Qiao Longfei 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2441
              )DOC")
2442 2443 2444 2445 2446 2447 2448 2449
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2450 2451 2452 2453 2454
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2455

Y
yuyang18 已提交
2456
  exec_strategy.def_property(
Y
yuyang18 已提交
2457 2458 2459 2460 2461 2462 2463
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2464 2465
      });

C
chengduo 已提交
2466 2467 2468 2469
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2470 2471 2472
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2473 2474 2475
    Examples:
        .. code-block:: python

2476
            import os
2477 2478 2479 2480
            import paddle
            import paddle.static as static

            paddle.enable_static()
2481

2482 2483
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2484

2485 2486 2487 2488
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2489

2490
            build_strategy = static.BuildStrategy()
2491 2492
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2493 2494
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2495
            program = program.with_data_parallel(loss_name=loss.name,
2496 2497
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2498
)DOC");
Y
yuyang18 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2515 2516 2517 2518
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2519
            self.reduce_ = strategy;
C
chengduo 已提交
2520
          },
2521
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2522 2523
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2524
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2525 2526
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2527
                Default is 'AllReduce'.
F
flame 已提交
2528 2529 2530 2531

                Examples:
                    .. code-block:: python

2532 2533 2534 2535 2536 2537 2538
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2539
                  )DOC")
Y
yuyang18 已提交
2540 2541 2542 2543 2544
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2545 2546 2547 2548
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2549
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2550
          },
2551
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2552
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2553 2554
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2555
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2556 2557 2558 2559

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2560 2561
                        import numpy
                        import os
2562 2563 2564 2565
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2566 2567

                        use_cuda = True
2568 2569
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2570 2571

                        # NOTE: If you use CPU to run the program, you need
2572
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2573 2574 2575 2576 2577 2578
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2579
                            places = static.cpu_places()
C
chengduo 已提交
2580
                        else:
2581
                            places = static.cuda_places()
C
chengduo 已提交
2582

2583 2584 2585 2586
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2587

2588
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2589

2590
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2591
                        build_strategy.gradient_scale_strategy = \
2592 2593 2594
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2595
                                          loss_name=loss.name, build_strategy=build_strategy,
2596
                                          places=places)
C
chengduo 已提交
2597 2598 2599 2600 2601 2602

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2603 2604
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2605
                   )DOC")
Y
yuyang18 已提交
2606 2607 2608 2609
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2610 2611 2612 2613
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2614
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2615
          },
2616
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2617
                writing the SSA Graph to file in the form of graphviz.
2618
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2619 2620 2621 2622

                Examples:
                    .. code-block:: python

2623 2624 2625 2626
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2627

2628 2629
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2630
                    )DOC")
S
sneaxiy 已提交
2631 2632 2633 2634 2635 2636
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2637 2638 2639 2640
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2641 2642
            self.enable_sequential_execution_ = b;
          },
2643 2644
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2645 2646 2647 2648

                Examples:
                    .. code-block:: python

2649 2650 2651 2652 2653 2654
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2655 2656
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2657 2658 2659 2660 2661 2662
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2663 2664 2665 2666
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2667 2668
            self.remove_unnecessary_lock_ = b;
          },
2669 2670
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2671 2672 2673 2674

                Examples:
                    .. code-block:: python

2675 2676 2677 2678 2679 2680
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2681 2682
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2683 2684 2685 2686
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2687
#ifdef WIN32
2688
            PADDLE_THROW(platform::errors::Unavailable(
2689
                "Distribution mode is not supported on Windows platform."));
2690
#endif
2691 2692
            self.num_trainers_ = num_trainers;
          })
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2705 2706 2707 2708 2709 2710
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2711 2712 2713 2714 2715 2716
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2717
      .def_property("use_hierarchical_allreduce",
2718 2719 2720 2721 2722 2723
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2724
      .def_property("hierarchical_allreduce_inter_nranks",
2725 2726 2727 2728 2729 2730 2731
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2732 2733 2734 2735 2736 2737
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2738 2739 2740 2741
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2742 2743
            self.fuse_elewise_add_act_ops_ = b;
          },
2744
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2745
                to fuse elementwise_add_op and activation_op,
2746
                it may make the execution faster. Default is False.
F
flame 已提交
2747 2748 2749 2750

