nn.py 296.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
100
    'roi_pool',
J
jerrywgz 已提交
101
    'roi_align',
X
Xin Pan 已提交
102 103 104 105
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
106
    'resize_nearest',
X
Xin Pan 已提交
107 108 109 110 111 112 113 114 115
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
116
    'margin_rank_loss',
X
Xin Pan 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
160
    'space_to_depth',
W
whs 已提交
161
    'affine_grid',
S
sneaxiy 已提交
162
    'sequence_reverse',
163
    'affine_channel',
B
barrierye 已提交
164
    'similarity_focus',
M
minqiyang 已提交
165
    'hash',
D
dengkaipeng 已提交
166
    'grid_sampler',
G
gmcather 已提交
167 168
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176 177
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
178
       is_test=False,
179
       name=None):
Y
Yu Yang 已提交
180
    """
181
    **Fully Connected Layer**
Y
Yu Yang 已提交
182

183 184 185 186 187 188 189 190
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
191
    to the output as well.
C
caoying03 已提交
192

C
caoying03 已提交
193
    This process can be formulated as follows:
194 195 196

    .. math::

197
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
198 199 200

    In the above equation:

C
caoying03 已提交
201 202 203 204
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
205
    * :math:`Act`: The activation function.
C
caoying03 已提交
206
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
207 208

    Args:
R
ranqiu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
224 225
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
226
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
227
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
228
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
229

230
    Returns:
F
fengjiayi 已提交
231
        Variable: The transformation result.
232 233

    Raises:
C
caoying03 已提交
234
        ValueError: If rank of the input tensor is less than 2.
235 236 237 238

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
239
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
240
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
241
    """
C
caoying03 已提交
242

C
caoying03 已提交
243
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
244 245 246 247

    dtype = helper.input_dtype()

    mul_results = []
248 249
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
250 251 252
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
253

Y
Yu Yang 已提交
254
        w = helper.create_parameter(
255
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
256
        tmp = helper.create_variable_for_type_inference(dtype)
257
        helper.append_op(
258 259 260
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
261
            outputs={"Out": tmp},
M
mozga-intel 已提交
262 263
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
264 265 266 267
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
268
    else:
X
Xin Pan 已提交
269
        pre_bias = helper.create_variable_for_type_inference(dtype)
270
        helper.append_op(
271 272 273
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
274
            attrs={"use_mkldnn": False})
275 276 277 278
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
279 280


281 282 283
def embedding(input,
              size,
              is_sparse=False,
284
              is_distributed=False,
285 286 287
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
288
    """
289 290
    **Embedding Layer**

291
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
292 293
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
294 295 296

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
297 298

    Args:
299 300 301 302 303
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
304
        is_distributed(bool): Whether to run lookup table from remote parameter server.
305 306
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
307
            with zeros whenever lookup encounters it in :attr:`input`. If
308
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
309 310
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
311
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
312

313 314 315
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
316

317 318
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
319

C
chengduoZH 已提交
320
          dict_size = len(dataset.ids)
321
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
322
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
323 324 325 326 327
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
328
    tmp = helper.create_variable_for_type_inference(dtype)
329 330
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
331 332 333 334 335
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
336 337 338 339 340
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
341 342 343
    return tmp


P
peizhilin 已提交
344
if os.name != 'nt':
P
peizhilin 已提交
345

P
peizhilin 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    @templatedoc(op_type="lstm")
    def dynamic_lstm(input,
                     size,
                     h_0=None,
                     c_0=None,
                     param_attr=None,
                     bias_attr=None,
                     use_peepholes=True,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     cell_activation='tanh',
                     candidate_activation='tanh',
                     dtype='float32',
                     name=None):
        """
        ${comment}

        Args:
            input (Variable): ${input_comment}
            size (int): 4 * hidden size.
            h_0(Variable): The initial hidden state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size and D is the hidden size.
            c_0(Variable): The initial cell state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size. `h_0` and `c_0` can be NULL but only at the same time.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                                   hidden-hidden weights.

                                   - Weights = {:math:`W_{ch}, W_{ih}, \
                                                    W_{fh}, W_{oh}`}
                                   - The shape is (D x 4D), where D is the hidden
                                     size.

                                   If it is set to None or one attribute of ParamAttr,
                                   dynamic_lstm will create ParamAttr as param_attr.
                                   If the Initializer of the param_attr is not set, the
                                   parameter is initialized with Xavier. Default: None.
            bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                                  weights, which contains two parts, input-hidden
                                  bias weights and peephole connections weights if
                                  setting `use_peepholes` to `True`.

                                  1. `use_peepholes = False`
                                     - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                     - The shape is (1 x 4D).
                                  2. `use_peepholes = True`
                                     - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                     W_{fc}, W_{oc}`}.
                                     - The shape is (1 x 7D).

                                  If it is set to None or one attribute of ParamAttr,
                                  dynamic_lstm will create ParamAttr as bias_attr.
                                  If the Initializer of the bias_attr is not set,
                                  the bias is initialized zero. Default: None.
            use_peepholes (bool): ${use_peepholes_comment}
            is_reverse (bool): ${is_reverse_comment}
            gate_activation (str): ${gate_activation_comment}
            cell_activation (str): ${cell_activation_comment}
            candidate_activation (str): ${candidate_activation_comment}
            dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
            name (str|None): A name for this layer(optional). If set None, the layer
                             will be named automatically.

        Returns:
            tuple: The hidden state, and cell state of LSTM. The shape of both \
            is (T x D), and lod is the same with the `input`.

        Examples:
            .. code-block:: python

                hidden_dim = 512
                forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                               bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
        """
        assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
        helper = LayerHelper('lstm', **locals())
        size = size // 4
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
        bias_size = [1, 7 * size]
        if not use_peepholes:
            bias_size[1] = 4 * size
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
433

P
peizhilin 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447
        hidden = helper.create_variable_for_type_inference(dtype)
        cell = helper.create_variable_for_type_inference(dtype)
        batch_gate = helper.create_variable_for_type_inference(dtype)
        batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
        inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
        batch_size = input.shape[0]
        if h_0:
            assert h_0.shape == (batch_size, size), \
                'The shape of h0 should be (batch_size, %d)' % size
            inputs['H0'] = h_0
        if c_0:
            assert c_0.shape == (batch_size, size), \
                'The shape of c0 should be (batch_size, %d)' % size
            inputs['C0'] = c_0
Y
Yu Yang 已提交
448

P
peizhilin 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        helper.append_op(
            type='lstm',
            inputs=inputs,
            outputs={
                'Hidden': hidden,
                'Cell': cell,
                'BatchGate': batch_gate,
                'BatchCellPreAct': batch_cell_pre_act
            },
            attrs={
                'use_peepholes': use_peepholes,
                'is_reverse': is_reverse,
                'gate_activation': gate_activation,
                'cell_activation': cell_activation,
                'candidate_activation': candidate_activation
            })
        return hidden, cell
Y
Yu Yang 已提交
466 467


Y
Yibing Liu 已提交
468 469 470 471 472 473 474 475 476 477 478
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
479 480
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
481 482 483
    """
    **Dynamic LSTMP Layer**

484 485 486 487 488 489
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
490 491 492 493 494

    The formula is as follows:

    .. math::

495
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
496

497
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
498

499
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
500

501
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
502

503
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
504

505
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
506

507
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
508

Y
Yibing Liu 已提交
509 510 511 512 513 514
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
515
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
516
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
517
          bias vector).
Y
Yibing Liu 已提交
518 519 520
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
521
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
522
    * :math:`h`: The hidden state.
523
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
524 525
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
526
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
527
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
528
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
529 530
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
531 532 533 534

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
535

Y
Yibing Liu 已提交
536 537 538 539 540 541 542 543 544 545 546 547
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
548
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
549 550
                               hidden-hidden weight and projection weight.

551 552
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
553 554
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
555 556
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
557
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
558 559 560 561 562

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
563
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
564 565 566 567 568 569
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
570
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
571 572 573
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
574
                                - The shape is (1 x 7D).
C
chengduo 已提交
575 576 577 578 579

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
580 581 582 583 584 585 586 587 588
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
589
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
590 591
                              default "tanh".
        proj_activation(str): The activation for projection output.
592
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
593 594
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
595 596
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
597 598

    Returns:
599 600 601 602
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
603 604

    Examples:
605

Y
Yibing Liu 已提交
606 607
        .. code-block:: python

608 609 610 611
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
612
            hidden_dim, proj_dim = 512, 256
613
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
614
                                     act=None, bias_attr=None)
615 616 617
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
618 619 620 621
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
622
    """
623

C
chengduo 已提交
624
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
625
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
626
    size = size // 4
Y
Yibing Liu 已提交
627 628 629 630 631 632 633 634 635 636
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
637 638 639 640 641 642
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
671 672 673 674 675 676 677 678 679
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
680
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
681

682
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
683
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
684

G
guosheng 已提交
685 686 687 688 689 690 691 692 693
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
694

G
guosheng 已提交
695
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
696

G
guosheng 已提交
697
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
698 699
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
700 701 702 703
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
704
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
705 706

    Args:
707 708
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
709
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
710
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
711 712
            is the hidden size.
        size(int): The dimension of the gru cell.
713
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
714 715
            hidden-hidden weight matrix. Note:

716
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
717
              :math:`D` is the hidden size.
718
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
719
              The first part are weights of the update gate and reset gate with
720
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
721
              candidate hidden state with shape :math:`(D \\times D)`.
722 723 724 725 726 727 728 729 730 731 732 733

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
734
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
735 736 737
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
738
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
739
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
740 741 742 743
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
744 745

    Returns:
G
guosheng 已提交
746
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
747
            and sequence length is the same with the input.
748

