nn.py 299.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
from .. import core
Y
Yu Yang 已提交
31 32

__all__ = [
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
60
    'sequence_unpad',
X
Xin Pan 已提交
61 62 63 64 65 66 67 68
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
69
    'sequence_slice',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
100
    'roi_align',
X
Xin Pan 已提交
101 102 103 104
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
105
    'resize_nearest',
X
Xin Pan 已提交
106 107 108 109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
115
    'margin_rank_loss',
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
159
    'space_to_depth',
W
whs 已提交
160
    'affine_grid',
S
sneaxiy 已提交
161
    'sequence_reverse',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166
    'log_loss',
167
    'yolov3_loss',
G
gmcather 已提交
168
    'add_position_encoding',
Q
Qiao Longfei 已提交
169
    'bilinear_tensor_product',
Y
Yu Yang 已提交
170 171 172 173 174 175 176 177 178
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
179
       is_test=False,
180
       name=None):
Y
Yu Yang 已提交
181
    """
182
    **Fully Connected Layer**
Y
Yu Yang 已提交
183

184 185 186 187 188 189 190 191
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
192
    to the output as well.
C
caoying03 已提交
193

C
caoying03 已提交
194
    This process can be formulated as follows:
195 196 197

    .. math::

198
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
199 200 201

    In the above equation:

C
caoying03 已提交
202 203 204 205
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
206
    * :math:`Act`: The activation function.
C
caoying03 已提交
207
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
208 209

    Args:
R
ranqiu 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
225 226
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
227
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
228
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
229
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
230

231
    Returns:
F
fengjiayi 已提交
232
        Variable: The transformation result.
233 234

    Raises:
C
caoying03 已提交
235
        ValueError: If rank of the input tensor is less than 2.
236 237 238 239

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
240
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
241
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
242
    """
C
caoying03 已提交
243

C
caoying03 已提交
244
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
245 246 247 248

    dtype = helper.input_dtype()

    mul_results = []
249 250
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
251 252 253
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
254

Y
Yu Yang 已提交
255
        w = helper.create_parameter(
256
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
257
        tmp = helper.create_variable_for_type_inference(dtype)
258
        helper.append_op(
259 260 261
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
262
            outputs={"Out": tmp},
M
mozga-intel 已提交
263 264
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
265 266 267 268
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
269
    else:
X
Xin Pan 已提交
270
        pre_bias = helper.create_variable_for_type_inference(dtype)
271
        helper.append_op(
272 273 274
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
275
            attrs={"use_mkldnn": False})
276 277 278 279
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
280 281


282 283 284
def embedding(input,
              size,
              is_sparse=False,
285
              is_distributed=False,
286 287 288
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
289
    """
290 291
    **Embedding Layer**

292
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
293 294
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
295 296 297

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
298 299

    Args:
300 301 302 303 304
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
305
        is_distributed(bool): Whether to run lookup table from remote parameter server.
306 307
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
308
            with zeros whenever lookup encounters it in :attr:`input`. If
309
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
310 311
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
312
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
313

314 315 316
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
317

318 319
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
320

C
chengduoZH 已提交
321
          dict_size = len(dataset.ids)
322
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
323
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
324 325 326 327 328
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
329
    tmp = helper.create_variable_for_type_inference(dtype)
330 331
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
332 333 334 335 336
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
337 338 339 340 341
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
342 343 344
    return tmp


Y
yi.wu 已提交
345
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
346 347
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
348 349
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
350 351 352 353 354 355 356
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
357 358
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
359
    """
Y
yi.wu 已提交
360
    ${comment}
Y
Yibing Liu 已提交
361 362

    Args:
Y
yi.wu 已提交
363 364
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
365 366 367 368 369 370
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
371
        param_attr(ParamAttr|None): The parameter attribute for the learnable
372
                               hidden-hidden weights.
Y
Yibing Liu 已提交
373 374 375

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
376 377
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
378 379 380 381 382

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
383
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
384 385 386
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
387

388
                              1. `use_peepholes = False`
Y
yi.wu 已提交
389 390
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
391
                              2. `use_peepholes = True`
Y
yi.wu 已提交
392
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
393
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
394
                                 - The shape is (1 x 7D).
C
chengduo 已提交
395 396 397 398 399

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
400 401 402 403 404 405 406 407
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
408 409

    Returns:
Y
Yibing Liu 已提交
410 411
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
412

Y
Yibing Liu 已提交
413
    Examples:
Y
Yibing Liu 已提交
414 415
        .. code-block:: python

Y
Yibing Liu 已提交
416 417
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
418
                                           bias_attr=False)
Y
Yibing Liu 已提交
419 420
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
421
    """
C
chengduo 已提交
422
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
423
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
424
    size = size // 4
Y
Yu Yang 已提交
425 426 427 428 429 430 431 432
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
433 434 435 436
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
437 438 439 440 441 442 443 444 445 446
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
447 448 449

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
450
        inputs=inputs,
Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
467 468 469 470 471 472 473 474 475 476 477
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
478 479
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
480 481 482
    """
    **Dynamic LSTMP Layer**

483 484 485 486 487 488
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
489 490 491 492 493

    The formula is as follows:

    .. math::

494
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
495

496
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
497

498
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
499

500
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
501

502
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
503

504
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
505

506
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
507

Y
Yibing Liu 已提交
508 509 510 511 512 513
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
514
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
515
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
516
          bias vector).
Y
Yibing Liu 已提交
517 518 519
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
520
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
521
    * :math:`h`: The hidden state.
522
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
523 524
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
525
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
526
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
527
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
528 529
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
530 531 532 533

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
534

Y
Yibing Liu 已提交
535 536 537 538 539 540 541 542 543 544 545 546
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
547
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
548 549
                               hidden-hidden weight and projection weight.

550 551
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
552 553
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
554 555
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
556
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
557 558 559 560 561

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
562
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
563 564 565 566 567 568
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
569
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
570 571 572
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
573
                                - The shape is (1 x 7D).
C
chengduo 已提交
574 575 576 577 578

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
579 580 581 582 583 584 585 586 587
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
588
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
589 590
                              default "tanh".
        proj_activation(str): The activation for projection output.
591
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
592 593
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
594 595
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
596 597

    Returns:
598 599 600 601
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
602 603

    Examples:
604

Y
Yibing Liu 已提交
605 606
        .. code-block:: python

607 608 609 610
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
611
            hidden_dim, proj_dim = 512, 256
612
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
613
                                     act=None, bias_attr=None)
614 615 616
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
617 618 619 620
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
621
    """
622

C
chengduo 已提交
623
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
624
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
625
    size = size // 4
Y
Yibing Liu 已提交
626 627 628 629 630 631 632 633 634 635
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
636 637 638 639 640 641
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
670 671 672 673 674 675 676 677 678
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
679
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
680

681
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
682
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
683

G
guosheng 已提交
684 685 686 687 688 689 690 691 692
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
693

G
guosheng 已提交
694
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
695

G
guosheng 已提交
696
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
697 698
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
699 700 701 702
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
703
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
704 705

    Args:
706 707
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
708
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
709
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
710 711
            is the hidden size.
        size(int): The dimension of the gru cell.
712
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
713 714
            hidden-hidden weight matrix. Note:

715
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
716
              :math:`D` is the hidden size.
717
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
718
              The first part are weights of the update gate and reset gate with
719
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
720
              candidate hidden state with shape :math:`(D \\times D)`.
721 722 723 724 725 726 727 728 729 730 731 732

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
733
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
734 735 736
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
737
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
738
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
739 740 741 742
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
743 744

    Returns:
G
guosheng 已提交
745
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
746
            and sequence length is the same with the input.
747

G
guosheng 已提交
748
    Examples:
749

G
guosheng 已提交
750 751
        .. code-block:: python

752 753 754 755
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
756
            hidden_dim = 512
757
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
758 759 760 761 762 763 764 765 766 767
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
768
    batch_size = input.shape[0]
G
guosheng 已提交
769
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
770
    if h_0:
G
guosheng 已提交
771
        assert h_0.shape == (
Y
Yancey 已提交
772 773 774
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
775

