control_flow.py 171.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import autodoc, templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
30
from .nn import logical_and, logical_not, logical_or
31 32 33 34 35 36 37 38 39 40 41
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
42
import numpy
43
import warnings
L
liym27 已提交
44
from functools import reduce, partial
45 46 47 48 49 50
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
51 52
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
53
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
54

Q
QI JUN 已提交
55
__all__ = [
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'less_equal',
    'greater_than',
    'greater_equal',
    'equal',
    'not_equal',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
80 81
]

Y
Yu Yang 已提交
82

83 84
def select_output(input, outputs, mask):
    """
85
    **select_output**
86 87 88 89 90 91 92 93 94 95 96 97 98 99
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
100 101 102 103
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

104 105 106 107 108
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
109 110 111
    return outputs


112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
127 128
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
129 130 131
    return out_shape


132 133 134
def select_input(inputs, mask):
    """
    **select_input**
135

136 137 138 139 140 141 142 143 144 145 146 147
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
148 149 150
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

151
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
152
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
153 154 155
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
156

157 158 159 160 161 162 163 164
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
165 166 167
    return out


168
def select_input_with_buildin_type(inputs, mask, name):
169 170 171
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
        to_static_variable,
    )
172
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
173

174 175
    false_var, true_var = inputs

176
    if isinstance(false_var, UndefinedVar) and isinstance(
177 178 179
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
180 181
        return None

182
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
183 184 185 186
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
187 188
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
189

190 191 192
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
193 194 195 196
        if false_var == true_var:
            return false_var
        else:
            inputs = [
197
                to_static_variable(false_var),
198
                to_static_variable(true_var),
199 200
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
201 202 203 204 205 206 207
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
208 209 210 211
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
212 213 214 215 216 217 218 219 220
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
221 222

        def create_var_if_not_undefined_var(a):
223 224
            if isinstance(a, UndefinedVar):
                return a
225 226
            return to_static_variable(a)

227
        true_var, false_var = to_static_variable(true_var), to_static_variable(
228 229
            false_var
        )
230
        inputs = [false_var, true_var]
231 232 233
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
234 235 236 237
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".format(
                type(false_var), type(true_var)
            )
        )
238 239 240 241
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
242 243
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
244 245


246
def split_lod_tensor(input, mask, level=0):
247 248 249 250
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
251 252
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
253 254

    Args:
255
        input(Variable|tuple|list|None): The input tensor that contains complete
256
                                lod information needed to construct the output.
257
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
258
        level(int): The specific lod level to split.
259 260

    Returns:
Q
qiaolongfei 已提交
261 262 263 264
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
265 266 267 268

    Examples:
        .. code-block:: python

269
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
270
          x = fluid.layers.data(name='x', shape=[1])
271 272
          x.persistable = True

Q
qiaolongfei 已提交
273
          y = fluid.layers.data(name='y', shape=[1])
274 275
          y.persistable = True

Q
qiaolongfei 已提交
276
          out_true, out_false = fluid.layers.split_lod_tensor(
277
                input=x, mask=y, level=level)
278

279
    """
280 281 282 283 284 285
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
286 287
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
288
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
289 290
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
291 292 293 294 295 296 297 298 299
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
300 301 302
    return out_true, out_false


303
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
304 305 306 307 308
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
309 310 311
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
312 313

    Args:
314 315 316
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
317
                            lod information needed to construct the output.
318
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
319
        level(int): The specific lod level to merge.
320 321 322 323 324 325 326

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

327
          import paddle.fluid as fluid
328 329 330 331 332 333 334 335 336 337 338 339
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
340
    helper = LayerHelper('merge_lod_tensor', **locals())
341 342 343 344 345 346
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
347
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
348 349 350 351 352 353 354 355 356 357 358 359
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
360
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
361 362 363 364 365 366
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
367 368 369
    return out


370
@static_only
371 372 373 374 375 376 377 378 379 380 381 382
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
383
    '''
384 385
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
386 387 388 389 390 391 392 393 394
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
395
        input (Variable): A Tensor to print.
396
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
397
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
398 399
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
400 401 402
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
403
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
404
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
405
        print_phase (str): Which phase to displace, including 'forward',
406
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
407 408
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
409 410

    Returns:
411
        Variable: Output tensor.
Y
Yan Chunwei 已提交
412

413 414 415 416
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
417

Y
Yan Chunwei 已提交
418 419
    Examples:
        .. code-block:: python
420

421 422 423
           import paddle

           paddle.enable_static()
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
439
    '''
440 441 442 443 444 445
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
446

447 448
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
465
    return output
Y
Yan Chunwei 已提交
466 467


H
Huihuang Zheng 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

531 532 533 534 535
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
536 537 538 539

    return op


Y
Yu Yang 已提交
540 541
class BlockGuard(object):
    """
542 543 544 545
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
546 547
    """

548 549
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
550
            raise TypeError("BlockGuard takes a program")
551
        self.main_program = main_program
Y
Yu Yang 已提交
552 553

    def __enter__(self):
W
Wu Yi 已提交
554
        self.main_program._create_block()
Y
Yu Yang 已提交
555 556

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
557
        self.main_program._rollback()
Y
Yu Yang 已提交
558 559 560 561 562
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
563 564 565 566 567
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
568 569
    """

Y
Yu Yang 已提交
570
    def __init__(self, rnn):
X
Xin Pan 已提交
571
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
572
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
573
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
574 575 576 577
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
578
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
579 580

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
581 582
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
583
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
584
        self.rnn._complete_op()
585 586 587
        return super(BlockGuardWithCompletion, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
588 589 590 591


class StaticRNNMemoryLink(object):
    """
592 593 594 595
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
596 597 598 599 600 601 602 603 604


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
605 606 607 608 609 610 611 612 613
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
614
    """
615 616
    :api_attr: Static Graph

617 618
    StaticRNN class.