G
guosheng 已提交
749
    Examples:
750

G
guosheng 已提交
751 752
        .. code-block:: python

753 754 755 756
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
757
            hidden_dim = 512
758
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
759 760 761 762 763 764 765 766 767 768
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
769
    batch_size = input.shape[0]
G
guosheng 已提交
770
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
771
    if h_0:
G
guosheng 已提交
772
        assert h_0.shape == (
Y
Yancey 已提交
773 774 775
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
776

X
Xin Pan 已提交
777 778 779 780
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
799 800 801
def gru_unit(input,
             hidden,
             size,
802 803
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
804
             activation='tanh',
805
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
806
    """
807
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
808

809 810
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
811

812
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
813

814
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
815

816
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
817 818

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
819 820 821
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
822 823
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

824 825
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
826 827 828
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
829 830 831

    Args:
        input (Variable): The fc transformed input value of current step.
832
        hidden (Variable): The hidden value of gru unit from previous step.
833
        size (integer): The input dimension value.
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
855 856 857 858
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
859

860 861 862 863 864 865
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
866

867
             # assuming we have x_t_data and prev_hidden of size=10
868
             x_t = fluid.layers.fc(input=x_t_data, size=30)
869 870
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
871 872 873 874 875 876 877 878 879 880 881 882

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
883
    size = size // 3
Y
Yu Yang 已提交
884 885

    # create weight
886 887
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
888

X
Xin Pan 已提交
889 890 891
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
892
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
893
    # create bias
894
    if helper.bias_attr:
Y
Yu Yang 已提交
895 896 897
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
898
        inputs['Bias'] = bias
Y
Yu Yang 已提交
899 900 901

    helper.append_op(
        type='gru_unit',
902
        inputs=inputs,
Y
Yu Yang 已提交
903 904 905 906 907 908
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
909 910
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
911 912 913 914 915
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
916
@templatedoc()
917
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
918 919 920 921 922 923 924
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
925
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
926 927 928 929
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
930 931 932
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
933 934

    """
Y
Yu Yang 已提交
935 936 937 938 939 940
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
941 942 943 944 945 946 947 948
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


P
peizhilin 已提交
964
if os.name != 'nt':
P
peizhilin 已提交
965

P
peizhilin 已提交
966 967 968 969
    @templatedoc()
    def crf_decoding(input, param_attr, label=None):
        """
        ${comment}
Y
yuyang18 已提交
970

P
peizhilin 已提交
971 972
        Args:
            input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
973

P
peizhilin 已提交
974
            param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
975

P
peizhilin 已提交
976
            label(${label_type}): ${label_comment}
Y
yuyang18 已提交
977

P
peizhilin 已提交
978 979
        Returns:
            Variable: ${viterbi_path_comment}
980

P
peizhilin 已提交
981 982
        Examples:
            .. code-block:: python
Y
yi.wu 已提交
983

P
peizhilin 已提交
984 985 986 987 988 989 990 991 992
               crf_decode = layers.crf_decoding(
                    input=hidden, param_attr=ParamAttr(name="crfw"))
        """
        helper = LayerHelper('crf_decoding', **locals())
        transition = helper.get_parameter(param_attr.name)
        viterbi_path = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(
            type='crf_decoding',
P
peizhilin 已提交
993 994 995 996 997
            inputs={
                "Emission": [input],
                "Transition": transition,
                "Label": label
            },
P
peizhilin 已提交
998
            outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
999

P
peizhilin 已提交
1000
        return viterbi_path
Y
Yu Yang 已提交
1001 1002


Y
yi.wu 已提交
1003
@templatedoc()
F
fengjiayi 已提交
1004
def cos_sim(X, Y):
Y
Yu Yang 已提交
1005
    """
Y
yi.wu 已提交
1006 1007 1008
    ${comment}

    Args:
1009 1010
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1011

Y
yi.wu 已提交
1012
    Returns:
1013
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1014
    """
F
fengjiayi 已提交
1015
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1016 1017 1018
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1029 1030 1031 1032 1033
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1034
            dropout_implementation="downgrade_in_infer"):
1035 1036 1037 1038 1039
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1040
    training. The dropout operator randomly sets (according to the given dropout
1041 1042 1043 1044
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1045 1046
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1047 1048 1049 1050 1051 1052 1053
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1068

1069 1070

    Returns:
1071
        Variable: A tensor variable is the shape with `x`.
1072 1073

    Examples:
1074

1075 1076
        .. code-block:: python

1077 1078
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1079 1080
    """

F
fengjiayi 已提交
1081
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1082 1083 1084
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1085 1086 1087 1088

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1089 1090 1091 1092 1093
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1094 1095 1096 1097
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1098 1099
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1100
        })
1101 1102 1103
    return out


1104
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1105
    """
Y
Yibing Liu 已提交
1106 1107
    **Cross Entropy Layer**

1108 1109 1110
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1111 1112

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1113
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1114

Y
Yibing Liu 已提交
1115
        .. math::
Y
yangyaming 已提交
1116

Y
Yibing Liu 已提交
1117 1118 1119
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1120 1121
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1122 1123 1124 1125 1126

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1127
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1128 1129 1130
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1131 1132
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1133
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1134

Y
Yibing Liu 已提交
1135
    Args:
Y
yangyaming 已提交
1136
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1137 1138 1139 1140
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1141
        label (Variable|list): the ground truth which is a 2-D tensor. When
1142 1143 1144 1145
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1146
        soft_label (bool): a flag indicating whether to
1147
                                           interpretate the given labels as soft
1148
                                           labels. Default: `False`.
M
minqiyang 已提交
1149 1150
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1151
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1152 1153 1154 1155 1156

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1157 1158 1159 1160 1161
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1162 1163 1164 1165 1166 1167

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1168
    """
F
fengjiayi 已提交
1169
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1170
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1171 1172 1173 1174 1175
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1176 1177
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1178 1179 1180
    return out


F
fengjiayi 已提交
1181
def square_error_cost(input, label):
Y
Yu Yang 已提交
1182
    """
1183 1184
    **Square error cost layer**

1185 1186
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1201 1202
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1203 1204

    Returns:
G
guosheng 已提交
1205
        Variable: The tensor variable storing the element-wise squared error \
1206
                  difference of input and label.
1207 1208 1209 1210 1211 1212 1213 1214

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1215
    """
F
fengjiayi 已提交
1216
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1217
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1218 1219 1220 1221 1222 1223
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1224
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1225
    helper.append_op(
F
fengjiayi 已提交
1226 1227
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1228 1229 1230
    return square_out


Y
yi.wu 已提交
1231
@templatedoc()
Y
Yu Yang 已提交
1232 1233 1234 1235
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1236
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1237
    """
Y
yi.wu 已提交
1238
    **Chunk Evaluator**
Y
yi.wu 已提交
1239

Y
yangyaming 已提交
1240
    This function computes and outputs the precision, recall and
1241
    F1-score of chunk detection.
Y
yi.wu 已提交
1242

Y
yi.wu 已提交
1243 1244 1245 1246 1247 1248 1249 1250
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1251

Y
yi.wu 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1277

Y
yi.wu 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1302
    Args:
1303 1304 1305 1306 1307
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1308

Y
yi.wu 已提交
1309
    Returns:
Y
update  
yi.wu 已提交
1310 1311 1312
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1313

Y
yi.wu 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1326
    """
F
fengjiayi 已提交
1327
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1328 1329

    # prepare output
X
Xin Pan 已提交
1330 1331 1332 1333 1334 1335 1336
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342 1343 1344

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1345 1346 1347 1348
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1349 1350 1351
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1352 1353
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1354
        })
1355 1356
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1357 1358


1359
@templatedoc()
Y
Yu Yang 已提交
1360 1361 1362 1363 1364 1365 1366
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1367 1368
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1369 1370 1371 1372
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1373 1374 1375 1376 1377 1378 1379

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1393

1394 1395
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401 1402
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1403
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1414
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1415 1416 1417 1418 1419 1420
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1421
def sequence_softmax(input, use_cudnn=False, name=None):
1422 1423 1424
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1425
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1442 1443 1444
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1457 1458
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1459
    softmax_out = helper.create_variable_for_type_inference(dtype)
1460 1461 1462 1463 1464 1465 1466 1467
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1468
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1469
    """
1470
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1471
    has the same shape as the input.
Q
qiaolongfei 已提交
1472

1473 1474 1475 1476 1477 1478
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1479
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1480 1481 1482 1483 1484 1485 1486

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1487
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1488 1489 1490 1491 1492 1493 1494 1495

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1496 1497 1498
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1511 1512
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1513
    softmax_out = helper.create_variable_for_type_inference(dtype)
1514 1515 1516 1517 1518 1519 1520 1521
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1522 1523 1524
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1525 1526
           stride=1,
           padding=0,
1527
           dilation=1,
Y
Yu Yang 已提交
1528 1529 1530
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1531
           use_cudnn=True,
1532 1533
           act=None,
           name=None):
Y
Yu Yang 已提交
1534
    """
C
chengduoZH 已提交
1535
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1536 1537
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1538
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1539 1540 1541 1542 1543 1544 1545
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1546 1547 1548
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1549

1550
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1551

C
chengduoZH 已提交
1552 1553
    .. math::

C
refine  
chengduoZH 已提交
1554
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1555

T
tensor-tang 已提交
1556
    Where:
C
chengduoZH 已提交
1557

1558 1559 1560 1561 1562
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1563
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1564 1565 1566

    Example:

1567 1568
        - Input:

W
weixing02 已提交
1569
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1570

W
weixing02 已提交
1571
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1572

1573
        - Output:
T
tensor-tang 已提交
1574

W
weixing02 已提交
1575
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1576

C
chengduoZH 已提交
1577
        Where
1578 1579

        .. math::
C
chengduoZH 已提交
1580

W
weixing02 已提交
1581 1582
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1583 1584

    Args:
1585
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1586
        num_filters(int): The number of filter. It is as same as the output
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1615 1616
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1617 1618
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1619
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1620
            will be named automatically. Default: None
C
chengduoZH 已提交
1621 1622