X
Xin Pan 已提交
776 777 778 779
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
798 799 800
def gru_unit(input,
             hidden,
             size,
801 802
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
803
             activation='tanh',
804
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
805
    """
806
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
807

808 809
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
810

811
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
812

813
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
814

815
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
816 817

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
818 819 820
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
821 822
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

823 824
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
825 826 827
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
828 829 830

    Args:
        input (Variable): The fc transformed input value of current step.
831
        hidden (Variable): The hidden value of gru unit from previous step.
832
        size (integer): The input dimension value.
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
854 855 856 857
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
858

859 860 861 862 863 864
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
865

866
             # assuming we have x_t_data and prev_hidden of size=10
867
             x_t = fluid.layers.fc(input=x_t_data, size=30)
868 869
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
870 871 872 873 874 875 876 877 878 879 880 881

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
882
    size = size // 3
Y
Yu Yang 已提交
883 884

    # create weight
885 886
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
887

X
Xin Pan 已提交
888 889 890
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
891
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
892
    # create bias
893
    if helper.bias_attr:
Y
Yu Yang 已提交
894 895 896
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
897
        inputs['Bias'] = bias
Y
Yu Yang 已提交
898 899 900

    helper.append_op(
        type='gru_unit',
901
        inputs=inputs,
Y
Yu Yang 已提交
902 903 904 905 906 907
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
908 909
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
910 911 912 913 914
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
915
@templatedoc()
916
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
917 918 919 920 921 922 923
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
924
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
925 926 927 928
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
929 930 931
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
932 933

    """
Y
Yu Yang 已提交
934 935 936 937 938 939
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
940 941 942 943 944 945 946 947
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
963
@templatedoc()
964
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
965 966 967 968 969
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
970

Y
yuyang18 已提交
971
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
972

Y
yuyang18 已提交
973 974 975
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
976
        Variable: ${viterbi_path_comment}
977

Y
yi.wu 已提交
978 979 980 981 982
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
983
    """
Y
Yu Yang 已提交
984 985
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
986 987
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
988 989 990 991 992 993 994 995 996 997
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
998
@templatedoc()
F
fengjiayi 已提交
999
def cos_sim(X, Y):
Y
Yu Yang 已提交
1000
    """
Y
yi.wu 已提交
1001 1002 1003
    ${comment}

    Args:
1004 1005
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1006

Y
yi.wu 已提交
1007
    Returns:
1008
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1009
    """
F
fengjiayi 已提交
1010
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1011 1012 1013
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1024 1025 1026 1027 1028
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1029
            dropout_implementation="downgrade_in_infer"):
1030 1031 1032 1033 1034
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1035
    training. The dropout operator randomly sets (according to the given dropout
1036 1037 1038 1039
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1040 1041
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1042 1043 1044 1045 1046 1047 1048
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1063

1064 1065

    Returns:
1066
        Variable: A tensor variable is the shape with `x`.
1067 1068

    Examples:
1069

1070 1071
        .. code-block:: python

1072 1073
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1074 1075
    """

F
fengjiayi 已提交
1076
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1077 1078 1079
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1080 1081 1082 1083

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1084 1085 1086 1087 1088
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1089 1090 1091 1092
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1093 1094
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1095
        })
1096 1097 1098
    return out


1099
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1100
    """
Y
Yibing Liu 已提交
1101 1102
    **Cross Entropy Layer**

1103 1104 1105
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1106 1107

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1108
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1109

Y
Yibing Liu 已提交
1110
        .. math::
Y
yangyaming 已提交
1111

Y
Yibing Liu 已提交
1112 1113 1114
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1115 1116
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1117 1118 1119 1120 1121

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1122
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1123 1124 1125
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1126 1127
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1128
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1129

Y
Yibing Liu 已提交
1130
    Args:
Y
yangyaming 已提交
1131
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1132 1133 1134 1135
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1136
        label (Variable|list): the ground truth which is a 2-D tensor. When
1137 1138 1139 1140
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1141
        soft_label (bool): a flag indicating whether to
1142
                                           interpretate the given labels as soft
1143
                                           labels. Default: `False`.
M
minqiyang 已提交
1144 1145
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1146
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1147 1148 1149 1150 1151

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1152 1153 1154 1155 1156
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1157 1158 1159 1160 1161 1162

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1163
    """
F
fengjiayi 已提交
1164
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1165
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1166 1167 1168 1169 1170
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1171 1172
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1173 1174 1175
    return out


F
fengjiayi 已提交
1176
def square_error_cost(input, label):
Y
Yu Yang 已提交
1177
    """
1178 1179
    **Square error cost layer**

1180 1181
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1196 1197
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1198 1199

    Returns:
G
guosheng 已提交
1200
        Variable: The tensor variable storing the element-wise squared error \
1201
                  difference of input and label.
1202 1203 1204 1205 1206 1207 1208 1209

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1210
    """
F
fengjiayi 已提交
1211
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1212
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1219
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1220
    helper.append_op(
F
fengjiayi 已提交
1221 1222
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1223 1224 1225
    return square_out


Y
yi.wu 已提交
1226
@templatedoc()
Y
Yu Yang 已提交
1227 1228 1229 1230
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1231
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1232
    """
Y
yi.wu 已提交
1233
    **Chunk Evaluator**
Y
yi.wu 已提交
1234

Y
yangyaming 已提交
1235
    This function computes and outputs the precision, recall and
1236
    F1-score of chunk detection.
Y
yi.wu 已提交
1237

Y
yi.wu 已提交
1238 1239 1240 1241 1242 1243 1244 1245
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1246

Y
yi.wu 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1272

Y
yi.wu 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1297
    Args:
1298 1299 1300 1301 1302
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1303

Y
yi.wu 已提交
1304
    Returns:
Y
update  
yi.wu 已提交
1305 1306 1307
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1308

Y
yi.wu 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1321
    """
F
fengjiayi 已提交
1322
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1323 1324

    # prepare output
X
Xin Pan 已提交
1325 1326 1327 1328 1329 1330 1331
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1332 1333 1334 1335 1336 1337 1338 1339

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1340 1341 1342 1343
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1344 1345 1346
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1347 1348
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1349
        })
1350 1351
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1352 1353


1354
@templatedoc()
Y
Yu Yang 已提交
1355 1356 1357 1358 1359 1360 1361
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1362 1363
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1364 1365 1366 1367
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1368 1369 1370 1371 1372 1373 1374

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1388

1389 1390
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1391 1392 1393 1394 1395 1396 1397
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1398
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1409
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1410 1411 1412 1413 1414 1415
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1416
def sequence_softmax(input, use_cudnn=False, name=None):
1417 1418 1419
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1420
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1437 1438 1439
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1452 1453
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1454
    softmax_out = helper.create_variable_for_type_inference(dtype)
1455 1456 1457 1458 1459 1460 1461 1462
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1463
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1464
    """
1465
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1466
    has the same shape as the input.
Q
qiaolongfei 已提交
1467

1468 1469 1470 1471 1472 1473
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1474
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1475 1476 1477 1478 1479 1480 1481

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1482
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1483 1484 1485 1486 1487 1488 1489 1490

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1491 1492 1493
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1506 1507
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1508
    softmax_out = helper.create_variable_for_type_inference(dtype)
1509 1510 1511 1512 1513 1514 1515 1516
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1517 1518 1519
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1520 1521
           stride=1,
           padding=0,
1522
           dilation=1,
Y
Yu Yang 已提交
1523 1524 1525
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1526
           use_cudnn=True,
1527 1528
           act=None,
           name=None):
Y
Yu Yang 已提交
1529
    """
C
chengduoZH 已提交
1530
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1531 1532
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1533
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1534 1535 1536 1537 1538 1539 1540
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1541 1542 1543
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1544