619 620 621 622 623 624 625
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
626 627

    Examples:
628 629 630 631 632 633
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
634 635
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
636 637 638 639 640
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
641
            # transform batch size to dim 1
642 643 644 645
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
646
                # mark created x_emb as input, each step process a word
647
                word = rnn.step_input(x_emb)
648
                # create prev memory parameter, batch size comes from word
649 650
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
651 652
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
653
                # mark hidden as output
654
                rnn.step_output(hidden)
655
            # get StaticrNN final output
656
            result = rnn()
C
chengduo 已提交
657

658
    """
659

Y
Yu Yang 已提交
660 661 662 663
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

664
    def __init__(self, name=None):
665
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
666
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
667 668 669 670 671 672 673 674
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
675
        """
676 677
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
678
        """
Y
Yang Yang 已提交
679
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
680 681 682 683 684

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

685 686 687 688 689 690 691 692 693
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
694
        """
C
chengduo 已提交
695 696 697
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
698 699
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
700

701
        Args:
702
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
703 704
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
705 706 707 708 709 710 711
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
712 713

        Returns:
714 715 716 717 718
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
742 743 744


        Examples 2:
745 746
            .. code-block:: python

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
769

770
        """
Y
Yu Yang 已提交
771
        self._assert_in_rnn_block_('memory')
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
790
        if init is None:
791
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
792
                raise ValueError(
793 794
                    "if init is None, memory at least need shape and batch_ref"
                )
795
            parent_block = self._parent_block()
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
818 819 820 821

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
822 823 824
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
825
                dtype=init.dtype,
826 827 828 829 830
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
831 832 833
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
834 835 836 837 838 839 840 841
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
842 843 844 845 846
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
870

C
chengduo 已提交
871
        """
Y
Yu Yang 已提交
872
        self._assert_in_rnn_block_('step_input')
873
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
874
        if self.seq_len is None:
Y
Yu Yang 已提交
875
            self.seq_len = x.shape[0]
876
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
877 878
            raise ValueError("Static RNN only take fix seq_len input")

879 880 881
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
882 883 884 885
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
886 887 888 889 890 891 892 893
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
894 895 896 897

        Examples:
            .. code-block:: python

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
924

C
chengduo 已提交
925
        """
Y
Yu Yang 已提交
926
        self._assert_in_rnn_block_('step_output')
927
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
928

X
Xin Pan 已提交
929
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
930 931 932 933 934 935
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
936

937 938 939 940 941
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
942 943 944 945

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
946 947 948 949
        """
        Mark the StaticRNN output variables.

        Args:
950
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
951 952 953

        Returns:
            None
954 955 956 957

        Examples:
            .. code-block:: python

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
985
        """
Y
Yu Yang 已提交
986 987 988 989
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
990
        """
991
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
992 993 994

        Args:
            mem(Variable): the memory variable.
995
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
996
                           var and mem should have same dims and data type.
C
chengduo 已提交
997 998 999

        Returns:
            None
1000

C
chengduo 已提交
1001
        """
1002 1003
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1004 1005
        self.memories[mem.name].mem = var

1006
    def _parent_block(self):
1007
        prog = self.helper.main_program
Y
Yu Yang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1023
    def _complete_op(self):
1024 1025
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1026
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1041 1042 1043
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1044 1045 1046 1047 1048 1049 1050 1051
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1052 1053 1054
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1055 1056

        step_scope = parent_block.create_var(
1057 1058
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1059 1060 1061 1062

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1063
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1064 1065 1066
        boot_memories = []
        pre_memories = []
        memories = []
1067
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1068 1069
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1070 1071 1072
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1073 1074
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1075
            new_mem = self.helper.create_variable_for_type_inference(
1076 1077 1078 1079 1080 1081 1082 1083
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1084 1085 1086

            memories.append(new_mem.name)

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1102 1103


Y
Yang Yang(Tony) 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1119
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1120 1121 1122
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1123 1124 1125
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1126 1127 1128 1129 1130 1131 1132 1133
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1147 1148 1149 1150 1151 1152 1153 1154
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1155
                if in_var_name not in inner_outputs and not is_ignore_vars(
1156 1157
                    op, in_var_name
                ):
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1173 1174 1175 1176 1177
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1178 1179 1180 1181 1182 1183 1184
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1185
class While(object):
X
Xin Pan 已提交
1186
    """
1187
    :api_attr: Static Graph
1188

1189
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1190

1191 1192 1193 1194
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1195 1196 1197 1198 1199 1200
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1201
    Args:
1202
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1203
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1204
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1205

1206
    Examples 1:
X
Xin Pan 已提交
1207
          .. code-block:: python
1208

1209
            import paddle.fluid as fluid
1210 1211 1212 1213 1214
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1215

1216
            cond = fluid.layers.less_than(x=i, y=loop_len)
1217
            while_op = fluid.layers.While(cond=cond)
1218
            with while_op.block():
1219
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1220
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1221 1222 1223 1224 1225

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1255 1256
    """

Y
Yang Yang(Tony) 已提交
1257 1258 1259 1260
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1261
    def __init__(self, cond, is_test=False, name=None):
1262
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1263
        self.status = While.BEFORE_WHILE_BLOCK
1264
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1265
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1266
            raise TypeError(
1267 1268 1269 1270
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1271
        self.cond_var = cond
C
chengduo 已提交
1272
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1273 1274 1275 1276

    def block(self):
        return WhileGuard(self)

1277
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1278 1279
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1280
        parent_block = main_program.block(
1281 1282
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1283 1284 1285

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1286
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1287 1288
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1289 1290 1291

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1292 1293 1294
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1295

1296
        x_name_list |= set(map(lambda x: x.name, out_vars))
1297 1298 1299
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1300

Y
Yang Yang(Tony) 已提交
1301
        step_scope = parent_block.create_var(
1302 1303
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1304 1305 1306 1307

        parent_block.append_op(
            type='while',
            inputs={
1308 1309 1310 1311 1312
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1313
            },
1314 1315 1316
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1317 1318


1319
support_ret_buildin_type = (bool, float, int)
1320 1321


1322
def assign_skip_lod_tensor_array(input, output):
1323
    """
1324
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1325
    """
1326 1327

    def has_shape_diff(x_var, y_var):
1328 1329
        if len(x_var.shape) != len(y_var.shape):
            return True
1330
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1331 1332
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1333 1334
        return False

1335
    if not isinstance(input, (Variable, core.VarBase)):
1336
        if isinstance(output, Variable) and isinstance(
1337 1338
            input, support_ret_buildin_type
        ):
1339 1340 1341
            assign(input, output)
        else:
            output = input
1342 1343
        return

1344 1345
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1346
        parent_block = main_program.block(
1347 1348
            main_program.current_block().parent_idx
        )
1349 1350 1351
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1352 1353 1354 1355 1356
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1357
            warnings.warn(
1358 1359 1360 1361
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1362
        assign(input, output)
1363 1364