    Returns:
G
guosheng 已提交
1623
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1624 1625
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1626
    Raises:
1627 1628
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1629

C
chengduoZH 已提交
1630 1631 1632
    Examples:
        .. code-block:: python

1633 1634
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1635 1636 1637
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1638
    assert param_attr is not False, "param_attr should not be False here."
1639
    l_type = 'conv2d'
X
xzl 已提交
1640 1641
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1642
        l_type = 'depthwise_conv2d'
1643 1644 1645 1646

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1647 1648 1649 1650 1651
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1652
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1653

C
chengduoZH 已提交
1654 1655 1656
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1657
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1658

C
chengduoZH 已提交
1659 1660
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1661 1662

    input_shape = input.shape
M
minqiyang 已提交
1663
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1664 1665

    def _get_default_param_initializer():
C
chengduo 已提交
1666 1667
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1668 1669 1670 1671 1672 1673 1674 1675
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1676
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1692
    helper.append_op(
1693
        type=l_type,
Y
Yu Yang 已提交
1694 1695 1696 1697 1698
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1699 1700 1701
        attrs={
            'strides': stride,
            'paddings': padding,
1702
            'dilations': dilation,
C
chengduoZH 已提交
1703
            'groups': groups,
1704
            'use_cudnn': use_cudnn,
1705
            'use_mkldnn': False,
C
chengduoZH 已提交
1706
        })
Y
Yu Yang 已提交
1707 1708 1709 1710 1711 1712

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1730 1731 1732 1733 1734 1735
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1745 1746
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1747 1748 1749
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1750
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1776
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1777 1778
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1779
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1780 1781
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1782
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1783 1784
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1785
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1786 1787 1788 1789 1790 1791
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1802 1803
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1804 1805
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1806
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1807
            will be named automatically. Default: None.
C
chengduoZH 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1820 1821
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1822 1823 1824
    """

    l_type = 'conv3d'
C
chengduo 已提交
1825
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1836
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1850 1851 1852
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1853 1854 1855 1856 1857 1858 1859 1860
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1861
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1876
            'use_mkldnn': False
C
chengduoZH 已提交
1877 1878
        })

1879
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1880 1881 1882 1883

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1884
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1885
    """
Y
yangyaming 已提交
1886 1887 1888
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1900
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1901 1902 1903 1904 1905
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1906
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1907 1908 1909 1910 1911 1912 1913

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1914 1915
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1916

L
Luo Tao 已提交
1917 1918
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1919
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1920
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1921
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1922 1923 1924 1925 1926 1927 1928

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1929

Y
yangyaming 已提交
1930
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1931 1932 1933 1934 1935
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1936 1937
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1938
    """
F
fengjiayi 已提交
1939
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1940
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1941 1942
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1943 1944 1945 1946 1947 1948

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1949 1950
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1951

Y
yangyaming 已提交
1952 1953 1954 1955 1956
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1957 1958 1959
    return pool_out


C
add doc  
chengduoZH 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1979
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1980 1981 1982 1983 1984
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1985
def sequence_first_step(input):
L
Luo Tao 已提交
1986
    """
L
Luo Tao 已提交
1987
    This function gets the first step of sequence.
L
Luo Tao 已提交
1988 1989 1990 1991

    .. code-block:: text

       x is a 1-level LoDTensor:
1992
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1993 1994 1995 1996 1997
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1998
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1999
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2000

L
Luo Tao 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2010

Y
yangyaming 已提交
2011
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2012 2013 2014
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2015 2016 2017
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2018
def sequence_last_step(input):
L
Luo Tao 已提交
2019
    """
L
Luo Tao 已提交
2020
    This function gets the last step of sequence.
L
Luo Tao 已提交
2021 2022 2023 2024

    .. code-block:: text

       x is a 1-level LoDTensor:
2025
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2026 2027 2028 2029 2030
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2031
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2032
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2033

L
Luo Tao 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2043

Y
yangyaming 已提交
2044
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2045 2046 2047
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2048 2049 2050
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2051 2052 2053 2054
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2055
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2056 2057 2058 2059 2060
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2061

Y
Yibing Liu 已提交
2062 2063
	- Case:

2064
            Given the input Variable **input**:
2065

2066 2067 2068
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2069

2070
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2071

2072
            the output Variable will be
2073

2074 2075 2076
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2077 2078

    NOTE: The first dimension size of **input**, **offset** and **length**
2079
          should be equal. The **offset** should start from 0.
2080

Y
Yibing Liu 已提交
2081
    Args:
2082
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2083
                         sequences.
Y
Yibing Liu 已提交
2084 2085 2086 2087 2088 2089
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2090
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2101
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2102 2103 2104 2105
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2106
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2121
@templatedoc()
Y
Yu Yang 已提交
2122
def pool2d(input,
C
chengduoZH 已提交
2123 2124
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2125 2126
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2127
           global_pooling=False,
C
chengduoZH 已提交
2128
           use_cudnn=True,
2129
           ceil_mode=False,
2130 2131
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2132
    """
F
fengjiayi 已提交
2133
    ${comment}
2134 2135

    Args:
2136 2137 2138
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2139
                          feature, and W is the width of the feature.
2140
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2141
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2142
        pool_type: ${pooling_type_comment}
2143 2144
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2145 2146 2147
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2148
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2149
                        layer will be named automatically.
2150 2151
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2152

2153
    Returns:
F
fengjiayi 已提交
2154
        Variable: The pooling result.
F
fengjiayi 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2168 2169 2170 2171
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2172
                            global_pooling=False)
Y
Yu Yang 已提交
2173 2174 2175 2176 2177
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2178

C
chengduoZH 已提交
2179 2180 2181 2182 2183
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2184 2185 2186 2187
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2188 2189
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2190

C
Add doc  
chengduoZH 已提交
2191
    l_type = 'pool2d'
2192 2193

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2194
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2195
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2196 2197

    helper.append_op(
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2209 2210
            "use_mkldnn": False,
            "exclusive": exclusive,
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2224 2225
           name=None,
           exclusive=True):
2226 2227
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2228
    pooling configurations mentioned in input parameters.
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2241 2242
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2243

2244
    Returns:
2245
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2246 2247 2248 2249 2250
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2251

C
chengduoZH 已提交
2252 2253 2254 2255 2256
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2257 2258 2259
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2260

C
chengduoZH 已提交
2261 2262
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2263

2264 2265
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2266
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2267
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2268 2269

    helper.append_op(
2270
        type=l_type,
Y
Yu Yang 已提交
2271 2272 2273 2274 2275 2276 2277
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2278
            "paddings": pool_padding,
2279
            "use_cudnn": use_cudnn,
2280
            "ceil_mode": ceil_mode,
2281 2282
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2295
               data_layout='NCHW',
Y
Yang Yang 已提交
2296
               in_place=False,
2297 2298
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2299
               moving_variance_name=None,
2300 2301
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2302
    """
Q
qiaolongfei 已提交
2303 2304 2305 2306
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2307

Q
qiaolongfei 已提交
2308
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2309

Q
qiaolongfei 已提交
2310 2311
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2312 2313 2314
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2327 2328

    Args:
Q
qiaolongfei 已提交
2329
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2330 2331 2332 2333
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2334 2335 2336 2337 2338 2339 2340 2341
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2342
        data_layout(string, default NCHW): NCHW|NHWC
2343
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2344 2345 2346 2347
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2348
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2349
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2350 2351

    Returns:
Q
qiaolongfei 已提交
2352
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2353 2354 2355 2356 2357 2358 2359

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2360
    """
C
chengduo 已提交
2361
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2384
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2385

2386 2387
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2388 2389 2390
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2391
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2392
        shape=param_shape,
2393 2394 2395 2396 2397 2398 2399
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2400
            trainable=False,
W
wanghaoshuang 已提交
2401
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2402
        shape=param_shape,
2403 2404
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2405 2406 2407 2408 2409 2410

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2411 2412 2413 2414
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2415

X
Xin Pan 已提交
2416 2417
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2435 2436 2437 2438
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2439
            "use_mkldnn": False,
2440
            "fuse_with_relu": fuse_with_relu
2441
        })
Y
Yu Yang 已提交
2442 2443 2444 2445

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2446
@templatedoc()
G
guosheng 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2457
    ${comment}
G
guosheng 已提交
2458 2459 2460

    The formula is as follows:

Y
yuyang18 已提交
2461
    ..  math::
G
guosheng 已提交
2462 2463 2464 2465 2466 2467 2468

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2469 2470 2471 2472 2473 2474 2475 2476
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2477

G
guosheng 已提交
2478 2479
    Args:
        input(Variable): The input tensor variable.
2480
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2481
            normalization. Default True.
2482
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2483 2484
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2485
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2486
            Default 1.
2487
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2488
            division by zero. Default 1e-05.
G
guosheng 已提交
2489
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2490 2491
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2492 2493
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2494
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2495 2496
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2497
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2498
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2499
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2500 2501 2502
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2503 2504

    Returns:
Y
yuyang18 已提交
2505
        ${y_comment}
G
guosheng 已提交
2506 2507 2508

    Examples:

Y
yuyang18 已提交
2509 2510 2511
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2527
    if shift:
G
guosheng 已提交
2528 2529 2530 2531 2532 2533
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2534 2535 2536 2537 2538
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2554 2555 2556 2557
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2558 2559 2560
                     padding=0,
                     stride=1,
                     dilation=1,
2561
                     groups=None,
C
caoying03 已提交
2562
                     param_attr=None,
2563
                     bias_attr=None,
C
chengduoZH 已提交
2564
                     use_cudnn=True,
2565
                     act=None,
C
caoying03 已提交
2566
                     name=None):
Y
Yu Yang 已提交
2567
    """
2568 2569 2570 2571 2572 2573 2574 2575
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2576 2577
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2578 2579 2580
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2581 2582 2583 2584 2585