1545
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1546

C
chengduoZH 已提交
1547 1548
    .. math::

C
refine  
chengduoZH 已提交
1549
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1550

T
tensor-tang 已提交
1551
    Where:
C
chengduoZH 已提交
1552

1553 1554 1555 1556 1557
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1558
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1559 1560 1561

    Example:

1562 1563
        - Input:

W
weixing02 已提交
1564
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1565

W
weixing02 已提交
1566
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1567

1568
        - Output:
T
tensor-tang 已提交
1569

W
weixing02 已提交
1570
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1571

C
chengduoZH 已提交
1572
        Where
1573 1574

        .. math::
C
chengduoZH 已提交
1575

W
weixing02 已提交
1576 1577
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1578 1579

    Args:
1580
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1581
        num_filters(int): The number of filter. It is as same as the output
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1610 1611
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1612 1613
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1614
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1615
            will be named automatically. Default: None
C
chengduoZH 已提交
1616 1617

    Returns:
G
guosheng 已提交
1618
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1619 1620
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1621
    Raises:
1622 1623
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1624

C
chengduoZH 已提交
1625 1626 1627
    Examples:
        .. code-block:: python

1628 1629
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1630 1631 1632
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1633
    assert param_attr is not False, "param_attr should not be False here."
1634
    l_type = 'conv2d'
X
xzl 已提交
1635 1636
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1637
        l_type = 'depthwise_conv2d'
1638 1639 1640 1641

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1642 1643 1644 1645 1646
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1647
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1648

C
chengduoZH 已提交
1649 1650 1651
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1652
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1653

C
chengduoZH 已提交
1654 1655
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1656 1657

    input_shape = input.shape
M
minqiyang 已提交
1658
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1659 1660

    def _get_default_param_initializer():
C
chengduo 已提交
1661 1662
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1663 1664 1665 1666 1667 1668 1669 1670
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1671
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1687
    helper.append_op(
1688
        type=l_type,
Y
Yu Yang 已提交
1689 1690 1691 1692 1693
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1694 1695 1696
        attrs={
            'strides': stride,
            'paddings': padding,
1697
            'dilations': dilation,
C
chengduoZH 已提交
1698
            'groups': groups,
1699
            'use_cudnn': use_cudnn,
1700
            'use_mkldnn': False,
C
chengduoZH 已提交
1701
        })
Y
Yu Yang 已提交
1702 1703 1704 1705 1706 1707

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1725 1726 1727 1728 1729 1730
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1740 1741
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1742 1743 1744
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1745
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1771
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1772 1773
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1774
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1775 1776
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1777
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1778 1779
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1780
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1781 1782 1783 1784 1785 1786
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1797 1798
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1799 1800
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1801
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1802
            will be named automatically. Default: None.
C
chengduoZH 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1815 1816
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1817 1818 1819
    """

    l_type = 'conv3d'
C
chengduo 已提交
1820
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1831
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1845 1846 1847
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1848 1849 1850 1851 1852 1853 1854 1855
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1856
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1871
            'use_mkldnn': False
C
chengduoZH 已提交
1872 1873
        })

1874
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1875 1876 1877 1878

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1879
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1880
    """
Y
yangyaming 已提交
1881 1882 1883
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1895
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1896 1897 1898 1899 1900
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1901
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1902 1903 1904 1905 1906 1907 1908

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1909 1910
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1911

L
Luo Tao 已提交
1912 1913
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1914
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1915
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1916
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1917 1918 1919 1920 1921 1922 1923

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1924

Y
yangyaming 已提交
1925
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1926 1927 1928 1929 1930
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1931 1932
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1933
    """
F
fengjiayi 已提交
1934
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1935
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1936 1937
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1944 1945
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1946

Y
yangyaming 已提交
1947 1948 1949 1950 1951
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1952 1953 1954
    return pool_out


C
add doc  
chengduoZH 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1974
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1975 1976 1977 1978 1979
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1980
def sequence_first_step(input):
L
Luo Tao 已提交
1981
    """
L
Luo Tao 已提交
1982
    This function gets the first step of sequence.
L
Luo Tao 已提交
1983 1984 1985 1986

    .. code-block:: text

       x is a 1-level LoDTensor:
1987
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1988 1989 1990 1991 1992
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1993
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1994
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1995

L
Luo Tao 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2005

Y
yangyaming 已提交
2006
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2007 2008 2009
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2010 2011 2012
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2013
def sequence_last_step(input):
L
Luo Tao 已提交
2014
    """
L
Luo Tao 已提交
2015
    This function gets the last step of sequence.
L
Luo Tao 已提交
2016 2017 2018 2019

    .. code-block:: text

       x is a 1-level LoDTensor:
2020
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2021 2022 2023 2024 2025
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2026
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2027
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2028

L
Luo Tao 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2038

Y
yangyaming 已提交
2039
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2040 2041 2042
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2043 2044 2045
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2046 2047 2048 2049
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2050
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2051 2052 2053 2054 2055
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2056

Y
Yibing Liu 已提交
2057 2058
	- Case:

2059
            Given the input Variable **input**:
2060

2061 2062 2063
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2064

2065
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2066

2067
            the output Variable will be
2068

2069 2070 2071
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2072 2073

    NOTE: The first dimension size of **input**, **offset** and **length**
2074
          should be equal. The **offset** should start from 0.
2075

Y
Yibing Liu 已提交
2076
    Args:
2077
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2078
                         sequences.
Y
Yibing Liu 已提交
2079 2080 2081 2082 2083 2084
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2085
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2096
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2097 2098 2099 2100
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2101
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2116
@templatedoc()
Y
Yu Yang 已提交
2117
def pool2d(input,
C
chengduoZH 已提交
2118 2119
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2120 2121
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2122
           global_pooling=False,
C
chengduoZH 已提交
2123
           use_cudnn=True,
2124
           ceil_mode=False,
2125 2126
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2127
    """
F
fengjiayi 已提交
2128
    ${comment}
2129 2130

    Args:
2131 2132 2133
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2134
                          feature, and W is the width of the feature.
2135
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2136
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2137
        pool_type: ${pooling_type_comment}
2138 2139
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2140 2141 2142
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2143
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2144
                        layer will be named automatically.
2145 2146
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2147

2148
    Returns:
F
fengjiayi 已提交
2149
        Variable: The pooling result.
F
fengjiayi 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2163 2164 2165 2166
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2167
                            global_pooling=False)
Y
Yu Yang 已提交
2168 2169 2170 2171 2172
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2173

C
chengduoZH 已提交
2174 2175 2176 2177 2178
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2179 2180 2181 2182
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2183 2184
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2185

C
Add doc  
chengduoZH 已提交
2186
    l_type = 'pool2d'
2187 2188

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2189
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2190
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2191 2192

    helper.append_op(
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2204 2205
            "use_mkldnn": False,
            "exclusive": exclusive,
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2219 2220
           name=None,
           exclusive=True):
2221 2222
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2223
    pooling configurations mentioned in input parameters.
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2236 2237
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2238

2239
    Returns:
2240
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2241 2242 2243 2244 2245
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2246

C
chengduoZH 已提交
2247 2248 2249 2250 2251
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2252 2253 2254
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2255

C
chengduoZH 已提交
2256 2257
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2258

2259 2260
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2261
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2262
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2263 2264

    helper.append_op(
2265
        type=l_type,
Y
Yu Yang 已提交
2266 2267 2268 2269 2270 2271 2272
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2273
            "paddings": pool_padding,
2274
            "use_cudnn": use_cudnn,
2275
            "ceil_mode": ceil_mode,
2276 2277
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2290
               data_layout='NCHW',
Y
Yang Yang 已提交
2291
               in_place=False,
2292 2293
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2294
               moving_variance_name=None,
2295 2296
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2297
    """
Q
qiaolongfei 已提交
2298 2299 2300 2301
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2302