G
guofei 已提交
1365
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1366
    """
1367 1368
    :api_attr: Static Graph

G
guofei 已提交
1369 1370
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1371 1372 1373 1374
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1375
    Args:
1376
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1377
            as many arguments as ``loop_vars`` .
1378 1379 1380
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1381
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1382 1383
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1384

G
guofei 已提交
1385
    Returns:
C
Chen Long 已提交
1386
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1387 1388 1389 1390

    Examples:
        .. code-block:: python

1391 1392 1393
            import paddle
            paddle.enable_static()

1394 1395
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1396

1397 1398 1399
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1400

C
Chen Long 已提交
1401 1402 1403 1404 1405 1406
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1407

C
Chen Long 已提交
1408
                exe = paddle.static.Executor(paddle.CPUPlace())
1409
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1410 1411 1412 1413 1414 1415 1416 1417
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1418
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1419 1420 1421 1422
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1423 1424 1425
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1426 1427
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1428
            "the shape of the variable returned by cond should be [1],"
1429 1430
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1431

J
Jiabin Yang 已提交
1432
    if _non_static_mode():
1433
        now_cond = pre_cond.numpy()[0]
1434
        while now_cond:
1435 1436 1437 1438 1439 1440
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1441 1442
                    "(length and structure) and types as loop_vars"
                )
1443
            now_cond = cond(*output_vars).numpy()[0]
1444
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1445 1446
        return loop_vars

G
guofei 已提交
1447
    while_loop_block = While(pre_cond, is_test, name)
1448
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1449
    with while_loop_block.block():
1450 1451 1452 1453 1454 1455 1456 1457 1458
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1459 1460
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1461
        try:
1462
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1463 1464
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1465 1466
            raise ValueError(
                "body in while_loop should return the same arity "
1467 1468
                "(length and structure) as loop_vars: {0}".format(e)
            )
1469
        now_cond = cond(*output_vars)
1470
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1471 1472 1473 1474
        assign(now_cond, pre_cond)
    return loop_vars


1475
def _deal_with_undefined_var(output_vars, loop_vars):
1476 1477 1478 1479 1480 1481 1482
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1483
    """
1484 1485 1486 1487
    from paddle.fluid.dygraph.dygraph_to_static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )
1488 1489

    def create_var_like(o_var):
1490 1491 1492 1493
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1494
            return create_undefined_variable()
1495
        if is_sequence(o_var):
1496
            """
1497 1498 1499
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1513
def lod_rank_table(x, level=0):
1514 1515
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1516 1517
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1518
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1519
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1520 1521
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1522 1523 1524 1525

        .. code-block:: text

            x is a LoDTensor:
1526 1527
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1528 1529
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1530 1531 1532
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1533

Y
yangyaming 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1543 1544 1545 1546

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1547 1548
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1549 1550 1551 1552 1553 1554 1555

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1556
            import paddle.fluid as fluid
Y
yangyaming 已提交
1557
            x = fluid.layers.data(name='x', shape=[10],
1558
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1559
            out = layers.lod_rank_table(x=x, level=0)
1560
    """
1561 1562 1563
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1564 1565 1566
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1567

Y
Yu Yang 已提交
1568
    helper = LayerHelper("lod_rank_table", **locals())
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1579
    return table
Y
Yu Yang 已提交
1580 1581


Y
yuyang18 已提交
1582
@templatedoc()
1583
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1584 1585 1586 1587 1588 1589 1590 1591
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1592 1593

    Args:
Y
yuyang18 已提交
1594
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1595 1596

    Returns:
Y
yuyang18 已提交
1597
        ${out_comment}.
F
fengjiayi 已提交
1598 1599
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1600
    res = helper.create_variable_for_type_inference(dtype="int64")
1601 1602 1603 1604 1605
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1606 1607 1608
    return res


1609
def lod_tensor_to_array(x, table):
1610
    """
F
fengjiayi 已提交
1611 1612
    Convert a LoDTensor to a LoDTensorArray.

1613 1614 1615 1616 1617
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1618
    Users should not use it directly.
1619 1620

    Args:
F
fengjiayi 已提交
1621
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1622 1623
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1624
                                descending order. It is generally generated
F
fengjiayi 已提交
1625
                                by `layers.lod_rank_table()` API.
1626 1627

    Returns:
F
fengjiayi 已提交
1628
        Variable: The LoDTensorArray that has been converted from the input tensor.
1629 1630 1631 1632

    Examples:
        .. code-block:: python

1633
          import paddle.fluid as fluid
1634 1635 1636
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1637
    """
1638 1639 1640
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1641 1642 1643 1644 1645 1646
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1647 1648 1649
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1650 1651 1652 1653 1654 1655
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1656 1657
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1658
        name=unique_name.generate("lod_tensor_to_array"),
1659
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1660 1661 1662 1663 1664 1665 1666
        dtype=x.dtype,
    )
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': array},
    )
1667 1668 1669
    return array


1670
def array_to_lod_tensor(x, table):
1671
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1672 1673

    Args:
1674
        x (Variable|list): The lod tensor array to be converted to a tensor.
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1686
          import paddle.fluid as fluid
1687 1688 1689 1690
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1691
    """
1692 1693 1694
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1695 1696 1697 1698 1699 1700
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1701 1702 1703
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1704 1705 1706 1707 1708 1709
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1710

1711
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1712
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1713 1714 1715 1716 1717
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': tmp},
    )
1718 1719 1720
    return tmp


1721
def increment(x, value=1.0, in_place=True):
1722
    """
1723 1724
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1725

1726
    Parameters:
T
tianshuo78520a 已提交
1727
        x (Variable): A tensor that must always contain only one element, its data type supports
1728 1729 1730
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1731 1732

    Returns:
1733
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1734 1735 1736 1737

    Examples:
        .. code-block:: python

1738
          import paddle.fluid as fluid
1739 1740
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1741
    """
H
hong 已提交
1742
    if in_dygraph_mode():
1743
        return _C_ops.increment_(x, value)
H
hong 已提交
1744

1745 1746 1747
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1748
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1749
    if not in_place:
X
Xin Pan 已提交
1750
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1751 1752
    else:
        out = x
1753 1754 1755 1756 1757 1758
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1759
    return out
Y
Yu Yang 已提交
1760 1761


1762
def array_write(x, i, array=None):
1763
    """
1764 1765 1766 1767
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1768 1769

