nn.py 304.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
100
    'roi_pool',
J
jerrywgz 已提交
101
    'roi_align',
X
Xin Pan 已提交
102 103 104 105
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
106
    'resize_nearest',
X
Xin Pan 已提交
107 108 109 110 111 112
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
113
    'selu',
X
Xin Pan 已提交
114 115 116
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
117
    'margin_rank_loss',
X
Xin Pan 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
161
    'space_to_depth',
W
whs 已提交
162
    'affine_grid',
S
sneaxiy 已提交
163
    'sequence_reverse',
164
    'affine_channel',
B
barrierye 已提交
165
    'similarity_focus',
M
minqiyang 已提交
166
    'hash',
D
dengkaipeng 已提交
167
    'grid_sampler',
G
gmcather 已提交
168 169
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
170
    'bilinear_tensor_product',
Y
Yu Yang 已提交
171 172 173 174 175 176 177 178 179
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
180
       is_test=False,
181
       name=None):
Y
Yu Yang 已提交
182
    """
183
    **Fully Connected Layer**
Y
Yu Yang 已提交
184

185 186 187 188 189 190 191 192
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
193
    to the output as well.
C
caoying03 已提交
194

C
caoying03 已提交
195
    This process can be formulated as follows:
196 197 198

    .. math::

199
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
200 201 202

    In the above equation:

C
caoying03 已提交
203 204 205 206
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
207
    * :math:`Act`: The activation function.
C
caoying03 已提交
208
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
209 210

    Args:
R
ranqiu 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
226 227
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
228
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
229
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
230
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
231

232
    Returns:
F
fengjiayi 已提交
233
        Variable: The transformation result.
234 235

    Raises:
C
caoying03 已提交
236
        ValueError: If rank of the input tensor is less than 2.
237 238 239 240

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
241
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
242
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
243
    """
C
caoying03 已提交
244

C
caoying03 已提交
245
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
246 247 248 249

    dtype = helper.input_dtype()

    mul_results = []
250 251
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
252 253 254
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
255

Y
Yu Yang 已提交
256
        w = helper.create_parameter(
257
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
258
        tmp = helper.create_variable_for_type_inference(dtype)
259
        helper.append_op(
260 261 262
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
263
            outputs={"Out": tmp},
M
mozga-intel 已提交
264 265
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
266 267 268 269
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
270
    else:
X
Xin Pan 已提交
271
        pre_bias = helper.create_variable_for_type_inference(dtype)
272
        helper.append_op(
273 274 275
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
276
            attrs={"use_mkldnn": False})
277 278 279 280
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
281 282


283 284 285
def embedding(input,
              size,
              is_sparse=False,
286
              is_distributed=False,
287 288 289
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
290
    """
291 292
    **Embedding Layer**

293
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
294 295
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
296 297 298

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
299 300

    Args:
301 302 303 304 305
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
306
        is_distributed(bool): Whether to run lookup table from remote parameter server.
307 308
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
309
            with zeros whenever lookup encounters it in :attr:`input`. If
310
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
311 312
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
313
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
314

315 316 317
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
318

319 320
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
321

C
chengduoZH 已提交
322
          dict_size = len(dataset.ids)
323
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
324
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
325 326 327 328 329
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
330
    tmp = helper.create_variable_for_type_inference(dtype)
331 332
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
333 334 335 336 337
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
338 339 340 341 342
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
343 344 345
    return tmp


W
wopeizl 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
P
peizhilin 已提交
362

W
wopeizl 已提交
363 364 365 366 367 368 369 370 371 372 373
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
374

W
wopeizl 已提交
375 376 377 378
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
379

W
wopeizl 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
466 467


Y
Yibing Liu 已提交
468 469 470 471 472 473 474 475 476 477 478
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
479 480
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
481 482 483
    """
    **Dynamic LSTMP Layer**

484 485 486 487 488 489
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
490 491 492 493 494

    The formula is as follows:

    .. math::

495
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
496

497
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
498

499
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
500

501
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
502

503
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
504

505
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
506

507
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
508

Y
Yibing Liu 已提交
509 510 511 512 513 514
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
515
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
516
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
517
          bias vector).
Y
Yibing Liu 已提交
518 519 520
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
521
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
522
    * :math:`h`: The hidden state.
523
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
524 525
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
526
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
527
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
528
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
529 530
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
531 532 533 534

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
535

Y
Yibing Liu 已提交
536 537 538 539 540 541 542 543 544 545 546 547
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
548
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
549 550
                               hidden-hidden weight and projection weight.

551 552
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
553 554
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
555 556
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
557
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
558 559 560 561 562

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
563
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
564 565 566 567 568 569
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
570
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
571 572 573
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
574
                                - The shape is (1 x 7D).
C
chengduo 已提交
575 576 577 578 579

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
580 581 582 583 584 585 586 587 588
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
589
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
590 591
                              default "tanh".
        proj_activation(str): The activation for projection output.
592
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
593 594
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
595 596
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
597 598

    Returns:
599 600 601 602
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
603 604

    Examples:
605

Y
Yibing Liu 已提交
606 607
        .. code-block:: python

608 609 610 611
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
612
            hidden_dim, proj_dim = 512, 256
613
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
614
                                     act=None, bias_attr=None)
615 616 617
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
618 619 620 621
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
622
    """
623

C
chengduo 已提交
624
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
625
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
626
    size = size // 4
Y
Yibing Liu 已提交
627 628 629 630 631 632 633 634 635 636
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
637 638 639 640 641 642
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
671 672 673 674 675 676 677 678 679
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
680
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
681

682
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
683
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
684

G
guosheng 已提交
685 686 687 688 689 690 691 692 693
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
694

G
guosheng 已提交
695
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
696

G
guosheng 已提交
697
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
698 699
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
700 701 702 703
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
704
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
705 706

    Args:
707 708
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
709
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
710
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
711 712
            is the hidden size.
        size(int): The dimension of the gru cell.
713
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
714 715
            hidden-hidden weight matrix. Note:

716
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
717
              :math:`D` is the hidden size.
718
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
719
              The first part are weights of the update gate and reset gate with
720
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
721
              candidate hidden state with shape :math:`(D \\times D)`.
722 723 724 725 726

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
727
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
728
            the bias in the update gate, reset gate and candidate calculations.
729 730 731
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
732 733
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
734
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
735 736 737
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
738
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
739
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
740 741 742 743
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
744 745

    Returns:
G
guosheng 已提交
746
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
747
            and sequence length is the same with the input.
748

G
guosheng 已提交
749
    Examples:
750

G
guosheng 已提交
751 752
        .. code-block:: python

753 754 755 756
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
757
            hidden_dim = 512
758
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
759 760 761 762 763 764 765 766 767 768
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
769
    batch_size = input.shape[0]
G
guosheng 已提交
770
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
771
    if h_0:
G
guosheng 已提交
772
        assert h_0.shape == (
Y
Yancey 已提交
773 774 775
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
776

X
Xin Pan 已提交
777 778 779 780
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
799 800 801
def gru_unit(input,
             hidden,
             size,
802 803
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
804
             activation='tanh',
805
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
806
    """
807
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
808

809 810
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
811

812
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
813

814
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
815

816
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
817 818

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
819 820 821
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
822 823
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

824 825
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
826 827 828
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
829 830 831

    Args:
        input (Variable): The fc transformed input value of current step.
832
        hidden (Variable): The hidden value of gru unit from previous step.
833
        size (integer): The input dimension value.
834 835 836 837 838 839 840 841 842 843 844 845 846 847
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
848
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
849
            the bias in the update gate, reset gate and candidate calculations.
850 851 852
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
853 854
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
855 856 857 858
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
859

860 861 862 863 864 865
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
866

867
             # assuming we have x_t_data and prev_hidden of size=10
868
             x_t = fluid.layers.fc(input=x_t_data, size=30)
869 870
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
883
    size = size // 3
Y
Yu Yang 已提交
884 885

    # create weight
886 887
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
888

X
Xin Pan 已提交
889 890 891
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
892
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
893
    # create bias
894
    if helper.bias_attr:
Y
Yu Yang 已提交
895 896 897
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
898
        inputs['Bias'] = bias
Y
Yu Yang 已提交
899 900 901

    helper.append_op(
        type='gru_unit',
902
        inputs=inputs,
Y
Yu Yang 已提交
903 904 905 906 907 908
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
909 910
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
911 912 913 914 915
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
916
@templatedoc()
917
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
918 919 920 921 922 923 924
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
925
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
926 927 928 929
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
930 931 932
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
933 934

    """
Y
Yu Yang 已提交
935 936 937 938 939 940
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
941 942 943 944 945 946 947 948
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
964 965 966 967
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yuyang18 已提交
968

W
wopeizl 已提交
969 970
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
971

W
wopeizl 已提交
972
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
973

W
wopeizl 已提交
974
        label(${label_type}): ${label_comment}
Y
yuyang18 已提交
975

W
wopeizl 已提交
976 977
    Returns:
        Variable: ${viterbi_path_comment}
978

W
wopeizl 已提交
979 980
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
981

W
wopeizl 已提交
982 983 984 985 986 987 988 989 990 991
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
P
peizhilin 已提交
992
                "Transition": transition,
W
wopeizl 已提交
993 994
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
995

W
wopeizl 已提交
996
    return viterbi_path
Y
Yu Yang 已提交
997 998


Y
yi.wu 已提交
999
@templatedoc()
F
fengjiayi 已提交
1000
def cos_sim(X, Y):
Y
Yu Yang 已提交
1001
    """
Y
yi.wu 已提交
1002 1003 1004
    ${comment}