    For each input :math:`X`, the equation is:

    .. math::

2586
        Out = \sigma (W \\ast X + b)
2587

2588
    Where:
2589 2590 2591

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2592 2593 2594 2595
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2596

2597 2598 2599 2600
    Example:

        - Input:

2601
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2602

2603
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2604 2605 2606

        - Output:

2607
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2608 2609

        Where
Y
Yu Yang 已提交
2610

2611 2612
        .. math::

2613 2614 2615 2616
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2617 2618

    Args:
2619 2620 2621 2622
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2623 2624 2625 2626
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2655
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2656 2657 2658
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2659
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2660
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2661 2662

    Returns:
2663
        Variable: The tensor variable storing the convolution transpose result.
2664 2665

    Raises:
2666 2667
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2668 2669 2670 2671

    Examples:
       .. code-block:: python

2672 2673
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2674
    """
C
chengduo 已提交
2675
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2676 2677 2678 2679 2680 2681 2682 2683
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2684 2685 2686
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2687 2688 2689
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2690

C
chengduoZH 已提交
2691 2692
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2693

Y
Yu Yang 已提交
2694 2695 2696 2697 2698
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2699

Y
Yu Yang 已提交
2700 2701
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2702

C
chengduoZH 已提交
2703
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2704
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2705
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2706
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2707
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2708 2709 2710
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2711

2712 2713 2714 2715 2716 2717 2718
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2719
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2720
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2721

Y
Yu Yang 已提交
2722 2723 2724
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2725
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2726
    helper.append_op(
2727
        type=op_type,
Y
Yu Yang 已提交
2728 2729
        inputs={'Input': [input],
                'Filter': [img_filter]},
2730
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2731
        attrs={
2732
            'output_size': output_size,
2733 2734 2735 2736 2737
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2738 2739
        })

2740 2741 2742
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2743 2744


2745
def conv3d_transpose(input,
Y
Yu Yang 已提交
2746 2747 2748
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2749 2750 2751
                     padding=0,
                     stride=1,
                     dilation=1,
2752
                     groups=None,
C
caoying03 已提交
2753
                     param_attr=None,
2754
                     bias_attr=None,
C
chengduoZH 已提交
2755
                     use_cudnn=True,
2756
                     act=None,
C
caoying03 已提交
2757
                     name=None):
Y
Yu Yang 已提交
2758
    """
2759
    **Convlution3D transpose layer**
2760

2761
    The convolution3D transpose layer calculates the output based on the input,
2762
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2763 2764 2765 2766 2767 2768
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2769 2770 2771
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2772 2773 2774 2775 2776

    For each input :math:`X`, the equation is:

    .. math::

2777
        Out = \sigma (W \\ast X + b)
2778 2779 2780

    In the above equation:

2781 2782
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2783 2784 2785 2786
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2787

2788 2789 2790 2791
    Example:

        - Input:

2792
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2793

2794
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2795 2796 2797

        - Output:

2798
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2799 2800

        Where
Y
Yu Yang 已提交
2801

2802 2803
        .. math::

2804 2805 2806
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2807 2808

    Args:
2809
        input(Variable): The input image with [N, C, D, H, W] format.
2810 2811 2812
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2813
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2814 2815
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2816
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2817 2818 2819
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2820 2821
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2822
        stride(int|tuple): The stride size. If stride is a tuple, it must
2823 2824
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2825
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2826 2827 2828
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2829 2830 2831 2832 2833
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2843 2844
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2845 2846
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2847 2848
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2849 2850

    Returns:
2851
        Variable: The tensor variable storing the convolution transpose result.
2852 2853

    Raises:
2854 2855
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2856 2857 2858 2859

    Examples:
       .. code-block:: python

2860 2861
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2862
    """
C
chengduo 已提交
2863
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2864 2865
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2866
    if not isinstance(input, Variable):
2867
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2868 2869
    input_channel = input.shape[1]

2870 2871 2872
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2873

C
chengduoZH 已提交
2874 2875 2876
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2877 2878 2879 2880 2881 2882
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2883 2884 2885
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2886

2887
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2888
                         padding[0] - 1) // dilation[0] + 1
2889
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2890
                         padding[1] - 1) // dilation[1] + 1
2891
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2892
                         padding[2] - 1) // dilation[2] + 1
2893
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2894
    else:
2895 2896
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2897

2898
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2899
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2900 2901 2902
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2903
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2904
    helper.append_op(
2905
        type=l_type,
Y
Yu Yang 已提交
2906 2907
        inputs={'Input': [input],
                'Filter': [img_filter]},
2908
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2909 2910 2911 2912
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2913
            'groups': groups,
C
chengduoZH 已提交
2914 2915
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2916

2917 2918
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2919
    return out
Y
yangyaming 已提交
2920 2921


Y
yangyaming 已提交
2922
def sequence_expand(x, y, ref_level=-1, name=None):
2923
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2924 2925 2926 2927
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2928 2929 2930 2931 2932

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2933
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2934
                x.data = [[a], [b], [c], [d]]
2935 2936 2937
                x.dims = [4, 1]

            y is a LoDTensor:
2938 2939
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2940

Y
yangyaming 已提交
2941
            ref_level: 0
2942

Y
yangyaming 已提交
2943
            then output is a 1-level LoDTensor:
2944
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2945
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2946 2947 2948 2949
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2950
                x.data = [[a], [b], [c]]
2951 2952 2953
                x.dims = [3, 1]

            y is a LoDTensor:
2954
                y.lod = [[2, 0, 3]]
2955

Y
yangyaming 已提交
2956
            ref_level: -1
2957

Y
yangyaming 已提交
2958 2959 2960
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2961 2962 2963
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2964 2965
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2966
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2967
                        will be named automatically.
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2978
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2979
    """
Y
yangyaming 已提交
2980
    helper = LayerHelper('sequence_expand', input=x, **locals())
2981
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2982
    tmp = helper.create_variable_for_type_inference(dtype)
2983
    helper.append_op(
Y
yangyaming 已提交
2984 2985 2986 2987 2988
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2989
    return tmp
2990 2991


C
chengduo 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3048
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3049 3050 3051 3052 3053 3054 3055 3056
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3057
@templatedoc()
3058
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3059 3060 3061 3062 3063
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3064 3065 3066
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3067
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3068 3069 3070 3071
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3072 3073 3074
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3075

F
fengjiayi 已提交
3076
    Returns:
M
minqiyang 已提交
3077
        Variable: The padded sequence batch and the original lengths before
3078
                  padding. All sequences has the same length.
M
minqiyang 已提交
3079

F
fengjiayi 已提交
3080 3081 3082 3083 3084 3085 3086
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3087
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3088
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3089 3090 3091 3092 3093
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3094 3095
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3096 3097 3098 3099

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3100 3101 3102 3103 3104 3105
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3106 3107
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3108
        attrs={'padded_length': maxlen})
3109
    return out, length
F
fengjiayi 已提交
3110 3111


3112
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3113
    """
3114
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3115

3116 3117
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3127 3128 3129
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3130
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3131 3132 3133 3134 3135 3136

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3137
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3138 3139 3140 3141 3142 3143

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3144 3145
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3160
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3172 3173 3174 3175 3176 3177 3178 3179 3180
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3181 3182
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3183 3184 3185

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3186 3187

    This layer does the search in beams for one time step. Specifically, it
3188 3189 3190 3191 3192 3193
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3194

3195 3196 3197 3198 3199 3200 3201 3202
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3203

3204
    Args:
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3230

3231
    Returns:
3232 3233
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3234 3235 3236 3237

    Examples:
        .. code-block:: python

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3255 3256 3257 3258
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3259 3260 3261
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3262 3263 3264 3265 3266

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3267
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3285 3286 3287 3288 3289 3290 3291
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3292

3293 3294 3295 3296 3297 3298 3299 3300 3301
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3302

3303 3304 3305 3306 3307 3308
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3309

3310 3311 3312 3313 3314 3315 3316 3317
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3318 3319
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3335 3336 3337 3338
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3339
              param_attr=None,
C
caoying03 已提交
3340 3341
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3342 3343 3344 3345
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3346
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3347

3348
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3349

3350
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3351

3352
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3353 3354 3355

            h_t & = o_t tanh(c_t)

3356 3357 3358 3359 3360 3361
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3362 3363 3364

        .. math::

3365
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3366 3367 3368 3369 3370 3371 3372 3373

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3374
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3375 3376

    Args:
Y
yangyaming 已提交
3377 3378 3379 3380 3381 3382
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3383
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3396 3397
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3398 3399

    Returns:
Y
yangyaming 已提交
3400
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3401 3402

    Raises:
3403 3404 3405 3406
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3407 3408 3409 3410 3411 3412

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3413
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3414
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3415
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3432
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3433 3434 3435 3436
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3437 3438
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3439 3440 3441
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3442
    size = cell_t_prev.shape[1]
3443
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3444 3445
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3446
                param_attr=param_attr,
3447
                bias_attr=bias_attr)
Y
yangyaming 已提交
3448
    dtype = x_t.dtype
X
Xin Pan 已提交
3449 3450
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3460
    return h, c
G
guosheng 已提交
3461 3462


C
caoying03 已提交
3463
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3464
    """
Y
yangyaming 已提交
3465
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3466 3467 3468

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3469
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3470 3471
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3472 3473
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3474
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3475
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3476
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3477 3478
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3479 3480 3481

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3482

G
guosheng 已提交
3483 3484 3485 3486 3487 3488
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3489
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3490 3491 3492 3493
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3494 3495 3496 3497

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3498
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3499 3500 3501
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3502 3503
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3504
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3505 3506
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3507 3508 3509 3510 3511
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3512
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3513 3514 3515 3516
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3517 3518