    Args:
1770 1771 1772 1773
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1774 1775
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1776
            as a result.
1777

1778
    Returns:
1779
        Variable: The input ``array`` after ``x`` is written into.
1780 1781

    Examples:
D
dzhwinter 已提交
1782
        .. code-block:: python
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1807 1808
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1809 1810
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1811
    """
J
Jiabin Yang 已提交
1812
    if _non_static_mode():
1813 1814 1815 1816 1817 1818 1819 1820 1821
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1822
        i = i.numpy().item(0)
1823 1824 1825
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1826 1827
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1828 1829 1830 1831 1832 1833 1834 1835 1836
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1837 1838
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1839
    helper = LayerHelper('array_write', **locals())
1840
    if array is not None:
1841 1842 1843 1844
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1845
            raise TypeError(
1846 1847
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1848 1849 1850 1851
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1852 1853 1854 1855 1856 1857 1858
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1859 1860 1861
    return array


1862
def create_array(dtype, initialized_list=None):
1863
    """
1864
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1865
    the input of :ref:`api_fluid_layers_array_read` and
1866 1867
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1868 1869

    Args:
1870 1871
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1872 1873
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1874 1875

    Returns:
1876
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1877 1878 1879 1880

    Examples:
        .. code-block:: python

1881
          import paddle.fluid as fluid
1882
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1883 1884

    """
1885 1886 1887 1888
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1889 1890 1891 1892
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1893 1894 1895 1896 1897 1898
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1899 1900 1901 1902
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1903

J
Jiabin Yang 已提交
1904
    if _non_static_mode():
1905
        return array
1906

Y
Yang Yang(Tony) 已提交
1907
    helper = LayerHelper("array", **locals())
1908
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1909 1910
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1911 1912
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1913

1914 1915 1916 1917 1918
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1919

Y
yuyang18 已提交
1920
@templatedoc()
W
wawltor 已提交
1921
def less_than(x, y, force_cpu=None, cond=None, name=None):
1922
    """
1923

Y
yuyang18 已提交
1924
    ${comment}
1925 1926

    Args:
N
Noel 已提交
1927 1928
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1929
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1930
        cond(Tensor, optional): Optional output which can be any created Tensor
1931
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1932
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1933 1934
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1935
    Returns:
Y
yuyang18 已提交
1936
        ${out_comment}.
1937 1938 1939 1940

    Examples:
        .. code-block:: python

N
Noel 已提交
1941 1942 1943 1944 1945 1946 1947
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1948
    """
1949 1950 1951 1952 1953 1954
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1955 1956 1957 1958 1959
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1960 1961
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1962
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1963 1964
        cond.stop_gradient = True

Y
yuyang18 已提交
1965 1966 1967 1968
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1969 1970 1971 1972 1973 1974
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1975 1976 1977
    return cond


Z
zhoukunsheng 已提交
1978
@templatedoc()
W
wawltor 已提交
1979
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1980
    """
1981
    :alias_main: paddle.less_equal
1982 1983
        :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
        :old_api: paddle.fluid.layers.less_equal
1984

1985
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1986 1987

    Args:
1988
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1989
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1990 1991
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1992 1993
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1994 1995

    Returns:
1996
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1997 1998 1999 2000

    Examples:
        .. code-block:: python

2001
          import paddle.fluid as fluid
2002 2003 2004 2005 2006 2007
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
2008
    """
2009 2010 2011 2012 2013 2014
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_equal"
    )
2015
    if cond is not None:
2016
        check_type(cond, "cond", Variable, "less_equal")
2017

Z
zhoukunsheng 已提交
2018 2019 2020 2021 2022 2023 2024
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2025 2026 2027 2028 2029 2030
    helper.append_op(
        type='less_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2031 2032 2033 2034
    return cond


@templatedoc()
W
wawltor 已提交
2035
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2036
    """
2037
    :alias_main: paddle.greater_than
2038 2039
        :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
        :old_api: paddle.fluid.layers.greater_than
2040

2041
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
2042 2043

    Args:
2044
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2045
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2046 2047
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2048 2049
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2050 2051

    Returns:
2052
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
2053 2054 2055 2056

    Examples:
        .. code-block:: python

2057
          import paddle.fluid as fluid
2058 2059 2060 2061 2062
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
2063
    """
2064 2065 2066 2067 2068 2069
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_than"
    )
2070
    if cond is not None:
2071
        check_type(cond, "cond", Variable, "greater_than")
2072

Z
zhoukunsheng 已提交
2073 2074 2075 2076 2077 2078 2079
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2080
    if in_dygraph_mode():
2081
        return _C_ops.greater_than(x, y, -1)
2082
    else:
2083 2084 2085 2086 2087 2088
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [cond]},
            attrs=attrs,
        )
2089
        return cond
Z
zhoukunsheng 已提交
2090 2091 2092


@templatedoc()
W
wawltor 已提交
2093
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2094
    """
2095
    :alias_main: paddle.greater_equal
2096 2097
        :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
        :old_api: paddle.fluid.layers.greater_equal
2098

2099
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
2100 2101

    Args:
2102
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2103
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2104 2105
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2106 2107
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2108 2109

    Returns:
2110
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2111 2112 2113 2114

    Examples:
        .. code-block:: python

2115
          import paddle.fluid as fluid
2116 2117 2118 2119 2120 2121
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
2122

Z
zhoukunsheng 已提交
2123
    """
2124 2125 2126 2127 2128 2129
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
2130
    if cond is not None:
2131
        check_type(cond, "cond", Variable, "greater_equal")
2132

Z
zhoukunsheng 已提交
2133 2134 2135 2136 2137 2138 2139
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2140 2141 2142 2143 2144 2145
    helper.append_op(
        type='greater_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2146 2147 2148
    return cond


W
wawltor 已提交
2149
def equal(x, y, cond=None, name=None):
2150 2151 2152 2153
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
2154 2155
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
2156
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
2157 2158
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2159 2160
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
2161 2162

    Returns:
W
wangchaochaohu 已提交
2163 2164
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2165 2166 2167 2168

    Examples:
        .. code-block:: python

2169
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2170 2171 2172 2173 2174 2175 2176
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2177
    """
H
hong 已提交
2178 2179
    if in_dygraph_mode():
        default_axis = -1
2180
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2181

2182 2183 2184 2185 2186 2187
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "equal"
    )
2188
    if cond is not None:
2189
        check_type(cond, "cond", Variable, "equal")
2190