    Args:
1005 1006
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1007

Y
yi.wu 已提交
1008
    Returns:
1009
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1010
    """
F
fengjiayi 已提交
1011
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1012 1013 1014
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1025 1026 1027 1028 1029
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1030
            dropout_implementation="downgrade_in_infer"):
1031 1032 1033 1034 1035
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1036
    training. The dropout operator randomly sets (according to the given dropout
1037 1038 1039 1040
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1041 1042
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1043 1044 1045 1046 1047 1048 1049
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1061
                                           dropout op can be removed from the program.
P
phlrain 已提交
1062
                                           the program will be efficient
1063

P
phlrain 已提交
1064

1065 1066

    Returns:
1067
        Variable: A tensor variable is the shape with `x`.
1068 1069

    Examples:
1070

1071 1072
        .. code-block:: python

1073 1074
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1075 1076
    """

F
fengjiayi 已提交
1077
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1078 1079 1080
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1081 1082 1083 1084

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1085 1086 1087 1088 1089
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1090 1091 1092 1093
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1094 1095
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1096
        })
1097 1098 1099
    return out


1100
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1101
    """
Y
Yibing Liu 已提交
1102 1103
    **Cross Entropy Layer**

1104 1105 1106
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1107 1108

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1109
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1110

Y
Yibing Liu 已提交
1111
        .. math::
Y
yangyaming 已提交
1112

Y
Yibing Liu 已提交
1113 1114 1115
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1116 1117
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1118 1119 1120 1121 1122

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1123
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1124 1125 1126
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1127 1128
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1129
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1130

Y
Yibing Liu 已提交
1131
    Args:
Y
yangyaming 已提交
1132
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1133 1134 1135 1136
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1137
        label (Variable|list): the ground truth which is a 2-D tensor. When
1138 1139 1140 1141
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1142
        soft_label (bool): a flag indicating whether to
1143
                                           interpretate the given labels as soft
1144
                                           labels. Default: `False`.
M
minqiyang 已提交
1145 1146
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1147
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1148 1149 1150 1151 1152

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1153 1154 1155 1156 1157
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1158 1159 1160 1161 1162 1163

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1164
    """
F
fengjiayi 已提交
1165
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1166
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1167 1168 1169 1170 1171
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1172 1173
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1174 1175 1176
    return out


F
fengjiayi 已提交
1177
def square_error_cost(input, label):
Y
Yu Yang 已提交
1178
    """
1179 1180
    **Square error cost layer**

1181 1182
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1197 1198
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1199 1200

    Returns:
G
guosheng 已提交
1201
        Variable: The tensor variable storing the element-wise squared error \
1202
                  difference of input and label.
1203 1204 1205 1206 1207 1208 1209 1210

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1211
    """
F
fengjiayi 已提交
1212
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1213
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1214 1215 1216 1217 1218 1219
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1220
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1221
    helper.append_op(
F
fengjiayi 已提交
1222 1223
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1224 1225 1226
    return square_out


Y
yi.wu 已提交
1227
@templatedoc()
Y
Yu Yang 已提交
1228 1229 1230 1231
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1232
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1233
    """
Y
yi.wu 已提交
1234
    **Chunk Evaluator**
Y
yi.wu 已提交
1235

Y
yangyaming 已提交
1236
    This function computes and outputs the precision, recall and
1237
    F1-score of chunk detection.
Y
yi.wu 已提交
1238

Y
yi.wu 已提交
1239 1240 1241 1242 1243 1244 1245 1246
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1247

Y
yi.wu 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1273

Y
yi.wu 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1298
    Args:
1299 1300 1301 1302 1303
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1304

Y
yi.wu 已提交
1305
    Returns:
Y
update  
yi.wu 已提交
1306 1307 1308
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1309

Y
yi.wu 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1322
    """
F
fengjiayi 已提交
1323
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1324 1325

    # prepare output
X
Xin Pan 已提交
1326 1327 1328 1329 1330 1331 1332
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1333 1334 1335 1336 1337 1338 1339 1340

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1341 1342 1343 1344
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1345 1346 1347
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1348 1349
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1350
        })
1351 1352
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1353 1354


1355
@templatedoc()
Y
Yu Yang 已提交
1356 1357 1358 1359 1360 1361 1362
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1363 1364
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1365 1366 1367 1368
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1369 1370 1371 1372 1373 1374 1375

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1389

1390 1391
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1392 1393 1394 1395 1396 1397 1398
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1399
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1410
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1411 1412 1413 1414 1415 1416
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1417
def sequence_softmax(input, use_cudnn=False, name=None):
1418 1419 1420
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1421
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1438 1439 1440
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1453 1454
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1455
    softmax_out = helper.create_variable_for_type_inference(dtype)
1456 1457 1458 1459 1460 1461 1462 1463
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1464
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1465
    """
1466
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1467
    has the same shape as the input.
Q
qiaolongfei 已提交
1468

1469 1470 1471 1472 1473 1474
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1475
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1476 1477 1478 1479 1480 1481 1482

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1483
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1484 1485 1486 1487 1488 1489 1490 1491

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1492 1493 1494
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1507 1508
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1509
    softmax_out = helper.create_variable_for_type_inference(dtype)
1510 1511 1512 1513 1514 1515 1516 1517
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1518 1519 1520
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1521 1522
           stride=1,
           padding=0,
1523
           dilation=1,
Y
Yu Yang 已提交
1524 1525 1526
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1527
           use_cudnn=True,
1528 1529
           act=None,
           name=None):
Y
Yu Yang 已提交
1530
    """
C
chengduoZH 已提交
1531
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1532 1533
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1534
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1535 1536 1537 1538 1539 1540 1541
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1542 1543 1544
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1545

1546
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1547

C
chengduoZH 已提交
1548 1549
    .. math::

C
refine  
chengduoZH 已提交
1550
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1551

T
tensor-tang 已提交
1552
    Where:
C
chengduoZH 已提交
1553

1554 1555 1556 1557 1558
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1559
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1560 1561 1562

    Example:

1563 1564
        - Input:

W
weixing02 已提交
1565
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1566

W
weixing02 已提交
1567
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1568

1569
        - Output:
T
tensor-tang 已提交
1570

W
weixing02 已提交
1571
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1572

C
chengduoZH 已提交
1573
        Where
1574 1575

        .. math::
C
chengduoZH 已提交
1576

W
weixing02 已提交
1577 1578
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1579 1580

    Args:
1581
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1582
        num_filters(int): The number of filter. It is as same as the output
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1611 1612
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1613 1614
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1615
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1616
            will be named automatically. Default: None
C
chengduoZH 已提交
1617 1618

    Returns:
G
guosheng 已提交
1619
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1620 1621
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1622
    Raises:
1623 1624
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1625

C
chengduoZH 已提交
1626 1627 1628
    Examples:
        .. code-block:: python

1629 1630
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1631 1632 1633
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1634
    assert param_attr is not False, "param_attr should not be False here."
1635
    l_type = 'conv2d'
X
xzl 已提交
1636 1637
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1638
        l_type = 'depthwise_conv2d'
1639 1640 1641 1642

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1643 1644 1645 1646 1647
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1648
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1649

C
chengduoZH 已提交
1650 1651 1652
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1653
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1654

C
chengduoZH 已提交
1655 1656
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1657 1658

    input_shape = input.shape
M
minqiyang 已提交
1659
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1660 1661

    def _get_default_param_initializer():
C
chengduo 已提交
1662 1663
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1664 1665 1666 1667 1668 1669 1670 1671
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1672
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1688
    helper.append_op(
1689
        type=l_type,
Y
Yu Yang 已提交
1690 1691 1692 1693 1694
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1695 1696 1697
        attrs={
            'strides': stride,
            'paddings': padding,
1698
            'dilations': dilation,
C
chengduoZH 已提交
1699
            'groups': groups,
1700
            'use_cudnn': use_cudnn,
1701
            'use_mkldnn': False,
C
chengduoZH 已提交
1702
        })
Y
Yu Yang 已提交
1703 1704 1705 1706 1707 1708

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1726 1727 1728 1729 1730 1731
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1741 1742
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1743 1744 1745
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1746
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1772
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1773 1774
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1775
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1776 1777
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1778
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1779 1780
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1781
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1782 1783 1784 1785 1786 1787
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1798 1799
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1800 1801
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1802
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1803
            will be named automatically. Default: None.
C
chengduoZH 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1816 1817
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1818 1819 1820
    """

    l_type = 'conv3d'
C
chengduo 已提交
1821
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1832
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1846 1847 1848
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1849 1850 1851 1852 1853 1854 1855 1856
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1857
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1872
            'use_mkldnn': False
C
chengduoZH 已提交
1873 1874
        })

1875
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1876 1877 1878 1879

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1880
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1881
    """
Y
yangyaming 已提交
1882 1883 1884
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1896
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1897 1898 1899 1900 1901
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1902
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1903 1904 1905 1906 1907 1908 1909

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1910 1911
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1912

L
Luo Tao 已提交
1913 1914
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1915
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1916
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1917
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1918 1919 1920 1921 1922 1923 1924

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1925

Y
yangyaming 已提交
1926
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1927 1928 1929 1930 1931
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1932 1933
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1934
    """
F
fengjiayi 已提交
1935
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1936
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1937 1938
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1939 1940 1941 1942 1943 1944

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1945 1946
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1947

Y
yangyaming 已提交
1948 1949 1950 1951 1952
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1953 1954 1955
    return pool_out


C
add doc  
chengduoZH 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1975
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1976 1977 1978 1979 1980
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1981
def sequence_first_step(input):
L
Luo Tao 已提交
1982
    """
L
Luo Tao 已提交
1983
    This function gets the first step of sequence.
L
Luo Tao 已提交
1984 1985 1986 1987

    .. code-block:: text

       x is a 1-level LoDTensor:
1988
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1989 1990 1991 1992 1993
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1994
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1995
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1996

L
Luo Tao 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2006

Y
yangyaming 已提交
2007
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2008 2009 2010
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2011 2012 2013
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2014
def sequence_last_step(input):
L
Luo Tao 已提交
2015
    """
L
Luo Tao 已提交
2016
    This function gets the last step of sequence.
L
Luo Tao 已提交
2017 2018 2019 2020