Q
qiaolongfei 已提交
2303
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2304

Q
qiaolongfei 已提交
2305 2306
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2307 2308 2309
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2322 2323

    Args:
Q
qiaolongfei 已提交
2324
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2325 2326 2327 2328
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2329 2330 2331 2332 2333 2334 2335 2336
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2337
        data_layout(string, default NCHW): NCHW|NHWC
2338
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2339 2340 2341 2342
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2343
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2344
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2345 2346

    Returns:
Q
qiaolongfei 已提交
2347
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2348 2349 2350 2351 2352 2353 2354

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2355
    """
C
chengduo 已提交
2356
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2379
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2380

2381 2382
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2383 2384 2385
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2386
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2387
        shape=param_shape,
2388 2389 2390 2391 2392 2393 2394
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2395
            trainable=False,
W
wanghaoshuang 已提交
2396
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2397
        shape=param_shape,
2398 2399
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2400 2401 2402 2403 2404 2405

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2406 2407 2408 2409
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2410

X
Xin Pan 已提交
2411 2412
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2430 2431 2432 2433
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2434
            "use_mkldnn": False,
2435
            "fuse_with_relu": fuse_with_relu
2436
        })
Y
Yu Yang 已提交
2437 2438 2439 2440

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2441
@templatedoc()
G
guosheng 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2452
    ${comment}
G
guosheng 已提交
2453 2454 2455

    The formula is as follows:

Y
yuyang18 已提交
2456
    ..  math::
G
guosheng 已提交
2457 2458 2459 2460 2461 2462 2463

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2464 2465 2466 2467 2468 2469 2470 2471
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2472

G
guosheng 已提交
2473 2474
    Args:
        input(Variable): The input tensor variable.
2475
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2476
            normalization. Default True.
2477
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2478 2479
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2480
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2481
            Default 1.
2482
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2483
            division by zero. Default 1e-05.
G
guosheng 已提交
2484
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2485 2486
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2487 2488
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2489
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2490 2491
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2492
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2493
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2494
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2495 2496 2497
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2498 2499

    Returns:
Y
yuyang18 已提交
2500
        ${y_comment}
G
guosheng 已提交
2501 2502 2503

    Examples:

Y
yuyang18 已提交
2504 2505 2506
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2522
    if shift:
G
guosheng 已提交
2523 2524 2525 2526 2527 2528
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2529 2530 2531 2532 2533
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2549 2550 2551 2552
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2553 2554 2555
                     padding=0,
                     stride=1,
                     dilation=1,
2556
                     groups=None,
C
caoying03 已提交
2557
                     param_attr=None,
2558
                     bias_attr=None,
C
chengduoZH 已提交
2559
                     use_cudnn=True,
2560
                     act=None,
C
caoying03 已提交
2561
                     name=None):
Y
Yu Yang 已提交
2562
    """
2563 2564 2565 2566 2567 2568 2569 2570
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2571 2572
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2573 2574 2575
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2576 2577 2578 2579 2580

    For each input :math:`X`, the equation is:

    .. math::

2581
        Out = \sigma (W \\ast X + b)
2582

2583
    Where:
2584 2585 2586

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2587 2588 2589 2590
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2591

2592 2593 2594 2595
    Example:

        - Input:

2596
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2597

2598
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2599 2600 2601

        - Output:

2602
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2603 2604

        Where
Y
Yu Yang 已提交
2605

2606 2607
        .. math::

2608 2609 2610 2611
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2612 2613

    Args:
2614 2615 2616 2617
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2618 2619 2620 2621
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2650
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2651 2652 2653
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2654
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2655
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2656 2657

    Returns:
2658
        Variable: The tensor variable storing the convolution transpose result.
2659 2660

    Raises:
2661 2662
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2663 2664 2665 2666

    Examples:
       .. code-block:: python

2667 2668
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2669
    """
C
chengduo 已提交
2670
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2671 2672 2673 2674 2675 2676 2677 2678
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2679 2680 2681
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2682 2683 2684
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2685

C
chengduoZH 已提交
2686 2687
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2688

Y
Yu Yang 已提交
2689 2690 2691 2692 2693
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2694

Y
Yu Yang 已提交
2695 2696
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2697

C
chengduoZH 已提交
2698
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2699
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2700
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2701
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2702
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2703 2704 2705
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2706

2707 2708 2709 2710 2711 2712 2713
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2714
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2715
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2716

Y
Yu Yang 已提交
2717 2718 2719
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2720
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2721
    helper.append_op(
2722
        type=op_type,
Y
Yu Yang 已提交
2723 2724
        inputs={'Input': [input],
                'Filter': [img_filter]},
2725
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2726
        attrs={
2727
            'output_size': output_size,
2728 2729 2730 2731 2732
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2733 2734
        })

2735 2736 2737
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2738 2739


2740
def conv3d_transpose(input,
Y
Yu Yang 已提交
2741 2742 2743
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2744 2745 2746
                     padding=0,
                     stride=1,
                     dilation=1,
2747
                     groups=None,
C
caoying03 已提交
2748
                     param_attr=None,
2749
                     bias_attr=None,
C
chengduoZH 已提交
2750
                     use_cudnn=True,
2751
                     act=None,
C
caoying03 已提交
2752
                     name=None):
Y
Yu Yang 已提交
2753
    """
2754
    **Convlution3D transpose layer**
2755

2756
    The convolution3D transpose layer calculates the output based on the input,
2757
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2758 2759 2760 2761 2762 2763
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2764 2765 2766
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2767 2768 2769 2770 2771

    For each input :math:`X`, the equation is:

    .. math::

2772
        Out = \sigma (W \\ast X + b)
2773 2774 2775

    In the above equation:

2776 2777
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2778 2779 2780 2781
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2782

2783 2784 2785 2786
    Example:

        - Input:

2787
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2788

2789
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2790 2791 2792

        - Output:

2793
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2794 2795

        Where
Y
Yu Yang 已提交
2796

2797 2798
        .. math::

2799 2800 2801
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2802 2803

    Args:
2804
        input(Variable): The input image with [N, C, D, H, W] format.
2805 2806 2807
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2808
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2809 2810
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2811
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2812 2813 2814
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2815 2816
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2817
        stride(int|tuple): The stride size. If stride is a tuple, it must
2818 2819
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2820
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2821 2822 2823
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2824 2825 2826 2827 2828
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2838 2839
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2840 2841
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2842 2843
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2844 2845

    Returns:
2846
        Variable: The tensor variable storing the convolution transpose result.
2847 2848

    Raises:
2849 2850
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2851 2852 2853 2854

    Examples:
       .. code-block:: python

2855 2856
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2857
    """
C
chengduo 已提交
2858
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2859 2860
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2861
    if not isinstance(input, Variable):
2862
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2863 2864
    input_channel = input.shape[1]

2865 2866 2867
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2868

C
chengduoZH 已提交
2869 2870 2871
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2872 2873 2874 2875 2876 2877
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2878 2879 2880
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2881

2882
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2883
                         padding[0] - 1) // dilation[0] + 1
2884
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2885
                         padding[1] - 1) // dilation[1] + 1
2886
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2887
                         padding[2] - 1) // dilation[2] + 1
2888
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2889
    else:
2890 2891
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2892

2893
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2894
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2895 2896 2897
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2898
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2899
    helper.append_op(
2900
        type=l_type,
Y
Yu Yang 已提交
2901 2902
        inputs={'Input': [input],
                'Filter': [img_filter]},
2903
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2904 2905 2906 2907
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2908
            'groups': groups,
C
chengduoZH 已提交
2909 2910
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2911

2912 2913
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2914
    return out
Y
yangyaming 已提交
2915 2916


Y
yangyaming 已提交
2917
def sequence_expand(x, y, ref_level=-1, name=None):
2918
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2919 2920 2921 2922
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2923 2924 2925 2926 2927