2191 2192
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2193
        cond = helper.create_variable_for_type_inference(dtype='bool')
2194 2195
        cond.stop_gradient = True

2196 2197 2198
    helper.append_op(
        type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
2199 2200 2201
    return cond


W
wawltor 已提交
2202
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2203
    """
2204
    :alias_main: paddle.not_equal
2205 2206
        :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
        :old_api: paddle.fluid.layers.not_equal
2207

2208
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2209 2210

    Args:
2211
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2212
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2213 2214
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2215 2216
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2217 2218

    Returns:
2219
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2220 2221 2222 2223

    Examples:
        .. code-block:: python

2224
          import paddle.fluid as fluid
2225

2226 2227
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2228 2229
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2230 2231 2232 2233 2234 2235
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "not_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "not_equal"
    )
2236
    if cond is not None:
2237
        check_type(cond, "cond", Variable, "not_equal")
2238

Z
zhoukunsheng 已提交
2239 2240 2241 2242 2243
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2244 2245 2246
    helper.append_op(
        type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
Z
zhoukunsheng 已提交
2247 2248 2249
    return cond


2250
def array_read(array, i):
2251
    """
2252
    This OP is used to read data at the specified position from the input array
2253
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2254
    is the specified read position. This OP is often used together with
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2267

K
kavyasrinet 已提交
2268
    Args:
2269 2270 2271
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2272

K
kavyasrinet 已提交
2273
    Returns:
2274
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2275

K
kavyasrinet 已提交
2276
    Examples:
2277 2278
        .. code-block:: python

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2307 2308
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2309
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2310
    """
J
Jiabin Yang 已提交
2311
    if _non_static_mode():
2312
        assert isinstance(
2313 2314
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
2315 2316 2317 2318 2319 2320
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2321
        i = i.numpy().item(0)
2322 2323
        return array[i]

2324
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2325
    helper = LayerHelper('array_read', **locals())
2326 2327 2328 2329
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
2330
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2331
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2332 2333 2334 2335 2336
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
2337
    return out
Y
Yang Yu 已提交
2338 2339


2340
def shrink_memory(x, i, table):
2341
    """
Y
yuyang18 已提交
2342
    This function creates an operator to shrink rnn memory using the RankTable
2343
    as mentioned in the input parameter.
Y
yuyang18 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2364
    """
Y
Yang Yu 已提交
2365
    helper = LayerHelper('shrink_memory', **locals())
2366 2367 2368
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2370 2371 2372 2373 2374 2375
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
2376
    return out
Y
Yang Yu 已提交
2377 2378


2379
def array_length(array):
2380
    """
2381
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2382
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2383
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2384

K
kavyasrinet 已提交
2385
    Args:
2386
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2387 2388

    Returns:
2389
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2390 2391

    Examples:
Q
qiaolongfei 已提交
2392
        .. code-block:: python
K
kavyasrinet 已提交
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2410

2411 2412 2413 2414 2415
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2416

2417 2418 2419
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2420 2421
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2422
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2423
    """
2424

J
Jiabin Yang 已提交
2425
    if _non_static_mode():
2426
        assert isinstance(
2427 2428
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2429 2430
        return len(array)

2431 2432 2433 2434
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2435
        raise TypeError(
2436 2437
            "array should be tensor array vairable in array_length Op"
        )
2438

Y
Yang Yu 已提交
2439
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2440
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2441
    tmp.stop_gradient = True
2442 2443 2444
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2445
    return tmp
Y
Yu Yang 已提交
2446 2447 2448


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2449
    """
2450 2451 2452
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2453 2454 2455
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2456
    def __init__(self, block):
2457
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2458 2459 2460 2461 2462 2463 2464 2465
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2466 2467 2468
        return super(ConditionalBlockGuard, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
2469 2470 2471


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2472 2473 2474 2475 2476 2477 2478 2479
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2480
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2481 2482 2483 2484 2485
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2486
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2498
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2499
        for each_input in inputs:
2500
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2501
        self.inputs = inputs
2502
        self.is_scalar_condition = is_scalar_condition
2503
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2514 2515 2516
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2517

2518 2519 2520
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2521
        param_list = [
W
Wu Yi 已提交
2522
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2523 2524
        ]

X
Xin Pan 已提交
2525 2526 2527 2528 2529
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2530 2531

        step_scope = parent_block.create_var(
2532 2533
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2534
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2535 2536
            type='conditional_block',
            inputs={
2537 2538
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2539
            },
2540
            outputs={'Out': out_list, 'Scope': [step_scope]},
2541 2542
            attrs={
                'sub_block': inside_block,
2543 2544 2545
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2546

2547
        if self.need_append_conditional_block_grad(inside_block):
2548 2549 2550
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2551 2552 2553

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2554
        inside_block_idx = inside_block.idx
2555

2556 2557
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2558 2559 2560
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2561

2562 2563 2564
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2600
                param_list.append(inner_var.name)
2601 2602

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2603 2604
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
2605 2606 2607 2608 2609 2610 2611 2612 2613

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2614 2615 2616
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2617 2618 2619

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2620 2621 2622 2623
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
2624
                continue
2625
            grad_sub_block.desc.var(grad_var_name.encode())
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2640

2641
def copy_var_to_parent_block(var, layer_helper):
2642 2643
    if not isinstance(var, Variable):
        return var
2644 2645
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2646 2647 2648
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2649 2650
    parent_block = prog.block(parent_idx)

2651 2652 2653 2654
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2655 2656
        parent_block_var = var
    else:
2657 2658 2659
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2660
        assign(var, parent_block_var)
2661 2662 2663
    return parent_block_var


2664
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2665
    """
2666 2667 2668 2669 2670 2671 2672 2673 2674
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2675 2676

    Note:
2677 2678 2679 2680
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2681 2682 2683
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2684
        3. If it is in static mode, any tensors or operations created outside
2685 2686 2687
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2688 2689

        .. code-block:: python
2690 2691 2692 2693 2694

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2695
            c = a * b
2696
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2697

2698 2699 2700
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2701 2702

    Args:
2703
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2704
            value determines whether to return the result of ``true_fn`` or
2705 2706 2707 2708 2709 2710
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2711
             don't have to set this parameter. For more information, please
2712
             refer to :ref:`api_guide_Name` .
2713 2714 2715
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2716
             be same with return values of true_fn and false_fn.
2717 2718