C
caoying03 已提交
3519
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3520
    """
Y
Yibing Liu 已提交
3521
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3522 3523 3524

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3525 3526 3527
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3528
            must be in the range :math:`[-rank(input), rank(input))`. If
3529
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3530
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3531 3532
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3533
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3534
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3535
                       will be named automatically.
G
guosheng 已提交
3536 3537

    Returns:
Y
Yibing Liu 已提交
3538
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3539

G
guosheng 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3550 3551
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3552 3553 3554 3555 3556 3557 3558

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3559 3560
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3561
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3562 3563
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3564 3565 3566 3567 3568
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3569
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3570 3571 3572 3573
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3574 3575


C
caoying03 已提交
3576
def reduce_max(input, dim=None, keep_dim=False, name=None):
3577
    """
Y
yangyaming 已提交
3578
    Computes the maximum of tensor elements over the given dimension.
3579 3580 3581

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3582
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3583 3584 3585
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3586
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3587 3588
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3589
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3590 3591
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3592 3593 3594

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3607 3608 3609 3610 3611 3612 3613

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3614 3615
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3616
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3617 3618
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3619 3620 3621 3622 3623
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3624
            'dim': dim if dim != None else [0],
3625 3626 3627 3628 3629 3630
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3631
def reduce_min(input, dim=None, keep_dim=False, name=None):
3632
    """
Y
yangyaming 已提交
3633
    Computes the minimum of tensor elements over the given dimension.
3634 3635 3636

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3637
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3638 3639 3640
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3641
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3642 3643
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3644
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3645 3646
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3647 3648 3649

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3650

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3662 3663 3664 3665 3666 3667 3668

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3669 3670
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3671
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3672 3673
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3674 3675 3676 3677 3678
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3679
            'dim': dim if dim != None else [0],
3680 3681 3682 3683
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3684 3685


3686 3687 3688 3689 3690 3691
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3692
        dim (list|int|None): The dimensions along which the product is performed. If
3693 3694
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3695 3696
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3697 3698 3699
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3700
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3701
            layer will be named automatically.
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3716
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3717
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3718 3719 3720 3721 3722 3723 3724

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3725 3726
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3727
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3728 3729
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3730 3731 3732 3733 3734
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3735
            'dim': dim if dim != None else [0],
3736 3737 3738 3739 3740 3741
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3742
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3743
    """
C
caoying03 已提交
3744
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3745 3746 3747

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3748 3749 3750 3751 3752
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3753
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3754
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3755
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3756 3757
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3758 3759

    Returns:
D
dzhwinter 已提交
3760
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3770 3771
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3787
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3810
    .. math::
3811 3812

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3813 3814 3815 3816 3817

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3818
        x(Variable|list): The input tensor to l2_normalize layer.
3819
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3820 3821
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3822
        epsilon(float): The epsilon value is used to avoid division by zero, \
3823
            the defalut value is 1e-10.
3824
        name(str|None): A name for this layer(optional). If set None, the layer \
3825
            will be named automatically.
C
caoying03 已提交
3826 3827

    Returns:
3828
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3829 3830

    Examples:
3831

C
caoying03 已提交
3832 3833
        .. code-block:: python

3834 3835 3836 3837
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3838 3839
    """

F
fengjiayi 已提交
3840 3841
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3842 3843
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3844 3845
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3846
    helper.append_op(
3847 3848 3849 3850
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3851
        attrs={
3852 3853
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3854 3855
        })
    return out
3856 3857


S
sneaxiy 已提交
3858
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3859
    """
Y
ying 已提交
3860 3861 3862 3863
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3864

C
chengduoZH 已提交
3865
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3866
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3867

3868 3869 3870 3871 3872
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3873
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3874

C
chengduoZH 已提交
3875
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3876
      performs in the following way.
G
guosheng 已提交
3877

3878
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3879
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3880
        last two dimensions and a batched matrix multiply supporting broadcast
3881
        applies on the two tensors.
G
guosheng 已提交
3882

Y
ying 已提交
3883 3884
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3885
    removed after matrix multiplication.
G
guosheng 已提交
3886 3887 3888

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3889 3890 3891
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3892
        alpha (float): The scale of output. Default 1.0.
3893
        name(str|None): A name for this layer(optional). If set None, the layer
3894
            will be named automatically.
G
guosheng 已提交
3895 3896

    Returns:
3897
        Variable: The product Tensor variable.
G
guosheng 已提交
3898

G
guosheng 已提交
3899 3900 3901
    Examples:
        .. code-block:: python

3902
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3903 3904
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3905

3906 3907
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3908

3909 3910
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3911

3912 3913
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3914 3915 3916 3917

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3918 3919
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3920

Y
ying 已提交
3921
            # x: [M], y: [N]
3922
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3923
    """
Y
ying 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3936
            y_shape = y_shape + [1]
Y
ying 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3953
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3954
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3955
    helper.append_op(
3956 3957 3958 3959
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3960 3961 3962
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3963
            'alpha': float(alpha),
S
sneaxiy 已提交
3964
        })
3965
    return out
3966 3967


3968
def topk(input, k, name=None):
Q
qingqing01 已提交
3969 3970 3971 3972
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3973
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3974 3975 3976 3977 3978 3979
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4001 4002 4003
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4004
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4005
                 of input.
4006
        name(str|None): A name for this layer(optional). If set None, the layer
4007
                       will be named automatically.
F
fengjiayi 已提交
4008
                       Default: None
Q
qingqing01 已提交
4009 4010

    Returns:
4011 4012 4013
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4014
        within the last dimension of input.
Q
qingqing01 已提交
4015

F
fengjiayi 已提交
4016 4017
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4018 4019 4020 4021 4022 4023 4024

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4025 4026
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4038
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4039
    """
Y
ying 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4049

Y
ying 已提交
4050
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4051

4052
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4053 4054
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4055
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4056

4057
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4058 4059
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4060

4061 4062 4063
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4064
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4065
                          the length of reference string.
4066
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4067
                                     calculating edit distance.
4068
        name (str): The name of this layer. It is optional.
4069

W
wanghaoshuang 已提交
4070
    Returns:
W
wanghaoshuang 已提交
4071
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4072 4073 4074 4075 4076

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4077
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4078
            cost = fluid.layers.edit_distance(input=x,label=y)
4079
    """
4080
    helper = LayerHelper("edit_distance", **locals())
4081

4082
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4083
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4084 4085
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4086 4087 4088 4089 4090

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4091
            attrs={"tokens": ignored_tokens})
4092 4093 4094 4095 4096
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4097
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4098
            attrs={"tokens": ignored_tokens})
4099 4100
        label = erased_label

4101
    # edit distance op
X
Xin Pan 已提交
4102 4103
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4104 4105 4106 4107
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4108 4109
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4110 4111
        attrs={"normalized": normalized})

4112
    return edit_distance_out, sequence_num
4113 4114 4115 4116 4117


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4118

Y
ying 已提交
4119 4120 4121 4122
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4140
        input.lod = [[4, 4]]
4141 4142 4143 4144 4145 4146 4147

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4148
        output.lod = [[2, 1]]
4149 4150 4151

    Args:

Y
ying 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4161
        name (str): The name of this layer. It is optional.
4162 4163

    Returns:
4164
        Variable: CTC greedy decode result. If all the sequences in result were
4165
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4166 4167 4168 4169 4170

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4171

4172
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4173
    """
4174
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4175
    _, topk_indices = topk(input, k=1)
4176 4177

    # ctc align op
X
Xin Pan 已提交
4178
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4179 4180 4181
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4182
        outputs={"Output": [ctc_out]},
4183 4184
        attrs={"merge_repeated": True,
               "blank": blank})
4185
    return ctc_out
4186 4187


F
fengjiayi 已提交
4188
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4189
    """
4190 4191
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4192
    to compute Connectionist Temporal Classification (CTC) loss.
4193 4194
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4195 4196 4197
    input tensor.

    Args:
4198
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4199 4200 4201 4202
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4203
       label (Variable): The ground truth of variable-length sequence,
4204 4205 4206
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4207 4208
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4209 4210 4211
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4212
         follewed by a mean_op.
W
wanghaoshuang 已提交
4213 4214

    Returns:
4215 4216
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4217 4218

    Examples:
4219

W
wanghaoshuang 已提交
4220
        .. code-block:: python
4221

4222 4223 4224
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4225 4226

    """
F
fengjiayi 已提交
4227
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4228 4229
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4254 4255 4256
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4257 4258 4259 4260 4261
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4262

4263
            out.lod  = [[0, 1, 3]]
4264 4265 4266 4267

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4268 4269 4270 4271 4272 4273 4274
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4275 4276 4277

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4278 4279

    Returns:
4280

4281 4282 4283 4284 4285
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4286
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4287
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4288 4289
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4290
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4291 4292 4293 4294 4295 4296
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4297 4298


4299 4300 4301 4302
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4303 4304 4305 4306 4307 4308
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4309 4310
        num_neg_samples=None,
        name=None):
4311 4312 4313 4314 4315 4316 4317
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4318 4319
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4320
            sample is 1.0.
C
chengduo 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4330
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4331 4332
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4333

4334
    Returns:
Y
Yibing Liu 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4362
    """
Y
Yang Yu 已提交
4363 4364 4365
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4366 4367

    dim = input.shape[1]
Y
Yang Yu 已提交
4368 4369 4370 4371 4372 4373
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4387 4388 4389
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4390

Y
Yang Yu 已提交
4391 4392 4393 4394 4395 4396 4397 4398 4399
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4400 4401 4402

    helper.append_op(
        type='nce',
C
chengduo 已提交
4403
        inputs=inputs,
Y
Yang Yu 已提交
4404 4405 4406 4407 4408 4409
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4410
    return cost / (num_neg_samples + 1)
4411 4412


C
chengduo 已提交
4413 4414 4415 4416 4417 4418
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4419 4420
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4421
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4431