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2928
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2929
                x.data = [[a], [b], [c], [d]]
2930 2931 2932
                x.dims = [4, 1]

            y is a LoDTensor:
2933 2934
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2935

Y
yangyaming 已提交
2936
            ref_level: 0
2937

Y
yangyaming 已提交
2938
            then output is a 1-level LoDTensor:
2939
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2940
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2941 2942 2943 2944
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2945
                x.data = [[a], [b], [c]]
2946 2947 2948
                x.dims = [3, 1]

            y is a LoDTensor:
2949
                y.lod = [[2, 0, 3]]
2950

Y
yangyaming 已提交
2951
            ref_level: -1
2952

Y
yangyaming 已提交
2953 2954 2955
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2956 2957 2958
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2959 2960
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2961
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2962
                        will be named automatically.
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2973
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2974
    """
Y
yangyaming 已提交
2975
    helper = LayerHelper('sequence_expand', input=x, **locals())
2976
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2977
    tmp = helper.create_variable_for_type_inference(dtype)
2978
    helper.append_op(
Y
yangyaming 已提交
2979 2980 2981 2982 2983
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2984
    return tmp
2985 2986


C
chengduo 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3043
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3044 3045 3046 3047 3048 3049 3050 3051
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3052
@templatedoc()
3053
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3054 3055 3056 3057 3058
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3059 3060 3061
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3062
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3063 3064 3065 3066
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3067 3068 3069
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3070

F
fengjiayi 已提交
3071
    Returns:
M
minqiyang 已提交
3072
        Variable: The padded sequence batch and the original lengths before
3073
                  padding. All sequences has the same length.
M
minqiyang 已提交
3074

F
fengjiayi 已提交
3075 3076 3077 3078 3079 3080 3081
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3082
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3083
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3084 3085 3086 3087 3088
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3089 3090
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3091 3092 3093 3094

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3095 3096 3097 3098 3099 3100
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3101 3102
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3103
        attrs={'padded_length': maxlen})
3104
    return out, length
F
fengjiayi 已提交
3105 3106


3107
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3108
    """
3109
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3110

3111 3112
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3122 3123 3124
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3125
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3126 3127 3128 3129 3130 3131

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3132
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3133 3134 3135 3136 3137 3138

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3139 3140
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3155
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3167 3168 3169 3170 3171 3172 3173 3174 3175
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3176 3177
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3178 3179 3180

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3181 3182

    This layer does the search in beams for one time step. Specifically, it
3183 3184 3185 3186 3187 3188
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3198

3199
    Args:
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3225

3226
    Returns:
3227 3228
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3229 3230 3231 3232

    Examples:
        .. code-block:: python

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3250 3251 3252 3253
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3254 3255 3256
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3257 3258 3259 3260 3261

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3262
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3280 3281 3282 3283 3284 3285 3286
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3297

3298 3299 3300 3301 3302 3303
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3304

3305 3306 3307 3308 3309 3310 3311 3312
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3313 3314
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3330 3331 3332 3333
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3334
              param_attr=None,
C
caoying03 已提交
3335 3336
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3337 3338 3339 3340
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3341
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3342

3343
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3344

3345
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3346

3347
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3348 3349 3350

            h_t & = o_t tanh(c_t)

3351 3352 3353 3354 3355 3356
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3357 3358 3359

        .. math::

3360
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3361 3362 3363 3364 3365 3366 3367 3368

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3369
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3370 3371

    Args:
Y
yangyaming 已提交
3372 3373 3374 3375 3376 3377
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3378
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3391 3392
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3393 3394

    Returns:
Y
yangyaming 已提交
3395
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3396 3397

    Raises:
3398 3399 3400 3401
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3402 3403 3404 3405 3406 3407

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3408
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3409
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3410
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3427
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3428 3429 3430 3431
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3432 3433
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3434 3435 3436
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3437
    size = cell_t_prev.shape[1]
3438
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3439 3440
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3441
                param_attr=param_attr,
3442
                bias_attr=bias_attr)
Y
yangyaming 已提交
3443
    dtype = x_t.dtype
X
Xin Pan 已提交
3444 3445
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3455
    return h, c
G
guosheng 已提交
3456 3457


C
caoying03 已提交
3458
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3459
    """
Y
yangyaming 已提交
3460
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3461 3462 3463

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3464
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3465 3466
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3467 3468
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3469
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3470
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3471
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3472 3473
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3474 3475 3476

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3477

G
guosheng 已提交
3478 3479 3480 3481 3482 3483
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3484
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3485 3486 3487 3488
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3489 3490 3491 3492

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3493
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3494 3495 3496
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3497 3498
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3499
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3500 3501
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3502 3503 3504 3505 3506
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3507
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3508 3509 3510 3511
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3512 3513


C
caoying03 已提交
3514
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3515
    """
Y
Yibing Liu 已提交
3516
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3517 3518 3519

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3520 3521 3522
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3523
            must be in the range :math:`[-rank(input), rank(input))`. If
3524
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3525
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3526 3527
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3528
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3529
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3530
                       will be named automatically.
G
guosheng 已提交
3531 3532

    Returns:
Y
Yibing Liu 已提交
3533
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3534

G
guosheng 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3545 3546
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3547 3548 3549 3550 3551 3552 3553

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3554 3555
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3556
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3557 3558
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3559 3560 3561 3562 3563
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3564
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3565 3566 3567 3568
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3569 3570


C
caoying03 已提交
3571
def reduce_max(input, dim=None, keep_dim=False, name=None):
3572
    """
Y
yangyaming 已提交
3573
    Computes the maximum of tensor elements over the given dimension.
3574 3575 3576

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3577
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3578 3579 3580
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3581
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3582 3583
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3584
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3585 3586
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3587 3588 3589

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3602 3603 3604 3605 3606 3607 3608

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3609 3610
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3611
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3612 3613
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3614 3615 3616 3617 3618
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3619
            'dim': dim if dim != None else [0],
3620 3621 3622 3623 3624 3625
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3626
def reduce_min(input, dim=None, keep_dim=False, name=None):
3627
    """
Y
yangyaming 已提交
3628
    Computes the minimum of tensor elements over the given dimension.
3629 3630 3631

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3632
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3633 3634 3635
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3636
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3637 3638
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3639
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3640 3641
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3642 3643 3644

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3645

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3657 3658 3659 3660 3661 3662 3663

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3664 3665
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3666
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3667 3668
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3669 3670 3671 3672 3673
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3674
            'dim': dim if dim != None else [0],
3675 3676 3677 3678
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3679 3680


3681 3682 3683 3684 3685 3686
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3687
        dim (list|int|None): The dimensions along which the product is performed. If
3688 3689
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3690 3691
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3692 3693 3694
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3695
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3696
            layer will be named automatically.
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3711
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3712
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3713 3714 3715 3716 3717 3718 3719

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3720 3721
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3722
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3723 3724
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3725 3726 3727 3728 3729
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3730
            'dim': dim if dim != None else [0],
3731 3732 3733 3734 3735 3736
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3737
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3738
    """
C
caoying03 已提交
3739
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3740 3741 3742

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3743 3744 3745 3746 3747
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3748
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3749
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3750
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3751 3752
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3753 3754

    Returns:
D
dzhwinter 已提交
3755
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3765 3766
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3782
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3805
    .. math::
3806 3807

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3808 3809 3810 3811 3812

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3813
        x(Variable|list): The input tensor to l2_normalize layer.
3814
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3815 3816
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3817
        epsilon(float): The epsilon value is used to avoid division by zero, \
3818
            the defalut value is 1e-10.
3819
        name(str|None): A name for this layer(optional). If set None, the layer \
3820
            will be named automatically.
C
caoying03 已提交
3821 3822

    Returns:
3823
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3824 3825

    Examples:
3826

C
caoying03 已提交
3827 3828
        .. code-block:: python

3829 3830 3831 3832
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3833 3834
    """