    .. code-block:: text

       x is a 1-level LoDTensor:
2021
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2022 2023 2024 2025 2026
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2027
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2028
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2029

L
Luo Tao 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2039

Y
yangyaming 已提交
2040
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2041 2042 2043
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2044 2045 2046
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2047 2048 2049 2050
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2051
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2052 2053 2054 2055 2056
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2057

Y
Yibing Liu 已提交
2058 2059
	- Case:

2060
            Given the input Variable **input**:
2061

2062 2063 2064
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2065

2066
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2067

2068
            the output Variable will be
2069

2070 2071 2072
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2073 2074

    NOTE: The first dimension size of **input**, **offset** and **length**
2075
          should be equal. The **offset** should start from 0.
2076

Y
Yibing Liu 已提交
2077
    Args:
2078
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2079
                         sequences.
Y
Yibing Liu 已提交
2080 2081 2082 2083 2084 2085
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2086
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2097
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2098 2099 2100 2101
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2102
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2117
@templatedoc()
Y
Yu Yang 已提交
2118
def pool2d(input,
C
chengduoZH 已提交
2119 2120
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2121 2122
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2123
           global_pooling=False,
C
chengduoZH 已提交
2124
           use_cudnn=True,
2125
           ceil_mode=False,
2126 2127
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2128
    """
F
fengjiayi 已提交
2129
    ${comment}
2130 2131

    Args:
2132 2133 2134
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2135
                          feature, and W is the width of the feature.
2136
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2137
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2138
        pool_type: ${pooling_type_comment}
2139 2140
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2141 2142 2143
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2144
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2145
                        layer will be named automatically.
2146
        exclusive (bool): Whether to exclude padding points in average pooling
2147
                          mode, default is true
F
fengjiayi 已提交
2148

2149
    Returns:
F
fengjiayi 已提交
2150
        Variable: The pooling result.
F
fengjiayi 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2164 2165 2166 2167
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2168
                            global_pooling=False)
Y
Yu Yang 已提交
2169 2170 2171 2172 2173
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2174

C
chengduoZH 已提交
2175 2176 2177 2178 2179
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2180 2181 2182 2183
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2184 2185
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2186

C
Add doc  
chengduoZH 已提交
2187
    l_type = 'pool2d'
2188 2189

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2190
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2191
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2192 2193

    helper.append_op(
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2205 2206
            "use_mkldnn": False,
            "exclusive": exclusive,
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2220 2221
           name=None,
           exclusive=True):
2222 2223
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2224
    pooling configurations mentioned in input parameters.
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2237
        exclusive (bool): Whether to exclude padding points in average pooling
2238
                          mode, default is true
2239

2240
    Returns:
2241
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2242 2243 2244 2245 2246
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2247

C
chengduoZH 已提交
2248 2249 2250 2251 2252
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2253 2254 2255
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2256

C
chengduoZH 已提交
2257 2258
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2259

2260 2261
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2262
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2263
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2264 2265

    helper.append_op(
2266
        type=l_type,
Y
Yu Yang 已提交
2267 2268 2269 2270 2271 2272 2273
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2274
            "paddings": pool_padding,
2275
            "use_cudnn": use_cudnn,
2276
            "ceil_mode": ceil_mode,
2277 2278
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2291
               data_layout='NCHW',
Y
Yang Yang 已提交
2292
               in_place=False,
2293 2294
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2295
               moving_variance_name=None,
2296 2297
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2298
    """
Q
qiaolongfei 已提交
2299 2300 2301 2302
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2303

Q
qiaolongfei 已提交
2304
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2305

Q
qiaolongfei 已提交
2306 2307
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2308 2309 2310
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2323 2324

    Args:
Q
qiaolongfei 已提交
2325
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2326 2327 2328 2329
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2330 2331 2332 2333 2334 2335 2336 2337
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2338
        data_layout(string, default NCHW): NCHW|NHWC
2339
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2340 2341 2342 2343
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2344
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2345
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2346 2347

    Returns:
Q
qiaolongfei 已提交
2348
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2349 2350 2351 2352 2353 2354 2355

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2356
    """
C
chengduo 已提交
2357
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2380
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2381

2382 2383
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2384 2385 2386
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2387
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2388
        shape=param_shape,
2389 2390 2391 2392 2393 2394 2395
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2396
            trainable=False,
W
wanghaoshuang 已提交
2397
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2398
        shape=param_shape,
2399 2400
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2401 2402 2403 2404 2405 2406

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2407 2408 2409 2410
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2411

X
Xin Pan 已提交
2412 2413
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2431 2432 2433 2434
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2435
            "use_mkldnn": False,
2436
            "fuse_with_relu": fuse_with_relu
2437
        })
Y
Yu Yang 已提交
2438 2439 2440 2441

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2442
@templatedoc()
G
guosheng 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2453
    ${comment}
G
guosheng 已提交
2454 2455 2456

    The formula is as follows:

Y
yuyang18 已提交
2457
    ..  math::
G
guosheng 已提交
2458 2459 2460 2461 2462 2463 2464

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2465 2466 2467 2468 2469 2470 2471 2472
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2473

G
guosheng 已提交
2474 2475
    Args:
        input(Variable): The input tensor variable.
2476
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2477
            normalization. Default True.
2478
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2479 2480
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2481
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2482
            Default 1.
2483
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2484
            division by zero. Default 1e-05.
G
guosheng 已提交
2485
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2486 2487
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2488 2489
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2490
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2491 2492
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2493
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2494
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2495
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2496 2497 2498
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2499 2500

    Returns:
Y
yuyang18 已提交
2501
        ${y_comment}
G
guosheng 已提交
2502 2503 2504

    Examples:

Y
yuyang18 已提交
2505 2506 2507
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2523
    if shift:
G
guosheng 已提交
2524 2525 2526 2527 2528 2529
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2530 2531 2532 2533 2534
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2550 2551 2552 2553
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2554 2555 2556
                     padding=0,
                     stride=1,
                     dilation=1,
2557
                     groups=None,
C
caoying03 已提交
2558
                     param_attr=None,
2559
                     bias_attr=None,
C
chengduoZH 已提交
2560
                     use_cudnn=True,
2561
                     act=None,
C
caoying03 已提交
2562
                     name=None):
Y
Yu Yang 已提交
2563
    """
2564 2565 2566 2567 2568 2569 2570 2571
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2572 2573
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2574 2575 2576
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2577 2578 2579 2580 2581

    For each input :math:`X`, the equation is:

    .. math::

2582
        Out = \sigma (W \\ast X + b)
2583

2584
    Where:
2585 2586 2587

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2588 2589 2590 2591
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2592

2593 2594 2595 2596
    Example:

        - Input:

2597
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2598

2599
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2600 2601 2602

        - Output:

2603
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2604 2605

        Where
Y
Yu Yang 已提交
2606

2607 2608
        .. math::

2609 2610 2611 2612
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2613 2614

    Args:
2615 2616 2617 2618
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2619 2620 2621 2622
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2651
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2652 2653 2654
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2655
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2656
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2657 2658

    Returns:
2659
        Variable: The tensor variable storing the convolution transpose result.
2660 2661

    Raises:
2662 2663
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2664 2665 2666 2667

    Examples:
       .. code-block:: python

2668 2669
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2670
    """
C
chengduo 已提交
2671
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2672 2673 2674 2675 2676 2677 2678 2679
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2680 2681 2682
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2683 2684 2685
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2686

C
chengduoZH 已提交
2687 2688
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2689

Y
Yu Yang 已提交
2690 2691 2692 2693 2694
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2695

Y
Yu Yang 已提交
2696 2697
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2698

C
chengduoZH 已提交
2699
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2700
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2701
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2702
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2703
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2704 2705 2706
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2707

2708 2709 2710 2711 2712 2713 2714
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2715
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2716
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2717

Y
Yu Yang 已提交
2718 2719 2720
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2721
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2722
    helper.append_op(
2723
        type=op_type,
Y
Yu Yang 已提交
2724 2725
        inputs={'Input': [input],
                'Filter': [img_filter]},
2726
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2727
        attrs={
2728
            'output_size': output_size,
2729 2730 2731 2732 2733
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2734 2735
        })

2736 2737 2738
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2739 2740


2741
def conv3d_transpose(input,
Y
Yu Yang 已提交
2742 2743 2744
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2745 2746 2747
                     padding=0,
                     stride=1,
                     dilation=1,
2748
                     groups=None,
C
caoying03 已提交
2749
                     param_attr=None,
2750
                     bias_attr=None,
C
chengduoZH 已提交
2751
                     use_cudnn=True,
2752
                     act=None,
C
caoying03 已提交
2753
                     name=None):
Y
Yu Yang 已提交
2754
    """
2755
    **Convlution3D transpose layer**
2756

2757
    The convolution3D transpose layer calculates the output based on the input,
2758
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2759 2760 2761 2762 2763 2764
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2765 2766 2767
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2768 2769 2770 2771 2772

    For each input :math:`X`, the equation is:

    .. math::

2773
        Out = \sigma (W \\ast X + b)
2774 2775 2776

    In the above equation:

2777 2778
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2779 2780 2781 2782
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2783

2784 2785 2786 2787
    Example:

        - Input:

2788
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2789

2790
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2791 2792 2793

        - Output:

2794
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2795 2796

        Where
Y
Yu Yang 已提交
2797

2798 2799
        .. math::

2800 2801 2802
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2803 2804

    Args:
2805
        input(Variable): The input image with [N, C, D, H, W] format.
2806 2807 2808
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2809
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2810 2811
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2812
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2813 2814 2815
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2816 2817
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2818
        stride(int|tuple): The stride size. If stride is a tuple, it must
2819 2820
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2821
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2822 2823 2824
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2825 2826 2827 2828 2829
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2839 2840
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2841 2842
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2843 2844
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2845 2846