    Returns:
2719
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2720
        predicate ``pred`` is true else ``false_fn()`` .
2721 2722 2723

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2724 2725
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2726 2727 2728 2729

    Examples:
        .. code-block:: python

2730
            import paddle
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2741 2742 2743 2744
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2745

2746 2747

            def false_func():
2748 2749 2750 2751 2752
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2753

2754 2755
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2756
            pred = paddle.less_than(x=x, y=y, name=None)
2757
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2758
            # ret is a tuple containing 2 tensors
2759 2760
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2761
            #           [ True  True  True]]
2762

2763
    """
J
Jiabin Yang 已提交
2764
    if _non_static_mode():
2765
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2766
        assert pred.size == 1, "condition input's numel should be 1"
2767 2768 2769 2770 2771
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2772 2773 2774 2775
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2776 2777 2778 2779 2780
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2781 2782 2783 2784
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2785 2786 2787
                return false_fn()
        return None

2788 2789
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2790 2791 2792
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2793
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2794 2795
    if true_fn is not None:
        if not callable(true_fn):
2796 2797
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2798 2799 2800
                    type(true_fn).__name__
                )
            )
2801 2802 2803 2804
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2805 2806 2807
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2808 2809
    if false_fn is not None:
        if not callable(false_fn):
2810 2811
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2812 2813 2814 2815 2816 2817
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True
        )
2818 2819 2820
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2821 2822 2823
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2824 2825 2826 2827 2828 2829 2830

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2831 2832
            "true_fn returns None while false_fn returns non-None"
        )
2833 2834 2835
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2836 2837
            "true_fn returns non-None while false_fn returns None"
        )
2838 2839

    # Merge ture and false output if they are not None
2840
    if return_names is None:
2841
        is_dy2staic = False
2842
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2843
    else:
2844
        """
2845 2846
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2847 2848 2849 2850 2851 2852 2853
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2854
        true_output, false_output = expand_undefined_var(
2855 2856
            true_output, false_output, return_names
        )
2857

2858 2859 2860
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2861
        raise ValueError(
2862
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2863 2864
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2865 2866 2867
            )
        )
    for true_out, false_out, return_name in zip(
2868 2869 2870
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2871
    ):
2872 2873 2874 2875
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2876 2877 2878 2879
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2880

2881
    def check_ret_none(seq_true, seq_false, seq_names):
2882 2883 2884
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2885
            for idx in range(len(f_true)):
2886 2887 2888 2889 2890 2891
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2892 2893 2894 2895
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2896
                            f_name,
2897 2898 2899 2900 2901 2902 2903 2904
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2905 2906 2907
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2908
    )
2909 2910 2911

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2912 2913
            true_output, false_output
        )
2914

2915
    mask = cast(pred, dtype='int32')
2916 2917 2918 2919 2920
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2921 2922 2923 2924 2925

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2926 2927
        map(
            merge_every_var_list,
2928 2929 2930
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2931 2932
        )
    )
2933
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2934 2935 2936
    return merged_output


2937 2938 2939 2940
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
2941 2942
        if x is None:
            return UndefinedVar("padding")
2943 2944 2945 2946 2947 2948 2949
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2968
def expand_undefined_var(nest1, nest2, names):
2969 2970 2971 2972
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2973
    """
2974
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
2975 2976 2977
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_VALUE_PREFIX,
    )
2978 2979

    def pack_undefined_var_as(seq):
2980 2981 2982
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2983

2984
    def map_fn(n1, n2, name, order):
2985 2986 2987
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2988 2989 2990 2991 2992 2993
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2994 2995 2996
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2997 2998 2999 3000 3001
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
3002 3003 3004
                            name, type(n2), n2, type(n1), n1
                        )
                    )
3005 3006 3007 3008
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
3009 3010
        map(
            map_fn,
3011 3012 3013 3014
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
3015 3016
        )
    )
3017
    nest2_out = list(
3018 3019
        map(
            map_fn,
3020 3021 3022 3023
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
3024 3025
        )
    )
3026
    if not _is_sequence_except_dict(nest1):
3027
        nest1_out = nest1_out[0]
3028
    if not _is_sequence_except_dict(nest2):
3029
        nest2_out = nest2_out[0]
3030 3031 3032
    return nest1_out, nest2_out


L
liym27 已提交
3033
def _error_message(what, arg_name, op_name, right_value, error_value):
3034 3035
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
3036
        "{right_value}, but received: {error_value}.".format(
3037 3038 3039 3040 3041 3042 3043
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
3044 3045 3046 3047 3048 3049

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
3050 3051
    :api_attr: Static Graph

L
liym27 已提交
3052 3053 3054 3055 3056 3057 3058 3059
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3060
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
3061 3062 3063 3064 3065 3066 3067
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
3068
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
3069 3070 3071 3072 3073 3074
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3075 3076 3077
            import paddle

            paddle.enable_static()
L
liym27 已提交
3078 3079

            def fn_1():
3080
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3081 3082

            def fn_2():
3083
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3084 3085

            def fn_3():
3086
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3087

3088 3089 3090 3091
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
3092 3093 3094
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
3095

3096 3097 3098
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
3099 3100

                # Call fn_1 because pred_1 is True
3101
                out_1 = paddle.static.nn.case(
L
liym27 已提交
3102 3103 3104 3105
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
3106
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
3107

3108
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
3119
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
3120 3121 3122 3123

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
3124 3125 3126 3127 3128 3129 3130 3131
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
3132 3133
            if len(pred_fn) != 2:
                raise TypeError(
3134 3135 3136 3137 3138 3139 3140 3141
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
3142 3143 3144 3145
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
3146 3147 3148 3149 3150 3151 3152 3153
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
3154 3155 3156 3157

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
3158 3159
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


3181
class Switch(object):
Q
qiaolongfei 已提交
3182
    """
3183
    :api_attr: Static Graph
Q
qiaolongfei 已提交
3184

3185 3186 3187 3188 3189
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
3190 3191
    only the statement following the default branch is executed.