F
fengjiayi 已提交
3835 3836
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3837 3838
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3839 3840
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3841
    helper.append_op(
3842 3843 3844 3845
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3846
        attrs={
3847 3848
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3849 3850
        })
    return out
3851 3852


S
sneaxiy 已提交
3853
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3854
    """
Y
ying 已提交
3855 3856 3857 3858
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3859

C
chengduoZH 已提交
3860
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3861
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3862

3863 3864 3865 3866 3867
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3868
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3869

C
chengduoZH 已提交
3870
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3871
      performs in the following way.
G
guosheng 已提交
3872

3873
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3874
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3875
        last two dimensions and a batched matrix multiply supporting broadcast
3876
        applies on the two tensors.
G
guosheng 已提交
3877

Y
ying 已提交
3878 3879
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3880
    removed after matrix multiplication.
G
guosheng 已提交
3881 3882 3883

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3884 3885 3886
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3887
        alpha (float): The scale of output. Default 1.0.
3888
        name(str|None): A name for this layer(optional). If set None, the layer
3889
            will be named automatically.
G
guosheng 已提交
3890 3891

    Returns:
3892
        Variable: The product Tensor variable.
G
guosheng 已提交
3893

G
guosheng 已提交
3894 3895 3896
    Examples:
        .. code-block:: python

3897
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3898 3899
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3900

3901 3902
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3903

3904 3905
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3906

3907 3908
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3909 3910 3911 3912

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3913 3914
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3915

Y
ying 已提交
3916
            # x: [M], y: [N]
3917
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3918
    """
Y
ying 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3931
            y_shape = y_shape + [1]
Y
ying 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3948
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3949
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3950
    helper.append_op(
3951 3952 3953 3954
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3955 3956 3957
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3958
            'alpha': float(alpha),
S
sneaxiy 已提交
3959
        })
3960
    return out
3961 3962


3963
def topk(input, k, name=None):
Q
qingqing01 已提交
3964 3965 3966 3967
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3968
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3969 3970 3971 3972 3973 3974
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3996 3997 3998
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3999
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4000
                 of input.
4001
        name(str|None): A name for this layer(optional). If set None, the layer
4002
                       will be named automatically.
F
fengjiayi 已提交
4003
                       Default: None
Q
qingqing01 已提交
4004 4005

    Returns:
4006 4007 4008
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4009
        within the last dimension of input.
Q
qingqing01 已提交
4010

F
fengjiayi 已提交
4011 4012
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4013 4014 4015 4016 4017 4018 4019

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4020 4021
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4033
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4034
    """
Y
ying 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4044

Y
ying 已提交
4045
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4046

4047
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4048 4049
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4050
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4051

4052
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4053 4054
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4055

4056 4057 4058
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4059
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4060
                          the length of reference string.
4061
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4062
                                     calculating edit distance.
4063
        name (str): The name of this layer. It is optional.
4064

W
wanghaoshuang 已提交
4065
    Returns:
W
wanghaoshuang 已提交
4066
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4067 4068 4069 4070 4071

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4072
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4073
            cost = fluid.layers.edit_distance(input=x,label=y)
4074
    """
4075
    helper = LayerHelper("edit_distance", **locals())
4076

4077
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4078
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4079 4080
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4081 4082 4083 4084 4085

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4086
            attrs={"tokens": ignored_tokens})
4087 4088 4089 4090 4091
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4092
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4093
            attrs={"tokens": ignored_tokens})
4094 4095
        label = erased_label

4096
    # edit distance op
X
Xin Pan 已提交
4097 4098
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4099 4100 4101 4102
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4103 4104
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4105 4106
        attrs={"normalized": normalized})

4107
    return edit_distance_out, sequence_num
4108 4109 4110 4111 4112


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4113

Y
ying 已提交
4114 4115 4116 4117
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4135
        input.lod = [[4, 4]]
4136 4137 4138 4139 4140 4141 4142

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4143
        output.lod = [[2, 1]]
4144 4145 4146

    Args:

Y
ying 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4156
        name (str): The name of this layer. It is optional.
4157 4158

    Returns:
4159
        Variable: CTC greedy decode result. If all the sequences in result were
4160
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4161 4162 4163 4164 4165

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4166

4167
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4168
    """
4169
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4170
    _, topk_indices = topk(input, k=1)
4171 4172

    # ctc align op
X
Xin Pan 已提交
4173
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4174 4175 4176
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4177
        outputs={"Output": [ctc_out]},
4178 4179
        attrs={"merge_repeated": True,
               "blank": blank})
4180
    return ctc_out
4181 4182


F
fengjiayi 已提交
4183
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4184
    """
4185 4186
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4187
    to compute Connectionist Temporal Classification (CTC) loss.
4188 4189
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4190 4191 4192
    input tensor.

    Args:
4193
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4194 4195 4196 4197
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4198
       label (Variable): The ground truth of variable-length sequence,
4199 4200 4201
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4202 4203
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4204 4205 4206
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4207
         follewed by a mean_op.
W
wanghaoshuang 已提交
4208 4209

    Returns:
4210 4211
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4212 4213

    Examples:
4214

W
wanghaoshuang 已提交
4215
        .. code-block:: python
4216

4217 4218 4219
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4220 4221

    """
F
fengjiayi 已提交
4222
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4223 4224
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4249 4250 4251
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4252 4253 4254 4255 4256
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4257

4258
            out.lod  = [[0, 1, 3]]
4259 4260 4261 4262

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4263 4264 4265 4266 4267 4268 4269
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4270 4271 4272

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4273 4274

    Returns:
4275

4276 4277 4278 4279 4280
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4281
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4282
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4283 4284
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4285
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4286 4287 4288 4289 4290 4291
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4292 4293


4294 4295 4296 4297
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4298 4299 4300 4301 4302 4303
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4304 4305
        num_neg_samples=None,
        name=None):
4306 4307 4308 4309 4310 4311 4312
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4313 4314
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4315
            sample is 1.0.
C
chengduo 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4325
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4326 4327
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4328

4329
    Returns:
Y
Yibing Liu 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4357
    """
Y
Yang Yu 已提交
4358 4359 4360
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4361 4362

    dim = input.shape[1]
Y
Yang Yu 已提交
4363 4364 4365 4366 4367 4368
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4382 4383 4384
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4385

Y
Yang Yu 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4395 4396 4397

    helper.append_op(
        type='nce',
C
chengduo 已提交
4398
        inputs=inputs,
Y
Yang Yu 已提交
4399 4400 4401 4402 4403 4404
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4405
    return cost / (num_neg_samples + 1)
4406 4407


C
chengduo 已提交
4408 4409 4410 4411 4412 4413
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4414 4415
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4416
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4426

W
weixing02 已提交
4427
    Args:
M
minqiyang 已提交
4428
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4429 4430 4431 4432 4433
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4445 4446 4447 4448 4449 4450 4451 4452

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4453 4454 4455
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4456 4457 4458 4459
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4460 4461
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4462 4463
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4464
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4465 4466 4467 4468 4469
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4470 4471 4472 4473 4474 4475 4476 4477
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4478 4479
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4480
        inputs=inputs,
W
weixing02 已提交
4481 4482 4483 4484 4485 4486
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4487
def transpose(x, perm, name=None):
Y
ying 已提交
4488 4489 4490 4491 4492 4493 4494
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4495 4496 4497
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4498 4499 4500 4501 4502 4503 4504

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4505 4506 4507 4508
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4509
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4510 4511
    """

Y
fix ci.  
ying 已提交
4512
    if len(perm) != len(x.shape):
Y
ying 已提交
4513 4514 4515
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4516 4517 4518 4519 4520 4521
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4522 4523

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4524 4525
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4526
    helper.append_op(
4527
        type='transpose2',
Y
fix ci.  
ying 已提交
4528
        inputs={'X': [x]},
4529 4530
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4531 4532
        attrs={'axis': perm})
    return out
4533 4534