    Returns:
2847
        Variable: The tensor variable storing the convolution transpose result.
2848 2849

    Raises:
2850 2851
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2852 2853 2854 2855

    Examples:
       .. code-block:: python

2856 2857
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2858
    """
C
chengduo 已提交
2859
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2860 2861
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2862
    if not isinstance(input, Variable):
2863
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2864 2865
    input_channel = input.shape[1]

2866 2867 2868
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2869

C
chengduoZH 已提交
2870 2871 2872
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2873 2874 2875 2876 2877 2878
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2879 2880 2881
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2882

2883
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2884
                         padding[0] - 1) // dilation[0] + 1
2885
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2886
                         padding[1] - 1) // dilation[1] + 1
2887
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2888
                         padding[2] - 1) // dilation[2] + 1
2889
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2890
    else:
2891 2892
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2893

2894
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2895
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2896 2897 2898
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2899
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2900
    helper.append_op(
2901
        type=l_type,
Y
Yu Yang 已提交
2902 2903
        inputs={'Input': [input],
                'Filter': [img_filter]},
2904
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2905 2906 2907 2908
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2909
            'groups': groups,
C
chengduoZH 已提交
2910 2911
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2912

2913 2914
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2915
    return out
Y
yangyaming 已提交
2916 2917


Y
yangyaming 已提交
2918
def sequence_expand(x, y, ref_level=-1, name=None):
2919
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2920 2921 2922 2923
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2924 2925 2926 2927 2928

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2929
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2930
                x.data = [[a], [b], [c], [d]]
2931 2932 2933
                x.dims = [4, 1]

            y is a LoDTensor:
2934 2935
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2936

Y
yangyaming 已提交
2937
            ref_level: 0
2938

Y
yangyaming 已提交
2939
            then output is a 1-level LoDTensor:
2940
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2941
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2942 2943 2944 2945
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2946
                x.data = [[a], [b], [c]]
2947 2948 2949
                x.dims = [3, 1]

            y is a LoDTensor:
2950
                y.lod = [[2, 0, 3]]
2951

Y
yangyaming 已提交
2952
            ref_level: -1
2953

Y
yangyaming 已提交
2954 2955 2956
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2957 2958 2959
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2960 2961
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2962
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2963
                        will be named automatically.
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2974
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2975
    """
Y
yangyaming 已提交
2976
    helper = LayerHelper('sequence_expand', input=x, **locals())
2977
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2978
    tmp = helper.create_variable_for_type_inference(dtype)
2979
    helper.append_op(
Y
yangyaming 已提交
2980 2981 2982 2983 2984
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2985
    return tmp
2986 2987


C
chengduo 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3044
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3045 3046 3047 3048 3049 3050 3051 3052
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3053
@templatedoc()
3054
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3055 3056 3057 3058 3059
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3060 3061 3062
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3063
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3064 3065 3066 3067
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3068 3069 3070
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3071

F
fengjiayi 已提交
3072
    Returns:
M
minqiyang 已提交
3073
        Variable: The padded sequence batch and the original lengths before
3074
                  padding. All sequences has the same length.
M
minqiyang 已提交
3075

F
fengjiayi 已提交
3076 3077 3078 3079 3080 3081 3082
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3083
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3084
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3085 3086 3087 3088 3089
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3090 3091
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3092 3093 3094 3095

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3096 3097 3098 3099 3100 3101
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3102 3103
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3104
        attrs={'padded_length': maxlen})
3105
    return out, length
F
fengjiayi 已提交
3106 3107


3108
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3109
    """
3110
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3111

3112 3113
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3123 3124 3125
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3126
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3127 3128 3129 3130 3131 3132

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3133
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3134 3135 3136 3137 3138 3139

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3140 3141
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3156
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3168 3169 3170 3171 3172 3173 3174 3175 3176
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3177 3178
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3179 3180 3181

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3182 3183

    This layer does the search in beams for one time step. Specifically, it
3184 3185 3186 3187 3188 3189
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3199

3200
    Args:
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3226

3227
    Returns:
3228 3229
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3230 3231 3232 3233

    Examples:
        .. code-block:: python

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3251 3252 3253 3254
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3255 3256 3257
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3258 3259 3260 3261 3262

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3263
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3281 3282 3283 3284 3285 3286 3287
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3288

3289 3290 3291 3292 3293 3294 3295 3296 3297
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3298

3299 3300 3301 3302 3303 3304
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3305

3306 3307 3308 3309 3310 3311 3312 3313
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3314 3315
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3331 3332 3333 3334
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3335
              param_attr=None,
C
caoying03 已提交
3336 3337
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3338 3339 3340 3341
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3342
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3343

3344
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3345

3346
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3347

3348
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3349 3350 3351

            h_t & = o_t tanh(c_t)

3352 3353 3354 3355 3356 3357
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3358 3359 3360

        .. math::

3361
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3362 3363 3364 3365 3366 3367 3368 3369

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3370
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3371 3372

    Args:
Y
yangyaming 已提交
3373 3374 3375 3376 3377 3378
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3379
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3392 3393
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3394 3395

    Returns:
Y
yangyaming 已提交
3396
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3397 3398

    Raises:
3399 3400 3401 3402
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3403 3404 3405 3406 3407 3408

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3409
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3410
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3411
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3428
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3429 3430 3431 3432
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3433 3434
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3435 3436 3437
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3438
    size = cell_t_prev.shape[1]
3439
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3440 3441
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3442
                param_attr=param_attr,
3443
                bias_attr=bias_attr)
Y
yangyaming 已提交
3444
    dtype = x_t.dtype
X
Xin Pan 已提交
3445 3446
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3456
    return h, c
G
guosheng 已提交
3457 3458


C
caoying03 已提交
3459
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3460
    """
Y
yangyaming 已提交
3461
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3462 3463 3464

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3465
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3466 3467
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3468 3469
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3470
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3471
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3472
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3473 3474
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3475 3476 3477

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3478

G
guosheng 已提交
3479 3480 3481 3482 3483 3484
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3485
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3486 3487 3488 3489
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3490 3491 3492 3493

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3494
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3495 3496 3497
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3498 3499
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3500
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3501 3502
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3503 3504 3505 3506 3507
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3508
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3509 3510 3511 3512
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3513 3514


C
caoying03 已提交
3515
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3516
    """
Y
Yibing Liu 已提交
3517
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3518 3519 3520

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3521 3522 3523
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3524
            must be in the range :math:`[-rank(input), rank(input))`. If
3525
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3526
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3527 3528
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3529
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3530
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3531
                       will be named automatically.
G
guosheng 已提交
3532 3533

    Returns:
Y
Yibing Liu 已提交
3534
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3535

G
guosheng 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3546 3547
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3548 3549 3550 3551 3552 3553 3554

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3555 3556
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3557
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3558 3559
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3560 3561 3562 3563 3564
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3565
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3566 3567 3568 3569
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3570 3571


C
caoying03 已提交
3572
def reduce_max(input, dim=None, keep_dim=False, name=None):
3573
    """
Y
yangyaming 已提交
3574
    Computes the maximum of tensor elements over the given dimension.
3575 3576 3577

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3578
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3579 3580 3581
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3582
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3583 3584
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3585
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3586 3587
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3588 3589 3590

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3591

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3603 3604 3605 3606 3607 3608 3609

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3610 3611
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3612
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3613 3614
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3615 3616 3617 3618 3619
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3620
            'dim': dim if dim != None else [0],
3621 3622 3623 3624 3625 3626
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3627
def reduce_min(input, dim=None, keep_dim=False, name=None):
3628
    """
Y
yangyaming 已提交
3629
    Computes the minimum of tensor elements over the given dimension.
3630 3631 3632

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3633
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3634 3635 3636
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3637
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3638 3639
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3640
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3641 3642
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3643 3644 3645

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3646

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3658 3659 3660 3661 3662 3663 3664

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3665 3666
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3667
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3668 3669
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3670 3671 3672 3673 3674
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3675
            'dim': dim if dim != None else [0],
3676 3677 3678 3679
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3680 3681


3682 3683 3684 3685 3686 3687
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3688
        dim (list|int|None): The dimensions along which the product is performed. If
3689 3690
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3691 3692
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3693 3694 3695
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3696
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3697
            layer will be named automatically.
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3712
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3713
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3714 3715 3716 3717 3718 3719 3720

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3721 3722
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3723
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3724 3725
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3726 3727 3728 3729 3730
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3731
            'dim': dim if dim != None else [0],
3732 3733 3734 3735 3736 3737
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3738
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3739
    """
C
caoying03 已提交
3740
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3741 3742 3743

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3744 3745 3746 3747 3748
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3749
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3750
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3751
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3752 3753
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3754 3755

    Returns:
D
dzhwinter 已提交
3756
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3766 3767
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3783
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3806
    .. math::
3807 3808

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3809 3810 3811 3812 3813

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3814
        x(Variable|list): The input tensor to l2_normalize layer.
3815
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3816 3817
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3818
        epsilon(float): The epsilon value is used to avoid division by zero, \
3819
            the defalut value is 1e-10.
3820
        name(str|None): A name for this layer(optional). If set None, the layer \
3821
            will be named automatically.
C
caoying03 已提交
3822 3823

    Returns:
3824
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3825 3826

    Examples:
3827

C
caoying03 已提交
3828 3829
        .. code-block:: python

3830 3831 3832 3833
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3834 3835
    """

F
fengjiayi 已提交
3836 3837
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3838 3839
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3840 3841
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3842
    helper.append_op(
3843 3844 3845 3846
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3847
        attrs={
3848 3849
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3850 3851
        })
    return out
3852 3853


S
sneaxiy 已提交
3854
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3855
    """
Y
ying 已提交
3856 3857 3858 3859
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3860

C
chengduoZH 已提交
3861
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3862
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3863