3192 3193 3194 3195
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

3196
    Member Functions:
3197
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
3198

3199 3200 3201 3202 3203
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
3214

3215 3216
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
3217 3218 3219

    Examples:
        .. code-block:: python
3220

3221
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
3222

3223
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
3224 3225 3226 3227 3228
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
3229
            zero_var = fluid.layers.fill_constant(
3230
                shape=[1], dtype='float32', value=0.0)
3231
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
3232
                shape=[1], dtype='float32', value=1.0)
3233
            two_var = fluid.layers.fill_constant(
3234
                shape=[1], dtype='float32', value=2.0)
3235

3236
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
3237 3238

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
3239
                with switch.case(global_step == zero_var):
3240
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
3241
                with switch.default():
3242
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
3243

3244 3245 3246 3247 3248
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
3249 3250
    """

3251 3252 3253 3254 3255 3256 3257 3258 3259
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

3260
        check_variable_and_dtype(
3261 3262 3263 3264 3265
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
3266

3267 3268 3269 3270 3271 3272 3273
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
3274 3275 3276
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition)
            )
3277 3278
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
3279
                [logical_and(x=pre_not_cond, y=condition)],
3280 3281
                is_scalar_condition=True,
            )
3282 3283 3284 3285 3286 3287 3288 3289 3290

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
3291 3292
            is_scalar_condition=True,
        )
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
3332 3333 3334 3335 3336
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3349
    """
3350 3351
    :api_attr: Static Graph

3352 3353 3354 3355
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3356 3357 3358 3359
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3360 3361 3362
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3392
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3393 3394 3395 3396 3397 3398 3399 3400

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3401
        print(res)
3402
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3403 3404

    Args:
3405 3406
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3407

3408 3409
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3410

3411 3412
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3413

3414 3415 3416 3417 3418 3419 3420
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3421

X
Xin Pan 已提交
3422
    """
3423

Y
Yu Yang 已提交
3424 3425 3426 3427
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3428
    def __init__(self, cond, name=None):
3429 3430
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3431
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3443
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3444
            out_true = parent_block.create_var(
3445 3446 3447 3448 3449
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3450 3451

            out_false = parent_block.create_var(
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3475
    def _parent_block(self):
Y
Yu Yang 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3489 3490 3491
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3492
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3493
        for each_out in outs:
3494 3495 3496
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3497 3498
            # create outside tensor
            outside_out = parent_block.create_var(
3499 3500 3501 3502 3503
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3504 3505 3506
            out_table.append(outside_out)

            # assign local var to outside
3507
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3508 3509 3510 3511

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3512
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3513
        if false_len == 0 and true_len == 0:
3514 3515 3516
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3527 3528 3529 3530 3531 3532 3533 3534
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3535
        return rlist
3536 3537 3538


class DynamicRNN(object):
Y
yuyang18 已提交
3539
    """
3540 3541
    :api_attr: Static Graph

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3554
    The input sequences will be shrank because only sequences of which the
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3567

3568 3569 3570 3571
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3572 3573 3574 3575

    Examples:
        .. code-block:: python

3576
            import paddle.fluid as fluid
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3604
    """
3605

3606 3607 3608 3609
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3610 3611
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3612 3613 3614 3615
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3616
        self.zero_idx = None
3617 3618 3619
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3620
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3621 3622 3623 3624 3625
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3626
    def step_input(self, x, level=0):
3627
        r"""
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3671

Y
yuyang18 已提交
3672
        Args:
3673 3674 3675 3676 3677 3678 3679
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3680 3681

        Returns:
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3716
        """
3717
        self._assert_in_rnn_block_("step_input")
3718
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3719 3720 3721
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3722
                name=unique_name.generate('lod_rank_table'),
3723 3724
                type=core.VarDesc.VarType.LOD_RANK_TABLE,
            )
3725
            self.lod_rank_table.stop_gradient = True
3726 3727 3728 3729 3730 3731
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level},
            )
3732
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3733
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
3734 3735
                dtype='int64',
            )
3736
            self.max_seq_len.stop_gradient = False
3737 3738 3739 3740 3741
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len},
            )
3742
            self.cond.stop_gradient = True
3743 3744 3745 3746 3747 3748
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx, 'Y': self.max_seq_len},
                outputs={'Out': self.cond},
                attrs={'force_cpu': True},
            )
3749 3750

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3751
            name=unique_name.generate('dynamic_rnn_input_array'),
3752
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
3753 3754
            dtype=x.dtype,
        )
3755
        self.input_array.append((input_array, x.dtype))
3756 3757 3758 3759 3760
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x, 'RankTable': self.lod_rank_table},
            outputs={'Out': input_array},
        )
3761
        return array_read(array=input_array, i=self.step_idx)
3762

Y
yangyaming 已提交
3763
    def static_input(self, x):
3764
        r"""
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3838

Y
yuyang18 已提交
3839
        Args:
3840 3841 3842 3843
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3844 3845

        Returns:
T
tianshuo78520a 已提交
3846
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3858 3859 3860 3861

        Examples:
            .. code-block:: python

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3888
        """
Y
yangyaming 已提交
3889
        self._assert_in_rnn_block_("static_input")
3890
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3891 3892
        if self.lod_rank_table is None:
            raise RuntimeError(
3893 3894
                "static_input() must be called after step_input()."
            )
Y
yangyaming 已提交
3895 3896
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3897
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3898
            type=core.VarDesc.VarType.LOD_TENSOR,
3899 3900 3901 3902 3903 3904 3905
            dtype=x.dtype,
        )
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x], 'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]},
        )
Y
yangyaming 已提交
3906 3907
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3908
    @signature_safe_contextmanager
3909
    def block(self):
Y
yuyang18 已提交
3910
        """
3911 3912 3913 3914 3915 3916
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3917
        """
3918 3919
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3920 3921 3922
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True
        )
3923 3924 3925 3926
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3927
            increment(x=self.step_idx, value=1.0, in_place=True)
3928 3929

            for new_mem, mem_array in self.mem_link:
3930 3931
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3932 3933 3934 3935 3936 3937
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond,
            )
3938 3939 3940 3941

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3942 3943
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table)
            )
3944 3945

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3946
        """
T
tianshuo78520a 已提交
3947
        This function is used to get the output  sequences of DynamicRNN.
3948 3949 3950 3951 3952 3953 3954 3955 3956

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3957
        """
3958
        if self.status != DynamicRNN.AFTER_RNN:
3959 3960 3961 3962 3963 3964
            raise ValueError(
                (
                    "Output of the dynamic RNN can only be visited "
                    "outside the rnn block."
                )
            )
3965 3966 3967 3968 3969
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3970 3971 3972 3973 3974 3975 3976 3977
    def memory(
        self,
        init=None,
        shape=None,
        value=0.0,
        need_reorder=False,
        dtype='float32',
    ):
3978
        r"""
3979 3980 3981
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3982