                Examples:
                    .. code-block:: python

2751 2752 2753 2754 2755 2756
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2757 2758
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2759 2760 2761 2762
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2763
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2764
                              platform::errors::PreconditionNotMet(
2765 2766
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2776 2777 2778 2779 2780 2781
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2782 2783
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2809 2810 2811 2812
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2813
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2814
                              platform::errors::PreconditionNotMet(
2815 2816
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2827 2828 2829 2830 2831 2832
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2833 2834
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2835 2836 2837 2838 2839 2840
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2841 2842 2843 2844
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2845 2846
            self.fuse_relu_depthwise_conv_ = b;
          },
2847
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2848 2849 2850
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2851
                Default is False.
F
flame 已提交
2852 2853 2854 2855

                Examples:
                    .. code-block:: python

2856 2857 2858 2859 2860 2861
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2862 2863
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2864 2865 2866 2867 2868 2869
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2870 2871 2872 2873
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2874 2875
                      self.fuse_broadcast_ops_ = b;
                    },
2876
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2877 2878 2879 2880
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2881 2882 2883 2884 2885
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2886 2887 2888 2889 2890 2891
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2892 2893
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2894 2895
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2896 2897
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2898 2899
                    },
                    [](BuildStrategy &self, bool b) {
2900 2901 2902 2903
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2904 2905
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2906 2907 2908 2909
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2910 2911 2912 2913
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2914 2915
            self.sync_batch_norm_ = b;
          },
2916
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2917 2918 2919
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2920 2921
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2922 2923 2924 2925

                Examples:
                    .. code-block:: python

2926 2927 2928 2929 2930 2931
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2932 2933
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2934 2935
      .def_property(
          "memory_optimize",
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2950 2951 2952
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2953 2954
            }
          },
2955
          R"DOC((bool, optional): memory opitimize aims to save total memory
2956
                consumption, set to True to enable it.
2957

2958 2959 2960
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2975 2976 2977
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2978 2979 2980
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2981
              PADDLE_THROW(platform::errors::Unavailable(
2982
                  "Distribution mode is not supported on Windows platform."));
2983 2984 2985 2986 2987
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2988 2989 2990
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2991
      .def_property(
D
dzhwinter 已提交
2992 2993 2994
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2995 2996 2997 2998
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2999 3000
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3001 3002 3003 3004
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3005
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3006 3007 3008 3009 3010 3011 3012
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3013 3014 3015 3016
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3017 3018 3019 3020 3021 3022 3023 3024 3025
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3026
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3027
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3028 3029 3030 3031 3032
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3033 3034

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3035
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3036
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3037
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3038 3039 3040 3041
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3042 3043 3044 3045 3046
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3047 3048 3049
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3050 3051 3052 3053
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3054 3055
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3056 3057 3058 3059 3060 3061 3062 3063
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3064
               return py::cast(
3065
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3066 3067
             } else {
               return py::cast(std::move(
3068
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3069
             }
3070 3071
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3072

D
dongdaxiang 已提交
3073
  BindFleetWrapper(&m);
3074
  BindIO(&m);
T
Thunderbrook 已提交
3075

T
Thunderbrook 已提交
3076 3077
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3078
#endif
T
Thunderbrook 已提交
3079
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3080
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3081
#endif
3082
  BindGlooWrapper(&m);
H
hutuxian 已提交
3083
  BindBoxHelper(&m);
H
hutuxian 已提交
3084 3085 3086
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3087
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3088
  BindNCCLWrapper(&m);
3089 3090 3091
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3092
#endif
F
flame 已提交
3093 3094
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3095
  BindInferenceApi(&m);
3096
  BindCompatible(&m);
3097
  BindDataset(&m);
Y
yaoxuefeng 已提交
3098
  BindGenerator(&m);
3099 3100 3101
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3102
  BindAscendDevice(&m);
3103
#endif
Y
Yanghello 已提交
3104 3105 3106
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3107

T
tangwei12 已提交
3108
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3109 3110
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3111
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3112 3113
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3114 3115 3116 3117 3118
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3119 3120 3121 3122
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3123
  BindSparseShardingTools(&m);
3124
#endif
L
Luo Tao 已提交
3125
}
3126
}  // namespace pybind
3127
}  // namespace paddle