3864 3865 3866 3867 3868
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3869
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3870

C
chengduoZH 已提交
3871
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3872
      performs in the following way.
G
guosheng 已提交
3873

3874
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3875
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3876
        last two dimensions and a batched matrix multiply supporting broadcast
3877
        applies on the two tensors.
G
guosheng 已提交
3878

Y
ying 已提交
3879 3880
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3881
    removed after matrix multiplication.
G
guosheng 已提交
3882 3883 3884

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3885 3886 3887
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3888
        alpha (float): The scale of output. Default 1.0.
3889
        name(str|None): A name for this layer(optional). If set None, the layer
3890
            will be named automatically.
G
guosheng 已提交
3891 3892

    Returns:
3893
        Variable: The product Tensor variable.
G
guosheng 已提交
3894

G
guosheng 已提交
3895 3896 3897
    Examples:
        .. code-block:: python

3898
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3899 3900
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3901

3902 3903
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3904

3905 3906
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3907

3908 3909
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3910 3911 3912 3913

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3914 3915
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3916

Y
ying 已提交
3917
            # x: [M], y: [N]
3918
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3919
    """
Y
ying 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3932
            y_shape = y_shape + [1]
Y
ying 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3949
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3950
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3951
    helper.append_op(
3952 3953 3954 3955
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3956 3957 3958
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3959
            'alpha': float(alpha),
S
sneaxiy 已提交
3960
        })
3961
    return out
3962 3963


3964
def topk(input, k, name=None):
Q
qingqing01 已提交
3965 3966 3967 3968
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3969
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3970 3971 3972 3973 3974 3975
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3997 3998 3999
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4000
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4001
                 of input.
4002
        name(str|None): A name for this layer(optional). If set None, the layer
4003
                       will be named automatically.
F
fengjiayi 已提交
4004
                       Default: None
Q
qingqing01 已提交
4005 4006

    Returns:
4007 4008 4009
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4010
        within the last dimension of input.
Q
qingqing01 已提交
4011

F
fengjiayi 已提交
4012 4013
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4014 4015 4016 4017 4018 4019 4020

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4021 4022
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4034
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4035
    """
Y
ying 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4045

Y
ying 已提交
4046
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4047

4048
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4049 4050
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4051
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4052

4053
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4054 4055
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4056

4057 4058 4059
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4060
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4061
                          the length of reference string.
4062
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4063
                                     calculating edit distance.
4064
        name (str): The name of this layer. It is optional.
4065

W
wanghaoshuang 已提交
4066
    Returns:
W
wanghaoshuang 已提交
4067
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4068 4069 4070 4071

    Examples:
        .. code-block:: python

T
tink2123 已提交
4072 4073
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4074
            cost = fluid.layers.edit_distance(input=x,label=y)
4075
    """
4076
    helper = LayerHelper("edit_distance", **locals())
4077

4078
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4079
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4080 4081
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4082 4083 4084 4085 4086

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4087
            attrs={"tokens": ignored_tokens})
4088 4089 4090 4091 4092
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4093
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4094
            attrs={"tokens": ignored_tokens})
4095 4096
        label = erased_label

4097
    # edit distance op
X
Xin Pan 已提交
4098 4099
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4100 4101 4102 4103
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4104 4105
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4106 4107
        attrs={"normalized": normalized})

4108
    return edit_distance_out, sequence_num
4109 4110 4111 4112 4113


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4114

Y
ying 已提交
4115 4116 4117 4118
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4136
        input.lod = [[4, 4]]
4137 4138 4139 4140 4141 4142 4143

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4144
        output.lod = [[2, 1]]
4145 4146 4147

    Args:

Y
ying 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4157
        name (str): The name of this layer. It is optional.
4158 4159

    Returns:
4160
        Variable: CTC greedy decode result. If all the sequences in result were
4161
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4162 4163 4164 4165 4166

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4167

4168
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4169
    """
4170
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4171
    _, topk_indices = topk(input, k=1)
4172 4173

    # ctc align op
X
Xin Pan 已提交
4174
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4175 4176 4177
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4178
        outputs={"Output": [ctc_out]},
4179 4180
        attrs={"merge_repeated": True,
               "blank": blank})
4181
    return ctc_out
4182 4183


W
Wu Yi 已提交
4184
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4185
    """
4186 4187
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4188
    to compute Connectionist Temporal Classification (CTC) loss.
4189 4190
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4191 4192 4193
    input tensor.

    Args:
4194
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4195 4196 4197 4198
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4199
       label (Variable): The ground truth of variable-length sequence,
4200 4201 4202
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4203 4204
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4205 4206 4207
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4208
         follewed by a mean_op.
W
Wu Yi 已提交
4209
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4210 4211

    Returns:
4212 4213
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4214 4215

    Examples:
4216

W
wanghaoshuang 已提交
4217
        .. code-block:: python
4218

4219 4220 4221
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4222 4223

    """
F
fengjiayi 已提交
4224
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4225 4226
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4227 4228 4229 4230 4231 4232
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4233 4234 4235 4236 4237
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4238
    return loss_out
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4254 4255 4256
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4257 4258 4259 4260 4261
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4262

4263
            out.lod  = [[0, 1, 3]]
4264 4265 4266 4267

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4268 4269 4270 4271 4272 4273 4274
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4275 4276 4277

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4278 4279

    Returns:
4280

4281 4282 4283 4284 4285
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4286
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4287
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4288 4289
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4290
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4291 4292 4293 4294 4295 4296
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4297 4298


4299 4300 4301 4302
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4303 4304 4305 4306 4307 4308
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4309
        num_neg_samples=None,
4310 4311 4312 4313
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4314 4315 4316 4317 4318 4319 4320
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4321 4322
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4323
            sample is 1.0.
C
chengduo 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4333
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4334 4335
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4336 4337 4338
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4339
        custom_dist (Variable): A tensor with shape [num_total_classes].
4340 4341 4342 4343
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4344

4345
    Returns:
Y
Yibing Liu 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4373 4374 4375 4376 4377 4378 4379 4380 4381

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4382

4383
    """
Y
Yang Yu 已提交
4384 4385 4386
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4387 4388

    dim = input.shape[1]
Y
Yang Yu 已提交
4389 4390 4391 4392 4393 4394
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4408 4409 4410
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4411

Y
Yang Yu 已提交
4412 4413 4414 4415 4416
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4437 4438
    attrs = {
        'num_total_classes': int(num_total_classes),
4439 4440 4441
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4442
    }
Y
Yang Yu 已提交
4443 4444 4445

    helper.append_op(
        type='nce',
C
chengduo 已提交
4446
        inputs=inputs,
Y
Yang Yu 已提交
4447 4448 4449 4450 4451 4452
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4453
    return cost / (num_neg_samples + 1)
4454 4455


C
chengduo 已提交
4456 4457 4458 4459 4460 4461
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4462 4463
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4464
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4474

W
weixing02 已提交
4475
    Args:
M
minqiyang 已提交
4476
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4477 4478 4479 4480 4481
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4493 4494 4495 4496 4497 4498 4499 4500

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4501 4502 4503
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4504 4505 4506 4507
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4508 4509
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4510 4511
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4512
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4513 4514 4515 4516 4517
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4518 4519 4520 4521 4522 4523 4524 4525
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4526 4527
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4528
        inputs=inputs,
W
weixing02 已提交
4529 4530 4531 4532 4533 4534
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4535
def transpose(x, perm, name=None):
Y
ying 已提交
4536 4537 4538 4539 4540 4541 4542
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4543 4544 4545
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4546 4547 4548 4549 4550 4551 4552

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4553
            # use append_batch_size=False to avoid prepending extra
4554
            # batch size in shape
4555
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4556
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4557
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4558 4559
    """

Y
fix ci.  
ying 已提交
4560
    if len(perm) != len(x.shape):
Y
ying 已提交
4561 4562 4563
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4564 4565 4566 4567 4568 4569
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4570 4571

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4572 4573
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4574
    helper.append_op(
4575
        type='transpose2',
Y
fix ci.  
ying 已提交
4576
        inputs={'X': [x]},
4577 4578
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4579 4580
        attrs={'axis': perm})
    return out
4581 4582


4583 4584 4585 4586 4587 4588 4589
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4590
    """
4591 4592 4593 4594 4595 4596 4597
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4626 4627 4628 4629 4630 4631 4632 4633 4634
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4635 4636 4637
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4638 4639 4640 4641 4642
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4670 4671 4672
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4685
            output.dims = {8, 8}
4686

4687
            output.lod = [[4, 4]]
4688

D
dzhwinter 已提交
4689
     Examples:
4690 4691 4692

        .. code-block:: python

4693 4694
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4695 4696

    """
W
wanghaoshuang 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4707 4708 4709 4710 4711 4712 4713
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4714
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4715
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4716
    helper.append_op(
4717
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4718
    return out
4719 4720


Y
yuyang18 已提交
4721
@templatedoc()
4722
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4723 4724
    """
    ${comment}
4725 4726

    Args:
Y
yuyang18 已提交
4727
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4728 4729
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4730 4731 4732 4733 4734
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4735
        ${out_comment}.
4736 4737

    Examples:
Y
yuyang18 已提交
4738 4739 4740 4741
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4742 4743 4744 4745 4746 4747
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4748
    out = helper.create_variable_for_type_inference(dtype)
4749 4750 4751 4752 4753
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4754
    return helper.append_activation(out)
4755 4756


Y
yuyang18 已提交
4757
@templatedoc()
4758 4759
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4760 4761 4762 4763 4764 4765 4766
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4767 4768

    Args:
Y
yuyang18 已提交
4769 4770
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4771 4772

    Returns:
Y
yuyang18 已提交
4773
        ${out_comment}.
4774 4775
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4776 4777 4778 4779 4780

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4781
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4782 4783 4784 4785 4786 4787
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4788 4789