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3995
            value (float, optional): When init is None, it is used as initialized value
3996 3997
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3998
                the memory needs to reorder like the RNN's input sequences. It should be
3999 4000 4001 4002 4003 4004 4005
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
4006
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
4007
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
4008
                the memory Tensor also need to be shrank and will only retain data \
4009 4010 4011 4012 4013 4014
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4015

4016 4017 4018
        Examples:
            .. code-block:: python

4019
                import paddle.fluid as fluid
4020

4021 4022
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
4023

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
4035

4036 4037
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4038 4039


4040 4041
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4062
        """
4063
        self._assert_in_rnn_block_('memory')
4064
        self._init_zero_idx_()
4065
        if shape is not None:
4066 4067 4068 4069 4070 4071
            check_type(
                shape,
                'shape',
                (list, tuple),
                'fluid.layers.DynamicRNN.memory()',
            )
4072
        if init is not None:
4073 4074 4075
            check_type(
                init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()'
            )
4076
            parent_block = self._parent_block_()
4077 4078 4079 4080 4081 4082
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
4083 4084
                        'memory(init=init, need_reordered=True, ...).'
                    )
4085
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
4086
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
4087
                    type=core.VarDesc.VarType.LOD_TENSOR,
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
                    dtype=init.dtype,
                )
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table],
                    },
                    outputs={'Out': [init_reordered]},
                )
4098
                init_tensor = init_reordered
4099
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
4100
                name=unique_name.generate('dynamic_rnn_mem_array'),
4101
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4102 4103 4104 4105 4106 4107 4108
                dtype=init.dtype,
            )
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init_tensor, 'I': self.zero_idx},
                outputs={'Out': mem_array},
            )
4109
            retv = array_read(array=mem_array, i=self.step_idx)
4110 4111 4112
            retv = shrink_memory(
                x=retv, i=self.step_idx, table=self.lod_rank_table
            )
4113 4114 4115 4116 4117 4118 4119 4120 4121
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
4122 4123
                name=unique_name.generate('mem_init'), dtype=dtype
            )
4124
            arr, dtype = self.input_array[0]
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype
            )
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr], 'I': [self.zero_idx]},
                outputs={'Out': [in0]},
            )
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype,
                },
            )
4143 4144 4145
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
4146
        """
4147 4148
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
4149
        Args:
4150 4151 4152
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
4153 4154 4155

        Returns:
            None
4156

4157 4158 4159 4160 4161
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4162
        """
4163
        self._assert_in_rnn_block_('update_memory')
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
        check_type(
            ex_mem,
            'ex_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
        check_type(
            new_mem,
            'new_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
4186
        """
4187
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
4188 4189

        Args:
4190 4191
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
4192 4193 4194

        Returns:
            None
4195 4196 4197

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
4198
        """
4199 4200 4201
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
4202 4203 4204
            check_type(
                each, "outputs", Variable, "fluid.layers.DynamicRNN.output"
            )
4205
            outside_array = parent_block.create_var(
4206 4207 4208
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, "output_array", each.name])
                ),
4209
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4210 4211
                dtype=each.dtype,
            )
4212 4213 4214
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

4215 4216 4217 4218
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
                name=unique_name.generate('zero_idx'), dtype='int64'
            )
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True,
                },
            )
4232

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
4243
            raise ValueError(
4244 4245
                "{0} can only be invoked inside rnn block.".format(method)
            )
Y
Yang Yu 已提交
4246 4247


L
liym27 已提交
4248 4249
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
4250 4251
    :api_attr: Static Graph

L
liym27 已提交
4252 4253 4254
    This operator is like a C++ switch/case statement.

    Args:
4255
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
4256 4257 4258 4259 4260
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4261
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
4262 4263 4264 4265
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
4266
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

4278 4279 4280
            import paddle

            paddle.enable_static()
4281

L
liym27 已提交
4282
            def fn_1():
4283
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
4284 4285

            def fn_2():
4286
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
4287 4288

            def fn_3():
4289
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
4290

4291 4292 4293
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
4294 4295
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
4296

4297
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
4298 4299 4300 4301
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

4302
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
4303 4304 4305 4306 4307
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
4308
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
4309 4310 4311
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

4312
                exe = paddle.static.Executor(paddle.CPUPlace())
4313
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
4314 4315 4316 4317 4318 4319 4320 4321
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

4322 4323 4324 4325 4326 4327
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
4328 4329 4330 4331

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

4332
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
4333

4334 4335 4336
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
4337

4338 4339 4340 4341 4342
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
4343 4344 4345 4346 4347

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
4348 4349 4350 4351 4352 4353 4354 4355
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
4356 4357 4358

            if len(index_fn_pair) != 2:
                raise TypeError(
4359 4360 4361 4362 4363 4364 4365 4366
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
4367 4368 4369 4370 4371

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
4372 4373 4374 4375 4376 4377 4378 4379
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
4380 4381 4382

            if key in keys_of_fns:
                raise ValueError(
4383 4384 4385 4386
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
4387 4388 4389 4390 4391
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4392 4393
                    _error_message(
                        "The type of function for key {}".format(key),
4394 4395 4396 4397 4398 4399
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4424
@templatedoc()
Y
Yang Yu 已提交
4425
def reorder_lod_tensor_by_rank(x, rank_table):
4426 4427 4428 4429
    """
    ${comment}

    Args:
4430 4431
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4432

4433
    Returns:
4434
        out(${out_type}): ${out_comment}.
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4448 4449

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
4450 4451 4452
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
4453 4454 4455
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4456 4457
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4458
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4459 4460 4461 4462 4463
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
4464
    return out
4465 4466


4467
def is_empty(x, name=None):
4468
    """
4469

4470
    Test whether a Tensor is empty.
4471 4472

    Args:
4473 4474 4475 4476
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4477 4478

    Returns:
4479
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4480 4481 4482 4483

    Examples:
        .. code-block:: python

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4495

4496
    """
H
hong 已提交
4497
    if in_dygraph_mode():
W
wanghuancoder 已提交
4498
        return _C_ops.is_empty(x)
4499 4500
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4501

4502 4503 4504
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
4505 4506
    check_type(name, "name", (str, type(None)), "is_empty")

4507
    helper = LayerHelper("is_empty", **locals())
4508 4509
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4510 4511 4512
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
4513
    return cond