4535 4536 4537 4538 4539 4540 4541
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4542
    """
4543 4544 4545 4546 4547 4548 4549
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4578 4579 4580 4581 4582 4583 4584 4585 4586
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4587 4588 4589
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4590 4591 4592 4593 4594
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4622 4623 4624
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4637
            output.dims = {8, 8}
4638

4639
            output.lod = [[4, 4]]
4640

D
dzhwinter 已提交
4641
     Examples:
4642 4643 4644

        .. code-block:: python

4645 4646
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4647 4648

    """
W
wanghaoshuang 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4659 4660 4661 4662 4663 4664 4665
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4666
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4667
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4668
    helper.append_op(
4669
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4670
    return out
4671 4672


Y
yuyang18 已提交
4673
@templatedoc()
4674
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4675 4676
    """
    ${comment}
4677 4678

    Args:
Y
yuyang18 已提交
4679
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4680 4681
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4682 4683 4684 4685 4686
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4687
        ${out_comment}.
4688 4689

    Examples:
Y
yuyang18 已提交
4690 4691 4692 4693
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4694 4695 4696 4697 4698 4699
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4700
    out = helper.create_variable_for_type_inference(dtype)
4701 4702 4703 4704 4705
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4706
    return helper.append_activation(out)
4707 4708


Y
yuyang18 已提交
4709
@templatedoc()
4710 4711
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4712 4713 4714 4715 4716 4717 4718
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4719 4720

    Args:
Y
yuyang18 已提交
4721 4722
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4723 4724

    Returns:
Y
yuyang18 已提交
4725
        ${out_comment}.
4726 4727
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4728 4729 4730 4731 4732

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4733
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4734 4735 4736 4737 4738 4739
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4740 4741


4742 4743 4744
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4745 4746
                               ignore_index=-100,
                               numeric_stable_mode=False):
4747 4748
    """
    **Softmax With Cross Entropy Operator.**
4749

4750 4751 4752 4753
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4754

4755 4756 4757
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4758

4759 4760 4761
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4762

4763
    The equation is as follows:
4764

4765
    1) Hard label (one-hot label, so every sample has exactly one class)
4766

4767 4768 4769 4770
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4771

4772 4773 4774
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4775

4776 4777 4778 4779
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4792 4793 4794 4795 4796 4797 4798 4799
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4800 4801
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4802
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4803 4804 4805 4806 4807 4808 4809
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4810

4811 4812 4813 4814 4815 4816 4817 4818 4819
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4820 4821
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4822 4823
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4824 4825
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4826 4827 4828 4829 4830 4831
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4832 4833 4834 4835 4836
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4837 4838 4839 4840 4841
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4842 4843
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4844
    For each instance, it computes the smooth L1 loss element by element first
4845
    and then sums all the losses. So the shape of ouput Variable is
4846
    [batch_size, 1].
4847

4848 4849
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4850
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4851
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4852
            L1 loss op with same shape as :attr:`x`.
4853
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4854 4855
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4856
            by this tensor element by element.
4857
        outside_weight (Variable|None): A tensor with rank at least 2. This
4858 4859
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4860
            element by element.
4861
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4862 4863
           scalar with default value 1.0.

4864
    Returns:
4865
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4866 4867 4868 4869 4870

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4871 4872
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4873
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4874
            out = fluid.layers.smooth_l1(x=fc, y=label)
4875
    """
4876

4877
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4878 4879
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4892 4893 4894 4895


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4896
    This layer creates the one-hot representations for input indices.
4897 4898

    Args:
Y
Yibing Liu 已提交
4899 4900
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4901 4902

    Returns:
Y
Yibing Liu 已提交
4903
        Variable: The one-hot representations of input.
4904 4905

    Examples:
C
caoying03 已提交
4906
        .. code-block:: python
4907

Y
Yibing Liu 已提交
4908 4909
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4910 4911
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4912
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4913 4914 4915 4916 4917 4918
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4919 4920


Y
Yu Yang 已提交
4921
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4922
    """
Y
yi.wu 已提交
4923 4924 4925
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4926 4927 4928 4929 4930 4931

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4932 4933
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4934 4935 4936 4937 4938 4939

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4940 4941
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4942 4943
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4944 4945 4946 4947 4948
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4949
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4950
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4951 4952
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4953 4954
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4955 4956 4957
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4958 4959


4960
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4961
    """
C
caoying03 已提交
4962 4963
    Gives a new shape to the input Tensor without changing its data.

4964 4965 4966 4967 4968
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4969

4970
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4971

4972 4973 4974 4975
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4976
    2. 0 means the actual dimension value is going to be copied from the
4977 4978 4979 4980
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4981 4982

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4983
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4984
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4985

4986
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4987 4988
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4989 4990
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4991
    dimensions.
C
caoying03 已提交
4992

4993
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4994 4995 4996 4997
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4998 4999

    Args:
5000
        x(variable): The input tensor.
C
caoying03 已提交
5001 5002
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5003 5004 5005 5006 5007
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5008 5009
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5010 5011 5012 5013 5014 5015 5016
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5017
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5018

5019
    Returns:
G
guosheng 已提交
5020 5021 5022 5023
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5024

X
Xin Pan 已提交
5025 5026 5027
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5028 5029
    Examples:
        .. code-block:: python
G
guosheng 已提交
5030

5031
            data = fluid.layers.data(
5032
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5033
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5034
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5035 5036 5037
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5038
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5039 5040 5041 5042 5043
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5044

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5060
    helper = LayerHelper("reshape2", **locals())
5061 5062
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5063
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5064
    helper.append_op(
5065
        type="reshape2",
X
Xin Pan 已提交
5066
        inputs=inputs,
D
dzhwinter 已提交
5067
        attrs={"shape": shape},
5068 5069
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5070

D
dzhwinter 已提交
5071
    return helper.append_activation(out)
5072

5073

5074
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5075
    """
M
minqiyang 已提交
5076 5077 5078
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5079
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5080

Y
Yibing Liu 已提交
5081 5082
    Examples:
    Case 1:
M
minqiyang 已提交
5083
      Given
Y
Yibing Liu 已提交
5084 5085 5086 5087 5088 5089 5090 5091
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5092
        and
Y
Yibing Liu 已提交
5093 5094 5095
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5096

Y
Yibing Liu 已提交
5097
    Args:
5098
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5099
        axes (list): List of integers, indicating the dimensions to be squeezed.
5100
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5101 5102 5103 5104 5105 5106 5107 5108

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5109
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5110 5111
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5112 5113
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5114
    helper.append_op(
5115
        type="squeeze2",
5116
        inputs={"X": input},
Y
Yibing Liu 已提交
5117
        attrs={"axes": axes},
5118 5119
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5120

5121 5122 5123
    return out


5124
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5125
    """
M
minqiyang 已提交
5126 5127 5128
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5129

M
minqiyang 已提交
5130 5131
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5132
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5133

Y
Yibing Liu 已提交
5134
    Args:
5135
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5136
        axes (list): List of integers, indicating the dimensions to be inserted.
5137
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5138 5139 5140 5141 5142 5143 5144 5145

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5146
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5147 5148
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5149 5150
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5151
    helper.append_op(
5152
        type="unsqueeze2",
5153
        inputs={"X": input},
Y
Yibing Liu 已提交
5154
        attrs={"axes": axes},
5155 5156
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5157

5158 5159
    return out

5160

Y
yangyaming 已提交
5161
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5162
    """
Y
Yibing Liu 已提交
5163
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5164 5165 5166 5167
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5168
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5169 5170 5171 5172 5173 5174

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5175
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5176 5177 5178
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5179
            target_lod: [4, 2]
Y
yangyaming 已提交
5180 5181

            then we get a 1-level LoDTensor:
5182
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5183 5184 5185 5186 5187 5188
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5189
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5190 5191 5192 5193
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5194
                y.data = [[2, 4]]
Y
yangyaming 已提交
5195 5196 5197
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5198
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5199 5200 5201 5202 5203 5204
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5205
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5206 5207 5208 5209
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5210
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5211 5212 5213 5214
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5215
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5216 5217 5218 5219 5220
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5221
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5222
                           from :attr:`y`.
Y
yangyaming 已提交
5223
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5224
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5225 5226

    Returns:
Y
Yibing Liu 已提交
5227
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5228 5229

    Raises:
Y
Yibing Liu 已提交
5230
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5240
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5266
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5295 5296
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5309 5310 5311
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5325 5326 5327 5328


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5329
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5330
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5331

G
guosheng 已提交
5332 5333 5334 5335
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5358
                         The length of :attr:paddings must be
G
guosheng 已提交
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5369

G
guosheng 已提交
5370 5371 5372 5373 5374 5375
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5376
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5377 5378 5379 5380 5381 5382 5383
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5384 5385


C
chengduo 已提交
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5456
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5466 5467 5468 5469 5470 5471 5472
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5473 5474
    called label-smoothing regularization (LSR).