4790 4791 4792
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4793
                               ignore_index=-100,
4794 4795
                               numeric_stable_mode=False,
                               return_softmax=False):
4796 4797
    """
    **Softmax With Cross Entropy Operator.**
4798

4799 4800 4801 4802
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4803

4804 4805 4806
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4807

4808 4809 4810
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4811

4812
    The equation is as follows:
4813

4814
    1) Hard label (one-hot label, so every sample has exactly one class)
4815

4816 4817 4818 4819
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4820

4821 4822 4823
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4824

4825 4826 4827 4828
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4829 4830 4831
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
4832

S
sneaxiy 已提交
4833 4834 4835 4836 4837 4838 4839 4840
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4841 4842 4843 4844 4845 4846 4847 4848
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4849 4850
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4851
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4852 4853 4854
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
4855 4856 4857
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
4858
                                    stable algorithm. Default: False
4859
        return_softmax (bool): A flag indicating whether to return the softmax
4860
                               along with the cross entropy loss. Default: False
4861

4862
    Returns:
4863 4864 4865 4866
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
4867
                              2-D tensor with shape [N x K].
4868 4869 4870 4871 4872 4873 4874

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4875 4876
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4877 4878
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4879 4880
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4881 4882 4883 4884 4885 4886
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4887 4888 4889 4890 4891
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4892 4893 4894 4895

    if return_softmax:
        return loss, softmax

4896 4897 4898 4899 4900
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4901 4902
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4903
    For each instance, it computes the smooth L1 loss element by element first
4904
    and then sums all the losses. So the shape of ouput Variable is
4905
    [batch_size, 1].
4906

4907 4908
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4909
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4910
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4911
            L1 loss op with same shape as :attr:`x`.
4912
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4913 4914
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4915
            by this tensor element by element.
4916
        outside_weight (Variable|None): A tensor with rank at least 2. This
4917 4918
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4919
            element by element.
4920
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4921 4922
           scalar with default value 1.0.

4923
    Returns:
4924
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4925 4926 4927 4928 4929

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4930 4931
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4932
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4933
            out = fluid.layers.smooth_l1(x=fc, y=label)
4934
    """
4935

4936
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4937 4938
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4951 4952 4953 4954


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4955
    This layer creates the one-hot representations for input indices.
4956 4957

    Args:
Y
Yibing Liu 已提交
4958 4959
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4960 4961

    Returns:
Y
Yibing Liu 已提交
4962
        Variable: The one-hot representations of input.
4963 4964

    Examples:
C
caoying03 已提交
4965
        .. code-block:: python
4966

Y
Yibing Liu 已提交
4967 4968
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4969 4970
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4971
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4972 4973 4974 4975 4976 4977
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4978 4979


Y
Yu Yang 已提交
4980
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4981
    """
Y
yi.wu 已提交
4982 4983 4984
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4985 4986 4987 4988 4989 4990

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4991 4992
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4993 4994 4995 4996 4997 4998

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4999 5000
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5001 5002
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5003 5004 5005 5006 5007
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5008
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5009
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5010 5011
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5012 5013
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5014 5015 5016
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5017 5018


5019
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5020
    """
C
caoying03 已提交
5021 5022
    Gives a new shape to the input Tensor without changing its data.

5023 5024 5025 5026 5027
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5028

5029
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5030

5031 5032 5033 5034
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5035
    2. 0 means the actual dimension value is going to be copied from the
5036 5037 5038 5039
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5040 5041

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5042
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5043
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5044

5045
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5046 5047
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5048 5049
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5050
    dimensions.
C
caoying03 已提交
5051

5052
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5053 5054 5055 5056
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5057 5058

    Args:
5059
        x(variable): The input tensor.
C
caoying03 已提交
5060 5061
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5062 5063 5064 5065 5066
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5067 5068
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5069 5070 5071 5072 5073 5074 5075
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5076
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5077

5078
    Returns:
G
guosheng 已提交
5079 5080 5081 5082
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5083

X
Xin Pan 已提交
5084 5085 5086
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5087 5088
    Examples:
        .. code-block:: python
G
guosheng 已提交
5089

5090
            data = fluid.layers.data(
5091
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5092
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5093
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5094 5095 5096
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5097
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5098 5099 5100 5101 5102
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5103

5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5119
    helper = LayerHelper("reshape2", **locals())
5120 5121
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5122
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5123
    helper.append_op(
5124
        type="reshape2",
X
Xin Pan 已提交
5125
        inputs=inputs,
D
dzhwinter 已提交
5126
        attrs={"shape": shape},
5127 5128
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5129

D
dzhwinter 已提交
5130
    return helper.append_activation(out)
5131

5132

5133
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5134
    """
M
minqiyang 已提交
5135 5136 5137
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5138
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5139

Y
Yibing Liu 已提交
5140 5141
    Examples:
    Case 1:
M
minqiyang 已提交
5142
      Given
Y
Yibing Liu 已提交
5143 5144 5145 5146 5147 5148 5149 5150
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5151
        and
Y
Yibing Liu 已提交
5152 5153 5154
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5155

Y
Yibing Liu 已提交
5156
    Args:
5157
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5158
        axes (list): List of integers, indicating the dimensions to be squeezed.
5159
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5160 5161 5162 5163 5164 5165 5166 5167

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5168
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5169 5170
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5171 5172
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5173
    helper.append_op(
5174
        type="squeeze2",
5175
        inputs={"X": input},
Y
Yibing Liu 已提交
5176
        attrs={"axes": axes},
5177 5178
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5179

5180 5181 5182
    return out


5183
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5184
    """
M
minqiyang 已提交
5185 5186 5187
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5188

M
minqiyang 已提交
5189 5190
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5191
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5192

Y
Yibing Liu 已提交
5193
    Args:
5194
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5195
        axes (list): List of integers, indicating the dimensions to be inserted.
5196
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5197 5198 5199 5200 5201 5202 5203 5204

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5205
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5206 5207
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5208 5209
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5210
    helper.append_op(
5211
        type="unsqueeze2",
5212
        inputs={"X": input},
Y
Yibing Liu 已提交
5213
        attrs={"axes": axes},
5214 5215
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5216

5217 5218
    return out

5219

Y
yangyaming 已提交
5220
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5221
    """
Y
Yibing Liu 已提交
5222
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5223 5224 5225 5226
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5227
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5228 5229 5230 5231 5232 5233

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5234
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5235 5236 5237
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5238
            target_lod: [4, 2]
Y
yangyaming 已提交
5239 5240

            then we get a 1-level LoDTensor:
5241
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5242 5243 5244 5245 5246 5247
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5248
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5249 5250 5251 5252
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5253
                y.data = [[2, 4]]
Y
yangyaming 已提交
5254 5255 5256
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5257
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5258 5259 5260 5261 5262 5263
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5264
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5265 5266 5267 5268
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5269
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5270 5271 5272 5273
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5274
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5275 5276 5277 5278 5279
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5280
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5281
                           from :attr:`y`.
Y
yangyaming 已提交
5282
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5283
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5284 5285

    Returns:
Y
Yibing Liu 已提交
5286
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5287 5288

    Raises:
Y
Yibing Liu 已提交
5289
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5299
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5325
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5354 5355
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5368 5369 5370
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5384 5385 5386 5387


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5388
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5389
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5390

G
guosheng 已提交
5391 5392 5393 5394
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5417
                         The length of :attr:paddings must be
G
guosheng 已提交
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5428

G
guosheng 已提交
5429 5430 5431 5432 5433 5434
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5435
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5436 5437 5438 5439 5440 5441 5442
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5443 5444


C
chengduo 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5515
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5525 5526 5527 5528 5529 5530 5531
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5532 5533
    called label-smoothing regularization (LSR).

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5557
                              be :math:`(1, class\_num)`.
5558 5559
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5560
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5580
    smooth_label = helper.create_variable_for_type_inference(dtype)
5581 5582 5583 5584 5585 5586 5587
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5588 5589


W
wopeizl 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5626 5627


J
jerrywgz 已提交
5628 5629 5630 5631 5632 5633
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5634 5635
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5652 5653 5654
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5655 5656 5657 5658 5659 5660
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5661
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5702 5703
        .. code-block:: python

W
whs 已提交
5704 5705 5706 5707
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5708
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5709 5710 5711 5712 5713 5714
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5715 5716


5717 5718 5719 5720
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5721 5722
                 resample='BILINEAR',
                 actual_shape=None):
5723
    """
Q
qiaolongfei 已提交
5724
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5725

5726
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5727 5728 5729
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5730

5731
        'BILINEAR' : Bilinear interpolation
5732
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5733

5734
    Args:
5735
        input (Variable): The input tensor of image resize layer,
5736 5737
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5738
        out_shape(list|tuple|Variable|None): Output shape of image resize
5739 5740
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5741
        scale(float|None): The multiplier for the input height or width.
5742 5743 5744
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5745 5746
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5747
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5748
                       currently.
5749
                       Default: 'BILINEAR'
5750 5751 5752
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5753
                                :attr:`out_shape` and :attr:`scale` specifying
5754 5755 5756 5757 5758 5759 5760
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5761 5762
                                constructing stage.
                                Default: None
5763 5764

    Returns:
Q
update  
qiaolongfei 已提交
5765 5766
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5767

5768 5769 5770
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5771
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5772 5773 5774 5775
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5776 5777 5778
    Examples:
        .. code-block:: python

5779
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5780
    """
5781 5782 5783 5784
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5785 5786
    if resample not in resample_methods:
        raise ValueError(
5787
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5788
        )
5789
    if out_shape is None and scale is None:
5790
        raise ValueError("One of out_shape and scale must not be None.")
5791
    helper = LayerHelper('interpolate', **locals())
5792
    dtype = helper.input_dtype()
5793 5794 5795 5796

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5797 5798 5799
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5800
    if out_shape is not None:
5801 5802 5803 5804
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5805
            inputs['OutSize'] = out_shape
5806 5807 5808 5809 5810 5811 5812 5813
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5814 5815 5816 5817
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5818 5819 5820 5821 5822
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5823
    out = helper.create_variable_for_type_inference(dtype)
5824
    helper.append_op(
5825
        type='interpolate',
5826
        inputs=inputs,
5827
        outputs={"Out": out},
5828 5829 5830 5831 5832
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5833
    return out
F
stash  
fengjiayi 已提交
5834 5835


5836
@templatedoc(op_type="interpolate")
5837 5838 5839 5840 5841
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5842
    """
5843 5844
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
5845 5846
    in priority order.