W
weixing02 已提交
4432
    Args:
M
minqiyang 已提交
4433
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4434 4435 4436 4437 4438
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4450 4451 4452 4453 4454 4455 4456 4457

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4458 4459 4460
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4461 4462 4463 4464
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4465 4466
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4467 4468
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4469
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4470 4471 4472 4473 4474
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4475 4476 4477 4478 4479 4480 4481 4482
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4483 4484
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4485
        inputs=inputs,
W
weixing02 已提交
4486 4487 4488 4489 4490 4491
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4492
def transpose(x, perm, name=None):
Y
ying 已提交
4493 4494 4495 4496 4497 4498 4499
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4500 4501 4502
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4503 4504 4505 4506 4507 4508 4509

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4510 4511 4512 4513
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4514
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4515 4516
    """

Y
fix ci.  
ying 已提交
4517
    if len(perm) != len(x.shape):
Y
ying 已提交
4518 4519 4520
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4521 4522 4523 4524 4525 4526
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4527 4528

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4529 4530
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4531
    helper.append_op(
4532
        type='transpose2',
Y
fix ci.  
ying 已提交
4533
        inputs={'X': [x]},
4534 4535
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4536 4537
        attrs={'axis': perm})
    return out
4538 4539


4540 4541 4542 4543 4544 4545 4546
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4547
    """
4548 4549 4550 4551 4552 4553 4554
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4583 4584 4585 4586 4587 4588 4589 4590 4591
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4592 4593 4594
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4595 4596 4597 4598 4599
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4627 4628 4629
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4642
            output.dims = {8, 8}
4643

4644
            output.lod = [[4, 4]]
4645

D
dzhwinter 已提交
4646
     Examples:
4647 4648 4649

        .. code-block:: python

4650 4651
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4652 4653

    """
W
wanghaoshuang 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4664 4665 4666 4667 4668 4669 4670
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4671
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4672
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4673
    helper.append_op(
4674
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4675
    return out
4676 4677


Y
yuyang18 已提交
4678
@templatedoc()
4679
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4680 4681
    """
    ${comment}
4682 4683

    Args:
Y
yuyang18 已提交
4684
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4685 4686
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4687 4688 4689 4690 4691
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4692
        ${out_comment}.
4693 4694

    Examples:
Y
yuyang18 已提交
4695 4696 4697 4698
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4699 4700 4701 4702 4703 4704
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4705
    out = helper.create_variable_for_type_inference(dtype)
4706 4707 4708 4709 4710
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4711
    return helper.append_activation(out)
4712 4713


Y
yuyang18 已提交
4714
@templatedoc()
4715 4716
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4717 4718 4719 4720 4721 4722 4723
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4724 4725

    Args:
Y
yuyang18 已提交
4726 4727
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4728 4729

    Returns:
Y
yuyang18 已提交
4730
        ${out_comment}.
4731 4732
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4733 4734 4735 4736 4737

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4738
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4739 4740 4741 4742 4743 4744
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4745 4746


4747 4748 4749
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4750 4751
                               ignore_index=-100,
                               numeric_stable_mode=False):
4752 4753
    """
    **Softmax With Cross Entropy Operator.**
4754

4755 4756 4757 4758
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4759

4760 4761 4762
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4763

4764 4765 4766
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4767

4768
    The equation is as follows:
4769

4770
    1) Hard label (one-hot label, so every sample has exactly one class)
4771

4772 4773 4774 4775
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4776

4777 4778 4779
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4780

4781 4782 4783 4784
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4797 4798 4799 4800 4801 4802 4803 4804
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4805 4806
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4807
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4808 4809 4810 4811 4812 4813 4814
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4815

4816 4817 4818 4819 4820 4821 4822 4823 4824
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4825 4826
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4827 4828
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4829 4830
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4831 4832 4833 4834 4835 4836
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4837 4838 4839 4840 4841
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4842 4843 4844 4845 4846
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4847 4848
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4849
    For each instance, it computes the smooth L1 loss element by element first
4850
    and then sums all the losses. So the shape of ouput Variable is
4851
    [batch_size, 1].
4852

4853 4854
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4855
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4856
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4857
            L1 loss op with same shape as :attr:`x`.
4858
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4859 4860
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4861
            by this tensor element by element.
4862
        outside_weight (Variable|None): A tensor with rank at least 2. This
4863 4864
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4865
            element by element.
4866
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4867 4868
           scalar with default value 1.0.

4869
    Returns:
4870
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4871 4872 4873 4874 4875

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4876 4877
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4878
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4879
            out = fluid.layers.smooth_l1(x=fc, y=label)
4880
    """
4881

4882
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4883 4884
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4897 4898 4899 4900


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4901
    This layer creates the one-hot representations for input indices.
4902 4903

    Args:
Y
Yibing Liu 已提交
4904 4905
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4906 4907

    Returns:
Y
Yibing Liu 已提交
4908
        Variable: The one-hot representations of input.
4909 4910

    Examples:
C
caoying03 已提交
4911
        .. code-block:: python
4912

Y
Yibing Liu 已提交
4913 4914
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4915 4916
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4917
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4918 4919 4920 4921 4922 4923
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4924 4925


Y
Yu Yang 已提交
4926
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4927
    """
Y
yi.wu 已提交
4928 4929 4930
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4931 4932 4933 4934 4935 4936

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4937 4938
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4939 4940 4941 4942 4943 4944

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4945 4946
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4947 4948
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4949 4950 4951 4952 4953
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4954
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4955
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4956 4957
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4958 4959
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4960 4961 4962
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4963 4964


4965
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4966
    """
C
caoying03 已提交
4967 4968
    Gives a new shape to the input Tensor without changing its data.

4969 4970 4971 4972 4973
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4974

4975
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4976

4977 4978 4979 4980
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4981
    2. 0 means the actual dimension value is going to be copied from the
4982 4983 4984 4985
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4986 4987

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4988
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4989
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4990

4991
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4992 4993
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4994 4995
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4996
    dimensions.
C
caoying03 已提交
4997

4998
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4999 5000 5001 5002
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5003 5004

    Args:
5005
        x(variable): The input tensor.
C
caoying03 已提交
5006 5007
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5008 5009 5010 5011 5012
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5013 5014
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5015 5016 5017 5018 5019 5020 5021
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5022
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5023

5024
    Returns:
G
guosheng 已提交
5025 5026 5027 5028
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5029

X
Xin Pan 已提交
5030 5031 5032
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5033 5034
    Examples:
        .. code-block:: python
G
guosheng 已提交
5035

5036
            data = fluid.layers.data(
5037
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5038
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5039
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5040 5041 5042
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5043
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5044 5045 5046 5047 5048
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5049

5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5065
    helper = LayerHelper("reshape2", **locals())
5066 5067
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5068
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5069
    helper.append_op(
5070
        type="reshape2",
X
Xin Pan 已提交
5071
        inputs=inputs,
D
dzhwinter 已提交
5072
        attrs={"shape": shape},
5073 5074
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5075

D
dzhwinter 已提交
5076
    return helper.append_activation(out)
5077

5078

5079
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5080
    """
M
minqiyang 已提交
5081 5082 5083
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5084
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5085

Y
Yibing Liu 已提交
5086 5087
    Examples:
    Case 1:
M
minqiyang 已提交
5088
      Given
Y
Yibing Liu 已提交
5089 5090 5091 5092 5093 5094 5095 5096
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5097
        and
Y
Yibing Liu 已提交
5098 5099 5100
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5101

Y
Yibing Liu 已提交
5102
    Args:
5103
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5104
        axes (list): List of integers, indicating the dimensions to be squeezed.
5105
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5106 5107 5108 5109 5110 5111 5112 5113

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5114
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5115 5116
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5117 5118
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5119
    helper.append_op(
5120
        type="squeeze2",
5121
        inputs={"X": input},
Y
Yibing Liu 已提交
5122
        attrs={"axes": axes},
5123 5124
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5125

5126 5127 5128
    return out


5129
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5130
    """
M
minqiyang 已提交
5131 5132 5133
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5134

M
minqiyang 已提交
5135 5136
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5137
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5138

Y
Yibing Liu 已提交
5139
    Args:
5140
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5141
        axes (list): List of integers, indicating the dimensions to be inserted.
5142
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5143 5144 5145 5146 5147 5148 5149 5150

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5151
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5152 5153
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5154 5155
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5156
    helper.append_op(
5157
        type="unsqueeze2",
5158
        inputs={"X": input},
Y
Yibing Liu 已提交
5159
        attrs={"axes": axes},
5160 5161
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5162

5163 5164
    return out

5165

Y
yangyaming 已提交
5166
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5167
    """
Y
Yibing Liu 已提交
5168
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5169 5170 5171 5172
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5173
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5174 5175 5176 5177 5178 5179

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5180
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5181 5182 5183
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5184
            target_lod: [4, 2]
Y
yangyaming 已提交
5185 5186

            then we get a 1-level LoDTensor:
5187
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5188 5189 5190 5191 5192 5193
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5194
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5195 5196 5197 5198
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5199
                y.data = [[2, 4]]
Y
yangyaming 已提交
5200 5201 5202
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5203
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5204 5205 5206 5207 5208 5209
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5210
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5211 5212 5213 5214
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5215
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5216 5217 5218 5219
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5220
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5221 5222 5223 5224 5225
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5226
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5227
                           from :attr:`y`.
Y
yangyaming 已提交
5228
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5229
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5230 5231

    Returns:
Y
Yibing Liu 已提交
5232
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5233 5234

    Raises:
Y
Yibing Liu 已提交
5235
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5245
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5271
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5300 5301
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5314 5315 5316
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5330 5331 5332 5333


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5334
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5335
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5336

G
guosheng 已提交
5337 5338 5339 5340
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5363
                         The length of :attr:paddings must be
G
guosheng 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5374

G
guosheng 已提交
5375 5376 5377 5378 5379 5380
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5381
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5382 5383 5384 5385 5386 5387 5388
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5389 5390


C
chengduo 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5461
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5462 5463 5464 5465 5466 5467 5468 5469 5470
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5471 5472 5473 5474 5475 5476 5477
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5478 5479
    called label-smoothing regularization (LSR).