5847 5848 5849 5850
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5851 5852
    again in the other direction.

5853
    For details of bilinear interpolation, please refer to Wikipedia:
5854
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5855 5856 5857 5858 5859

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5860

Y
yuyang18 已提交
5861 5862 5863 5864 5865
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5866 5867 5868
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5869
                                :attr:`out_shape` and :attr:`scale` specifying
5870 5871 5872 5873 5874 5875 5876
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5877 5878
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5879 5880 5881

    Returns:
        ${out_comment}.
5882 5883 5884 5885 5886

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
5887 5888
    """

5889
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5890 5891


5892
@templatedoc(op_type="interpolate")
5893 5894 5895 5896 5897
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5898
    """
5899
    Resize input by performing nearest neighbor interpolation in both the
5900 5901
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
5902 5903
    out_shape and scale in priority order.

5904
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5905
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5906 5907 5908 5909 5910

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5911

Y
yuyang18 已提交
5912 5913 5914 5915 5916
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5917 5918 5919
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5920
                                :attr:`out_shape` and :attr:`scale` specifying
5921 5922 5923 5924 5925 5926 5927
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5928 5929
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5930 5931 5932

    Returns:
        ${out_comment}.
5933 5934 5935 5936 5937

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
5938 5939
    """

5940
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5941 5942 5943 5944


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5945 5946 5947
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5948 5949 5950 5951 5952 5953 5954
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5955
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5956

5957
    Returns:
Q
update  
qiaolongfei 已提交
5958
        Variable: The output is a 4-D tensor of the shape
5959
        (num_batches, channls, out_h, out_w).
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5970 5971 5972
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5973 5974 5975
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5976 5977
def gather(input, index):
    """
Q
qiaolongfei 已提交
5978 5979
    **Gather Layer**

5980
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5981 5982 5983 5984
    of X indexed by `index` and concatenate them together.

    .. math::

5985
        Out = X[Index]
W
whs 已提交
5986 5987 5988 5989 5990 5991 5992


    .. code-block:: text


                Given:

5993 5994
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6005
        input (Variable): The source input with rank>=1.
W
whs 已提交
6006 6007 6008 6009 6010 6011
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6012

W
whs 已提交
6013 6014 6015 6016 6017 6018
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6019
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6020 6021 6022 6023 6024 6025 6026 6027
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6059
    out = helper.create_variable_for_type_inference(dtype)
6060 6061 6062 6063 6064 6065 6066 6067 6068
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6119
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6142

6143 6144 6145
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6146
    """
F
stash  
fengjiayi 已提交
6147
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6148
    dtype = x.dtype
X
Xin Pan 已提交
6149
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6150
    if seed is None:
6151
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6152
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6153
    if isinstance(seed, int):
F
fengjiayi 已提交
6154 6155 6156 6157 6158
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6159 6160 6161 6162
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6163
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6164 6165
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6166 6167
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6168
    return out
W
whs 已提交
6169 6170


6171
def log(x, name=None):
W
wanghaoshuang 已提交
6172 6173 6174 6175 6176
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6177
        Out = \\ln(x)
W
wanghaoshuang 已提交
6178 6179

    Args:
6180
        x (Variable): Input tensor.
6181 6182
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6183 6184 6185 6186 6187 6188 6189 6190

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6191
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6192 6193
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6194
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6195
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6196
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6197 6198 6199
    return out


6200
def relu(x, name=None):
W
wanghaoshuang 已提交
6201 6202
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6203
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6204 6205 6206 6207
    the tensor elementwise.

    .. math::

6208
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6209 6210

    Args:
6211
        x (Variable): The input tensor.
6212 6213
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6214 6215 6216 6217 6218 6219 6220 6221

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6222
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6223 6224
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6225
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6226
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6227
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6228
    return out
6229 6230


C
chengduo 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6272 6273 6274
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6275 6276 6277 6278
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6279
    .. math::
6280 6281

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6282

6283
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6284 6285 6286 6287 6288
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6289
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6290
                           Its shape should be the same as input.
6291
        num_classes (int): The possible number of labels.
W
whs 已提交
6292 6293 6294 6295

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6296
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6297 6298 6299 6300

    Examples:

        .. code-block:: python
6301

W
whs 已提交
6302 6303 6304 6305
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6306 6307 6308
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6309 6310
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6311 6312
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6313
        outputs={
W
whs 已提交
6314 6315 6316
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6317 6318 6319
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6394
                    isinstance(shape, Variable)):
6395 6396 6397 6398 6399
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6400
    out = helper.create_variable_for_type_inference(x.dtype)
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6418 6419


W
whs 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6437

W
whs 已提交
6438
              out_shape = [2, 3, 5, 5]
6439

W
whs 已提交
6440
          Step 1:
6441

W
whs 已提交
6442 6443 6444
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6445

W
whs 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6538 6539 6540 6541 6542 6543 6544 6545
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6546

6547 6548
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6549

6550 6551 6552 6553
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6554

6555 6556 6557 6558 6559
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6560 6561 6562

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6598
    out = helper.create_variable_for_type_inference("float32")
6599 6600 6601 6602 6603 6604 6605 6606

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6607 6608


M
minqiyang 已提交
6609 6610
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6611
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6612
    which compares left score and right score passed in.
M
minqiyang 已提交
6613
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6614 6615 6616 6617 6618 6619

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6620
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6621 6622
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6623
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6624 6625 6626
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6627
       Variable: The ranking loss.
M
minqiyang 已提交
6628
    Raises:
M
minqiyang 已提交
6629
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6630 6631 6632 6633 6634 6635 6636
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6637
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6638 6639 6640 6641 6642 6643
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6644 6645
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6671

W
whs 已提交
6672 6673
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6674

W
whs 已提交
6675
      Case 0:
M
minqiyang 已提交
6676

W
whs 已提交
6677 6678 6679
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6680

W
whs 已提交
6681 6682 6683
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6684

W
whs 已提交
6685
      Case 1:
M
minqiyang 已提交
6686

W
whs 已提交
6687 6688
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6689

W
whs 已提交
6690 6691 6692
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6693

W
whs 已提交
6694
      Case 2:
M
minqiyang 已提交
6695

W
whs 已提交
6696 6697
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6698

W
whs 已提交
6699 6700 6701
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6702 6703


W
whs 已提交
6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6730
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6759
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6782
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6805
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6829
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6854
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6878
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6879 6880 6881 6882 6883 6884 6885 6886
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6901
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6902
                        will be named automatically.
J
jerrywgz 已提交
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
6925
        attr=helper.param_attr,
J
jerrywgz 已提交
6926 6927 6928 6929
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6930
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6950
    Returns:
6951
        output(${out_type}): ${out_comment}
6952 6953 6954 6955 6956 6957 6958

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
6959 6960
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6961
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6980
    Returns:
6981
        output(${out_type}): ${out_comment}
6982 6983 6984 6985 6986 6987 6988

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
6989 6990
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6991
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7009
    Returns:
7010
        output(${out_type}): ${out_comment}
7011 7012 7013 7014 7015 7016 7017

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7018 7019
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7020
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7021 7022 7023 7024 7025 7026 7027 7028
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7042

7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7053 7054
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7070
        ValueError: If axis is not in range [0, rank(x)].
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7087 7088
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7089
    helper.append_op(
7090
        type='flatten2',
7091
        inputs={"X": x},
7092 7093
        outputs={'Out': out,
                 'XShape': x_shape},
7094 7095
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7096 7097


C
chenweihang 已提交
7098
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7099
    """
C
chenweihang 已提交
7100
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7101
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7102 7103
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7104

C
chenweihang 已提交
7105 7106 7107 7108
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7109
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7110 7111 7112 7113 7114 7115
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7116
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7117 7118 7119
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7120 7121 7122
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7134 7135
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7136 7137 7138 7139 7140 7141
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7142
    return out
7143

7144

S
sneaxiy 已提交
7145 7146 7147 7148 7149 7150 7151 7152 7153
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7154

S
sneaxiy 已提交
7155
    .. math::
7156

S
sneaxiy 已提交
7157 7158 7159
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7160
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7161 7162 7163 7164
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7165 7166 7167
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7168 7169
    Returns:
        Variable: The output sequence mask.
7170

S
sneaxiy 已提交
7171 7172
    """

Q
qingqing01 已提交
7173
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7174
    if name is None:
X
Xin Pan 已提交
7175
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7176
    else:
X
Xin Pan 已提交
7177
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7178

Q
qingqing01 已提交
7179 7180 7181
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7182 7183
        outputs={'Y': out},
        attrs={
7184
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7185 7186 7187
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7188 7189


X
Xin Pan 已提交
7190
def stack(x, axis=0):
S
sneaxiy 已提交
7191 7192 7193 7194
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7195 7196 7197 7198 7199 7200 7201

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7202
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7203
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7204 7205

    Args:
7206
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7207
        axis (int|None): The axis along which all inputs are stacked.
7208

S
sneaxiy 已提交
7209 7210
    Returns:
        Variable: The stacked variable.
7211

S
sneaxiy 已提交
7212 7213
    """

X
Xin Pan 已提交
7214 7215 7216 7217 7218 7219
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7220
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7221
    helper.append_op(
S
sneaxiy 已提交
7222 7223
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7224

X
Xin Pan 已提交
7225
    return out
D
dzhwinter 已提交
7226 7227 7228 7229 7230 7231 7232


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7233

D
dzhwinter 已提交
7234 7235 7236
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7237
    raised.
D
dzhwinter 已提交
7238 7239

    Args:
M
minqiyang 已提交
7240
        x (Variable): Input variable.
D
dzhwinter 已提交
7241 7242
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7243

D
dzhwinter 已提交
7244 7245
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7246

D
dzhwinter 已提交
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7258
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7259 7260 7261 7262 7263 7264 7265 7266

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7279

W
whs 已提交
7280 7281 7282 7283
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7284

W
whs 已提交
7285
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7286

W
whs 已提交
7287
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7288

W
whs 已提交
7289 7290 7291 7292
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7293

W
whs 已提交
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7310
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7311 7312 7313 7314 7315 7316
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7317 7318


G
fix  
gongweibao 已提交
7319 7320 7321
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7322
@templatedoc()
G
fix  
gongweibao 已提交
7323 7324 7325 7326 7327 7328 7329 7330 7331
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7332
    ${comment}
G
fix  
gongweibao 已提交
7333 7334

    Args:
G
gongweibao 已提交
7335 7336 7337
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7338
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7339 7340 7341
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7342 7343
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7344
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7345 7346 7347 7348

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7349
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7366 7367


G
gongweibao 已提交
7368
@templatedoc()
X
Xin Pan 已提交
7369
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7370
    """
G
gongweibao 已提交
7371
    ${comment}
G
fix  
gongweibao 已提交
7372 7373

    Args:
G
gongweibao 已提交
7374 7375 7376 7377
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7378 7379 7380
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7381
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7382 7383 7384 7385

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7386
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7397
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7398 7399 7400 7401 7402
        })

    return out


G
gongweibao 已提交
7403
@templatedoc()
G
fix  
gongweibao 已提交
7404
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7405
    """
G
gongweibao 已提交
7406
    ${comment}
G
fix  
gongweibao 已提交
7407 7408

    Args:
G
gongweibao 已提交
7409 7410 7411 7412
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7413
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7414 7415

    Returns:
G
gongweibao 已提交
7416
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7417 7418 7419 7420

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7421
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7433
@templatedoc()
G
fix  
gongweibao 已提交
7434 7435 7436 7437 7438 7439 7440 7441 7442
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7443
    ${comment}
G
fix  
gongweibao 已提交
7444 7445

    Args:
G
gongweibao 已提交
7446 7447
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7448
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7449 7450 7451 7452
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7453
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7454 7455

    Returns:
G
gongweibao 已提交
7456
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7457 7458 7459
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7460
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7479
@templatedoc()
X
Xin Pan 已提交
7480
def sum(x):
G
fix  
gongweibao 已提交
7481
    """
G
gongweibao 已提交
7482
    ${comment}
G
fix  
gongweibao 已提交
7483 7484

    Args:
G
gongweibao 已提交
7485
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7486 7487

    Returns:
G
gongweibao 已提交
7488
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7489 7490 7491
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7492 7493
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7494 7495 7496 7497
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7498
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7499 7500 7501 7502

    return out


G
gongweibao 已提交
7503
@templatedoc()
G
fix  
gongweibao 已提交
7504 7505
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7506
    ${comment}
G
fix  
gongweibao 已提交
7507 7508

    Args:
G
gongweibao 已提交
7509 7510 7511 7512
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7513 7514

    Returns:
G
gongweibao 已提交
7515
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7516 7517 7518 7519

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7520 7521
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7533
@templatedoc()
G
fix  
gongweibao 已提交
7534 7535
def shape(input):
    """
G
gongweibao 已提交
7536
    ${comment}
G
fix  
gongweibao 已提交
7537 7538

    Args:
G
gongweibao 已提交
7539
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7540 7541

    Returns:
G
gongweibao 已提交
7542
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7543 7544 7545 7546

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7547 7548
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7549
    helper.append_op(
G
fix  
gongweibao 已提交
7550
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7551 7552

    return out
G
merge  
gongweibao 已提交
7553 7554


S
sneaxiy 已提交
7555 7556 7557 7558 7559 7560 7561 7562
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7563 7564
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7565
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7566 7567 7568
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7569

S
sneaxiy 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7581
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7582 7583 7584 7585 7586 7587 7588 7589
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7590
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7591
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7592 7593 7594 7595 7596 7597

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7598
    if name is None:
X
Xin Pan 已提交
7599
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7600 7601 7602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7613
    return helper.append_activation(out)
S
sneaxiy 已提交
7614 7615


X
Xin Pan 已提交
7616
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7617 7618 7619
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7620
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7621 7622 7623
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7624
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7625 7626 7627
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7628
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7629 7630 7631
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7632
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7633 7634 7635
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7636
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7637 7638 7639
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7640
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7652 7653
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7654
        ])
M
minqiyang 已提交
7655 7656


7657
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7658 7659
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7660 7661
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7662 7663 7664

    if out is None:
        if name is None:
X
Xin Pan 已提交
7665
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7681
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7693 7694 7695 7696 7697 7698 7699 7700 7701

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7702 7703 7704 7705 7706 7707 7708
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7709
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7721 7722 7723 7724 7725 7726 7727 7728 7729

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7730 7731 7732 7733 7734 7735 7736
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7737
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7749 7750 7751 7752 7753 7754 7755 7756 7757

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7758 7759 7760 7761 7762 7763 7764
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7765
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7776 7777 7778 7779 7780 7781 7782

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
7783 7784 7785 7786
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7802 7803 7804 7805 7806 7807 7808

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
7809 7810 7811 7812 7813
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7814 7815 7816 7817
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7841 7842 7843 7844 7845 7846 7847

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
7848 7849 7850 7851 7852
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7853 7854 7855 7856
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7857 7858 7859 7860 7861 7862 7863 7864

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7883
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7913
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7914 7915 7916 7917 7918 7919 7920 7921 7922
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7923 7924
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7947
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7977
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7988 7989


J
JiabinYang 已提交
7990
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7991
    """
J
JiabinYang 已提交
7992
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
7993 7994 7995

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
7996
    The attr blocksize indicates the input block size.
7997 7998

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
7999
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8000 8001

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8002
    (but keeping all data)
J
JiabinYang 已提交
8003

J
JiabinYang 已提交
8004
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8005
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8006 8007 8008 8009 8010
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8011
    Args:
J
JiabinYang 已提交
8012
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8013
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8014 8015

    Returns:
J
JiabinYang 已提交
8016
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8017 8018

    Raises:
J
JiabinYang 已提交
8019
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8020 8021 8022 8023 8024 8025

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8026
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8027
                x=data, blocksize=2)
J
JiabinYang 已提交
8028 8029
    """

J
JiabinYang 已提交
8030
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8031

J
JiabinYang 已提交
8032 8033
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8034 8035

    if name is None:
J
JiabinYang 已提交
8036 8037
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8038 8039 8040 8041 8042
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8043
        type="space_to_depth",
J
JiabinYang 已提交
8044
        inputs={"X": x},
J
JiabinYang 已提交
8045
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8046
        outputs={"Out": out})
J
JiabinYang 已提交
8047 8048
    return out

J
JiabinYang 已提交
8049

S
sneaxiy 已提交
8050 8051
@templatedoc()
def sequence_reverse(x, name=None):
8052
    """
S
sneaxiy 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8064
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8075 8076


8077 8078 8079 8080 8081 8082
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8083

8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8103
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8116 8117


B
barrierye 已提交
8118
def similarity_focus(input, axis, indexes, name=None):
8119
    """
B
barrierye 已提交
8120
    SimilarityFocus Operator
B
barrierye 已提交
8121 8122

    Generate a similarity focus mask with the same shape of input using the following method:
8123 8124 8125
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8126
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8127 8128 8129 8130 8131 8132 8133
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8134
       each index.
B
barrierye 已提交
8135 8136 8137 8138
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8188
    Args:
8189
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8190
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8191
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8192
            1, 2 or 3.
B
barrierye 已提交
8193
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8194 8195

    Returns:
8196
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8197
            as the input.
8198

B
barrierye 已提交
8199 8200 8201
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8202 8203
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8216 8217 8218 8219 8220
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8221 8222 8223 8224 8225 8226 8227
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8228 8229


M
minqiyang 已提交
8230 8231
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8232 8233
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8234 8235
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8274
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8275
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8276 8277 8278 8279 8280 8281 8282 8283 8284

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8285 8286
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8287 8288
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8289 8290 8291 8292 8293 8294 8295
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8296 8297


D
dengkaipeng 已提交
8298
@templatedoc()
8299 8300
def grid_sampler(x, grid, name=None):
    """
8301
    This operation samples input X by using bilinear interpolation based on
8302
    flow field grid, which is usually gennerated by affine_grid. The grid of
8303 8304 8305 8306
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8307
    interpolation value of 4 nearest corner points.
8308 8309 8310 8311 8312 8313 8314 8315

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8316
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8346 8347

    Args:
8348 8349 8350
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8351 8352

    Returns:
8353
        out(Variable): Output of shape [N, C, H, W] data samples input X
8354 8355 8356 8357 8358 8359 8360 8361 8362
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8372
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8373 8374
    ipts = {'X': x, 'Grid': grid}

8375
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8376 8377 8378
    return out


G
gmcather 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8483
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8484

Q
Qiao Longfei 已提交
8485
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8486 8487 8488
    For example:

    .. math::
8489
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8490

Q
Qiao Longfei 已提交
8491
    In this formula:
8492 8493
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8494
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8495
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8496 8497 8498
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8499 8500
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8501 8502 8503
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8504
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8505
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8506
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8507 8508 8509 8510
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8511
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8512 8513 8514 8515

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8516
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8517 8518
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8519
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8520 8521 8522 8523

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8524
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)