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5503
                              be :math:`(1, class\_num)`.
5504 5505
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5506
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5526
    smooth_label = helper.create_variable_for_type_inference(dtype)
5527 5528 5529 5530 5531 5532 5533
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5534 5535


P
peizhilin 已提交
5536
if os.name != 'nt':
P
peizhilin 已提交
5537

P
peizhilin 已提交
5538
    @templatedoc()
P
peizhilin 已提交
5539 5540 5541 5542 5543
    def roi_pool(input,
                 rois,
                 pooled_height=1,
                 pooled_width=1,
                 spatial_scale=1.0):
P
peizhilin 已提交
5544 5545
        """
        ${comment}
5546

P
peizhilin 已提交
5547 5548 5549 5550 5551 5552
        Args:
            input (Variable): ${x_comment}
            rois (Variable): ROIs (Regions of Interest) to pool over.
            pooled_height (integer): ${pooled_height_comment} Default: 1
            pooled_width (integer): ${pooled_width_comment} Default: 1
            spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5553

P
peizhilin 已提交
5554 5555
        Returns:
            Variable: ${out_comment}.
5556

P
peizhilin 已提交
5557 5558
        Examples:
            .. code-block:: python
5559

P
peizhilin 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
                pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
        """
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type="roi_pool",
            inputs={"X": input,
                    "ROIs": rois},
            outputs={"Out": pool_out,
                     "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale
            })
        return pool_out
W
whs 已提交
5578 5579


J
jerrywgz 已提交
5580 5581 5582 5583 5584 5585
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5586 5587
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5604 5605 5606
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5607 5608 5609 5610 5611 5612
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5613
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5654 5655
        .. code-block:: python

W
whs 已提交
5656 5657 5658 5659
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5660
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5661 5662 5663 5664 5665 5666
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5667 5668


5669 5670 5671 5672
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5673 5674
                 resample='BILINEAR',
                 actual_shape=None):
5675
    """
Q
qiaolongfei 已提交
5676
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5677

5678
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5679 5680 5681
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5682

5683
        'BILINEAR' : Bilinear interpolation
5684
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5685

5686
    Args:
5687
        input (Variable): The input tensor of image resize layer,
5688 5689
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5690
        out_shape(list|tuple|Variable|None): Output shape of image resize
5691 5692
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5693
        scale(float|None): The multiplier for the input height or width.
5694 5695 5696
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5697 5698
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5699 5700
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5701
                       Default: 'BILINEAR'
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5715 5716

    Returns:
Q
update  
qiaolongfei 已提交
5717 5718
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5719

5720 5721 5722 5723 5724 5725 5726 5727
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5728 5729 5730
    Examples:
        .. code-block:: python

5731
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5732
    """
5733 5734 5735 5736
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5737 5738
    if resample not in resample_methods:
        raise ValueError(
5739
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5740
        )
5741
    if out_shape is None and scale is None:
5742
        raise ValueError("One of out_shape and scale must not be None.")
5743
    helper = LayerHelper('interpolate', **locals())
5744
    dtype = helper.input_dtype()
5745 5746 5747 5748

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5749 5750 5751
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5752
    if out_shape is not None:
5753 5754 5755 5756
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5757
            inputs['OutSize'] = out_shape
5758 5759 5760 5761 5762 5763 5764 5765
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5766 5767 5768 5769
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5770 5771 5772 5773 5774
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5775
    out = helper.create_variable_for_type_inference(dtype)
5776
    helper.append_op(
5777
        type='interpolate',
5778
        inputs=inputs,
5779
        outputs={"Out": out},
5780 5781 5782 5783 5784
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5785
    return out
F
stash  
fengjiayi 已提交
5786 5787


5788
@templatedoc(op_type="interpolate")
5789 5790 5791 5792 5793
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5794
    """
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5807 5808 5809 5810 5811

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5812

Y
yuyang18 已提交
5813 5814 5815 5816 5817
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5831 5832 5833

    Returns:
        ${out_comment}.
5834 5835
    """

5836
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5837 5838


5839
@templatedoc(op_type="interpolate")
5840 5841 5842 5843 5844
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5845
    """
5846 5847 5848 5849 5850 5851 5852
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5853 5854 5855 5856 5857

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5858

Y
yuyang18 已提交
5859 5860 5861 5862 5863
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5877 5878 5879

    Returns:
        ${out_comment}.
5880 5881
    """

5882
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5883 5884 5885 5886


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5887 5888 5889
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5890 5891 5892 5893 5894 5895 5896
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5897
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5898

5899
    Returns:
Q
update  
qiaolongfei 已提交
5900
        Variable: The output is a 4-D tensor of the shape
5901
        (num_batches, channls, out_h, out_w).
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5912 5913 5914
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5915 5916 5917
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5918 5919
def gather(input, index):
    """
Q
qiaolongfei 已提交
5920 5921
    **Gather Layer**

5922
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5923 5924 5925 5926
    of X indexed by `index` and concatenate them together.

    .. math::

5927
        Out = X[Index]
W
whs 已提交
5928 5929 5930 5931 5932 5933 5934


    .. code-block:: text


                Given:

5935 5936
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5947
        input (Variable): The source input with rank>=1.
W
whs 已提交
5948 5949 5950 5951 5952 5953
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5954

W
whs 已提交
5955 5956 5957 5958 5959 5960
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5961
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5962 5963 5964 5965 5966 5967 5968 5969
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6001
    out = helper.create_variable_for_type_inference(dtype)
6002 6003 6004 6005 6006 6007 6008 6009 6010
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6061
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6084

6085 6086 6087
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6088
    """
F
stash  
fengjiayi 已提交
6089
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6090
    dtype = x.dtype
X
Xin Pan 已提交
6091
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6092
    if seed is None:
6093
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6094
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6095
    if isinstance(seed, int):
F
fengjiayi 已提交
6096 6097 6098 6099 6100
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6101 6102 6103 6104
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6105
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6106 6107
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6108 6109
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6110
    return out
W
whs 已提交
6111 6112


6113
def log(x, name=None):
W
wanghaoshuang 已提交
6114 6115 6116 6117 6118
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6119
        Out = \\ln(x)
W
wanghaoshuang 已提交
6120 6121

    Args:
6122
        x (Variable): Input tensor.
6123 6124
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6125 6126 6127 6128 6129 6130 6131 6132

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6133
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6134 6135
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6136
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6137
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6138
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6139 6140 6141
    return out


6142
def relu(x, name=None):
W
wanghaoshuang 已提交
6143 6144
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6145
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6146 6147 6148 6149
    the tensor elementwise.

    .. math::

6150
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6151 6152

    Args:
6153
        x (Variable): The input tensor.
6154 6155
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6156 6157 6158 6159 6160 6161 6162 6163

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6164
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6165 6166
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6167
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6168
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6169
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6170
    return out
6171 6172


W
whs 已提交
6173 6174 6175
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6176 6177 6178 6179
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6180
    .. math::
6181 6182

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6183

6184
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6185 6186 6187 6188 6189
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6190
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6191
                           Its shape should be the same as input.
6192
        num_classes (int): The possible number of labels.
W
whs 已提交
6193 6194 6195 6196

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6197
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6198 6199 6200 6201

    Examples:

        .. code-block:: python
6202

W
whs 已提交
6203 6204 6205 6206
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6207 6208 6209
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6210 6211
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6212 6213
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6214
        outputs={
W
whs 已提交
6215 6216 6217
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6218 6219 6220
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6295
                    isinstance(shape, Variable)):
6296 6297 6298 6299 6300
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6301
    out = helper.create_variable_for_type_inference(x.dtype)
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6319 6320


W
whs 已提交
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6439 6440 6441 6442 6443 6444 6445 6446
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6447

6448 6449
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6450

6451 6452 6453 6454
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6455

6456 6457 6458 6459 6460
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6461 6462 6463

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6499
    out = helper.create_variable_for_type_inference("float32")
6500 6501 6502 6503 6504 6505 6506 6507

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6508 6509


M
minqiyang 已提交
6510 6511
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6512
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6513
    which compares left score and right score passed in.
M
minqiyang 已提交
6514
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6515 6516 6517 6518 6519 6520

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6521
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6522 6523
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6524
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6525 6526 6527
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6528
       Variable: The ranking loss.
M
minqiyang 已提交
6529
    Raises:
M
minqiyang 已提交
6530
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6531 6532 6533 6534 6535 6536 6537
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6538
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6539 6540 6541 6542 6543 6544
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6545 6546
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6572

W
whs 已提交
6573 6574
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6575

W
whs 已提交
6576
      Case 0:
M
minqiyang 已提交
6577

W
whs 已提交
6578 6579 6580
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6581

W
whs 已提交
6582 6583 6584
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6585

W
whs 已提交
6586
      Case 1:
M
minqiyang 已提交
6587

W
whs 已提交
6588 6589
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6590

W
whs 已提交
6591 6592 6593
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6594

W
whs 已提交
6595
      Case 2:
M
minqiyang 已提交
6596

W
whs 已提交
6597 6598
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6599

W
whs 已提交
6600 6601 6602
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6603 6604


W
whs 已提交
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6631
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6683
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6706
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6730
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6755
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6779
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6780 6781 6782 6783 6784 6785 6786 6787
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6802
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6803
                        will be named automatically.
J
jerrywgz 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6831
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6832 6833 6834 6835 6836 6837 6838 6839 6840
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6855
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6878
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6900
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6901 6902 6903 6904 6905 6906 6907 6908
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6922

6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6933 6934
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6950
        ValueError: If axis is not in range [0, rank(x)].
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6967 6968
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6969
    helper.append_op(
6970
        type='flatten2',
6971
        inputs={"X": x},
6972 6973
        outputs={'Out': out,
                 'XShape': x_shape},
6974 6975
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6976 6977


C
chenweihang 已提交
6978
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6979
    """
C
chenweihang 已提交
6980
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6981
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6982 6983
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6984

C
chenweihang 已提交
6985 6986 6987 6988
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6989
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6990 6991 6992 6993 6994 6995
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6996
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6997 6998 6999
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7000 7001 7002
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7014 7015
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7016 7017 7018 7019 7020 7021
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7022
    return out
7023

7024

S
sneaxiy 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7034

S
sneaxiy 已提交
7035
    .. math::
7036

S
sneaxiy 已提交
7037 7038 7039
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7040
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7041 7042 7043 7044
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7045 7046 7047
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7048 7049
    Returns:
        Variable: The output sequence mask.
7050

S
sneaxiy 已提交
7051 7052
    """

Q
qingqing01 已提交
7053
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7054
    if name is None:
X
Xin Pan 已提交
7055
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7056
    else:
X
Xin Pan 已提交
7057
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7058

Q
qingqing01 已提交
7059 7060 7061
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7062 7063
        outputs={'Y': out},
        attrs={
7064
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7065 7066 7067
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7068 7069


X
Xin Pan 已提交
7070
def stack(x, axis=0):
S
sneaxiy 已提交
7071 7072 7073 7074
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7075 7076 7077 7078 7079 7080 7081

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7082
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7083
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7084 7085

    Args:
7086
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7087
        axis (int|None): The axis along which all inputs are stacked.
7088

S
sneaxiy 已提交
7089 7090
    Returns:
        Variable: The stacked variable.
7091

S
sneaxiy 已提交
7092 7093
    """

X
Xin Pan 已提交
7094 7095 7096 7097 7098 7099
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7100
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7101
    helper.append_op(
S
sneaxiy 已提交
7102 7103
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7104

X
Xin Pan 已提交
7105
    return out
D
dzhwinter 已提交
7106 7107 7108 7109 7110 7111 7112


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7113

D
dzhwinter 已提交
7114 7115 7116
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7117
    raised.
D
dzhwinter 已提交
7118 7119

    Args:
M
minqiyang 已提交
7120
        x (Variable): Input variable.
D
dzhwinter 已提交
7121 7122
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7123

D
dzhwinter 已提交
7124 7125
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7126

D
dzhwinter 已提交
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7138
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7139 7140 7141 7142 7143 7144 7145 7146

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7159

W
whs 已提交
7160 7161 7162 7163
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7164

W
whs 已提交
7165
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7166

W
whs 已提交
7167
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7168

W
whs 已提交
7169 7170 7171 7172
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7173

W
whs 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7190
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7191 7192 7193 7194 7195 7196
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7197 7198


G
fix  
gongweibao 已提交
7199 7200 7201
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7202
@templatedoc()
G
fix  
gongweibao 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7212
    ${comment}
G
fix  
gongweibao 已提交
7213 7214

    Args:
G
gongweibao 已提交
7215 7216 7217
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7218
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7219 7220 7221
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7222 7223
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7224
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7225 7226 7227 7228

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7229
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7246 7247


G
gongweibao 已提交
7248
@templatedoc()
X
Xin Pan 已提交
7249
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7250
    """
G
gongweibao 已提交
7251
    ${comment}
G
fix  
gongweibao 已提交
7252 7253

    Args:
G
gongweibao 已提交
7254 7255 7256 7257
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7258 7259 7260
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7261
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7262 7263 7264 7265

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7266
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7277
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7278 7279 7280 7281 7282
        })

    return out


G
gongweibao 已提交
7283
@templatedoc()
G
fix  
gongweibao 已提交
7284
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7285
    """
G
gongweibao 已提交
7286
    ${comment}
G
fix  
gongweibao 已提交
7287 7288

    Args:
G
gongweibao 已提交
7289 7290 7291 7292
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7293
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7294 7295

    Returns:
G
gongweibao 已提交
7296
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7297 7298 7299 7300

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7301
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7313
@templatedoc()
G
fix  
gongweibao 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7323
    ${comment}
G
fix  
gongweibao 已提交
7324 7325

    Args:
G
gongweibao 已提交
7326 7327
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7328
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7329 7330 7331 7332
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7333
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7334 7335

    Returns:
G
gongweibao 已提交
7336
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7337 7338 7339
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7340
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7359
@templatedoc()
X
Xin Pan 已提交
7360
def sum(x):
G
fix  
gongweibao 已提交
7361
    """
G
gongweibao 已提交
7362
    ${comment}
G
fix  
gongweibao 已提交
7363 7364

    Args:
G
gongweibao 已提交
7365
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7366 7367

    Returns:
G
gongweibao 已提交
7368
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7369 7370 7371
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7372 7373
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7374 7375 7376 7377
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7378
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7379 7380 7381 7382

    return out


G
gongweibao 已提交
7383
@templatedoc()
G
fix  
gongweibao 已提交
7384 7385
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7386
    ${comment}
G
fix  
gongweibao 已提交
7387 7388

    Args:
G
gongweibao 已提交
7389 7390 7391 7392
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7393 7394

    Returns:
G
gongweibao 已提交
7395
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7396 7397 7398 7399

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7400 7401
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7413
@templatedoc()
G
fix  
gongweibao 已提交
7414 7415
def shape(input):
    """
G
gongweibao 已提交
7416
    ${comment}
G
fix  
gongweibao 已提交
7417 7418

    Args:
G
gongweibao 已提交
7419
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7420 7421

    Returns:
G
gongweibao 已提交
7422
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7423 7424 7425 7426

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7427 7428
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7429
    helper.append_op(
G
fix  
gongweibao 已提交
7430
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7431 7432

    return out
G
merge  
gongweibao 已提交
7433 7434


S
sneaxiy 已提交
7435 7436 7437 7438 7439 7440 7441 7442
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7443 7444
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7445
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7446 7447 7448
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7449

S
sneaxiy 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7461
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7462 7463 7464 7465 7466 7467 7468 7469
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7470
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7471
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7472 7473 7474 7475 7476 7477

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7478
    if name is None:
X
Xin Pan 已提交
7479
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7480 7481 7482
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491 7492

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7493
    return helper.append_activation(out)
S
sneaxiy 已提交
7494 7495


X
Xin Pan 已提交
7496
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7497 7498 7499
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7500
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7501 7502 7503
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7504
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7505 7506 7507
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7508
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7509 7510 7511
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7512
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7513 7514 7515
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7516
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7517 7518 7519
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7520
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7532 7533
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7534
        ])
M
minqiyang 已提交
7535 7536


7537
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7538 7539
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7540 7541
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7542 7543 7544

    if out is None:
        if name is None:
X
Xin Pan 已提交
7545
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7561
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7580
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7599
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7618
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7653 7654 7655 7656
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7685 7686 7687 7688
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7689 7690 7691 7692 7693 7694 7695 7696

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7715
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7745
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7755 7756
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7779
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7809
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7820 7821


J
JiabinYang 已提交
7822
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7823
    """
J
JiabinYang 已提交
7824
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7825
    
J
JiabinYang 已提交
7826
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7827
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7828
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7829 7830
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7831
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7832 7833 7834
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7835

J
JiabinYang 已提交
7836 7837 7838 7839 7840 7841 7842
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7843
    Args:
J
JiabinYang 已提交
7844
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7845
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7846 7847

    Returns:
J
JiabinYang 已提交
7848
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7849 7850

    Raises:
J
JiabinYang 已提交
7851
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7852 7853 7854 7855 7856 7857

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7858
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7859
                x=data, blocksize=2)
J
JiabinYang 已提交
7860 7861
    """

J
JiabinYang 已提交
7862
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7863

J
JiabinYang 已提交
7864 7865
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7866 7867

    if name is None:
J
JiabinYang 已提交
7868 7869
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7870 7871 7872 7873 7874
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7875
        type="space_to_depth",
J
JiabinYang 已提交
7876
        inputs={"X": x},
J
JiabinYang 已提交
7877
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7878
        outputs={"Out": out})
J
JiabinYang 已提交
7879 7880
    return out

J
JiabinYang 已提交
7881

S
sneaxiy 已提交
7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7896
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7907 7908


7909 7910 7911 7912 7913 7914
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7915

7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7935
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7948 7949


B
barrierye 已提交
7950 7951
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
7952
    SimilarityFocus Operator
B
barrierye 已提交
7953 7954

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
7955
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
7956
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
7957
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
7958 7959 7960 7961
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
7962 7963 7964
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
7965 7966
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
7967 7968 7969 7970
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8020 8021 8022
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8023
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8024
            1, 2 or 3.
B
barrierye 已提交
8025
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8026 8027 8028 8029 8030 8031 8032 8033

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8034 8035
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8048 8049 8050 8051 8052
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8053 8054 8055 8056 8057 8058 8059
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8060 8061


M
minqiyang 已提交
8062 8063
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8064 8065
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8066 8067
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8106
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8107
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8108 8109 8110 8111 8112 8113 8114 8115 8116

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8117 8118
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8119 8120
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8121 8122 8123 8124 8125 8126 8127
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8128 8129


D
dengkaipeng 已提交
8130
@templatedoc()
8131 8132
def grid_sampler(x, grid, name=None):
    """
8133 8134 8135 8136 8137 8138 8139
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8178 8179

    Args:
8180 8181 8182
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8183 8184

    Returns:
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8195 8196 8197 8198 8199 8200 8201 8202 8203
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8204
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8205 8206
    ipts = {'X': x, 'Grid': grid}

8207
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8208 8209 8210
    return out


G
gmcather 已提交
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out