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5498
                              be :math:`(1, class\_num)`.
5499 5500
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5501
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5521
    smooth_label = helper.create_variable_for_type_inference(dtype)
5522 5523 5524 5525 5526 5527 5528
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5529 5530


Y
yi.wu 已提交
5531
@templatedoc()
5532 5533
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5534
    ${comment}
5535 5536

    Args:
Y
yi.wu 已提交
5537 5538
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5539 5540 5541
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5542 5543

    Returns:
Y
update  
yi.wu 已提交
5544
        Variable: ${out_comment}.
5545 5546

    Examples:
5547 5548
        .. code-block:: python

5549
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5550 5551 5552
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5553 5554
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5567 5568


J
jerrywgz 已提交
5569 5570 5571 5572 5573 5574
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5575 5576
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5593 5594 5595
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5596 5597 5598 5599 5600 5601
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5602
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5643 5644
        .. code-block:: python

W
whs 已提交
5645 5646 5647 5648
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5649
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5650 5651 5652 5653 5654 5655
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5656 5657


5658 5659 5660 5661
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5662 5663
                 resample='BILINEAR',
                 actual_shape=None):
5664
    """
Q
qiaolongfei 已提交
5665
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5666

5667
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5668 5669 5670
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5671

5672
        'BILINEAR' : Bilinear interpolation
5673
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5674

5675
    Args:
5676
        input (Variable): The input tensor of image resize layer,
5677 5678
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5679
        out_shape(list|tuple|Variable|None): Output shape of image resize
5680 5681
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5682
        scale(float|None): The multiplier for the input height or width.
5683 5684 5685
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5686 5687
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5688 5689
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5690
                       Default: 'BILINEAR'
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5704 5705

    Returns:
Q
update  
qiaolongfei 已提交
5706 5707
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5708

5709 5710 5711 5712 5713 5714 5715 5716
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5717 5718 5719
    Examples:
        .. code-block:: python

5720
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5721
    """
5722 5723 5724 5725
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5726 5727
    if resample not in resample_methods:
        raise ValueError(
5728
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5729
        )
5730
    if out_shape is None and scale is None:
5731
        raise ValueError("One of out_shape and scale must not be None.")
5732
    helper = LayerHelper('interpolate', **locals())
5733
    dtype = helper.input_dtype()
5734 5735 5736 5737

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5738 5739 5740
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5741
    if out_shape is not None:
5742 5743 5744 5745
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5746
            inputs['OutSize'] = out_shape
5747 5748 5749 5750 5751 5752 5753 5754
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5755 5756 5757 5758
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5759 5760 5761 5762 5763
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5764
    out = helper.create_variable_for_type_inference(dtype)
5765
    helper.append_op(
5766
        type='interpolate',
5767
        inputs=inputs,
5768
        outputs={"Out": out},
5769 5770 5771 5772 5773
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5774
    return out
F
stash  
fengjiayi 已提交
5775 5776


5777
@templatedoc(op_type="interpolate")
5778 5779 5780 5781 5782
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5783
    """
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5796 5797 5798 5799 5800

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5801

Y
yuyang18 已提交
5802 5803 5804 5805 5806
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5820 5821 5822

    Returns:
        ${out_comment}.
5823 5824
    """

5825
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5826 5827


5828
@templatedoc(op_type="interpolate")
5829 5830 5831 5832 5833
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5834
    """
5835 5836 5837 5838 5839 5840 5841
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5842 5843 5844 5845 5846

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5847

Y
yuyang18 已提交
5848 5849 5850 5851 5852
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5866 5867 5868

    Returns:
        ${out_comment}.
5869 5870
    """

5871
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5872 5873 5874 5875


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5876 5877 5878
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5879 5880 5881 5882 5883 5884 5885
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5886
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5887

5888
    Returns:
Q
update  
qiaolongfei 已提交
5889
        Variable: The output is a 4-D tensor of the shape
5890
        (num_batches, channls, out_h, out_w).
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5901 5902 5903
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5904 5905 5906
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5907 5908
def gather(input, index):
    """
Q
qiaolongfei 已提交
5909 5910
    **Gather Layer**

5911
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5912 5913 5914 5915
    of X indexed by `index` and concatenate them together.

    .. math::

5916
        Out = X[Index]
W
whs 已提交
5917 5918 5919 5920 5921 5922 5923


    .. code-block:: text


                Given:

5924 5925
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5936
        input (Variable): The source input with rank>=1.
W
whs 已提交
5937 5938 5939 5940 5941 5942
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5943

W
whs 已提交
5944 5945 5946 5947 5948 5949
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5950
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5951 5952 5953 5954 5955 5956 5957 5958
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5990
    out = helper.create_variable_for_type_inference(dtype)
5991 5992 5993 5994 5995 5996 5997 5998 5999
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6050
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6051 6052 6053 6054 6055 6056 6057 6058 6059
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6073

6074 6075 6076
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6077
    """
F
stash  
fengjiayi 已提交
6078
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6079
    dtype = x.dtype
X
Xin Pan 已提交
6080
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6081
    if seed is None:
6082
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6083
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6084
    if isinstance(seed, int):
F
fengjiayi 已提交
6085 6086 6087 6088 6089
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6090 6091 6092 6093
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6094
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6095 6096
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6097 6098
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6099
    return out
W
whs 已提交
6100 6101


6102
def log(x, name=None):
W
wanghaoshuang 已提交
6103 6104 6105 6106 6107
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6108
        Out = \\ln(x)
W
wanghaoshuang 已提交
6109 6110

    Args:
6111
        x (Variable): Input tensor.
6112 6113
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6114 6115 6116 6117 6118 6119 6120 6121

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6122
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6123 6124
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6125
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6126
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6127
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6128 6129 6130
    return out


6131
def relu(x, name=None):
W
wanghaoshuang 已提交
6132 6133
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6134
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6135 6136 6137 6138
    the tensor elementwise.

    .. math::

6139
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6140 6141

    Args:
6142
        x (Variable): The input tensor.
6143 6144
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6145 6146 6147 6148 6149 6150 6151 6152

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6153
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6154 6155
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6156
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6157
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6158
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6159
    return out
6160 6161


W
whs 已提交
6162 6163 6164
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6165 6166 6167 6168
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6169
    .. math::
6170 6171

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6172

6173
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6174 6175 6176 6177 6178
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6179
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6180
                           Its shape should be the same as input.
6181
        num_classes (int): The possible number of labels.
W
whs 已提交
6182 6183 6184 6185

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6186
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6187 6188 6189 6190

    Examples:

        .. code-block:: python
6191

W
whs 已提交
6192 6193 6194 6195
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6196 6197 6198
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6199 6200
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6201 6202
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6203
        outputs={
W
whs 已提交
6204 6205 6206
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6207 6208 6209
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6284
                    isinstance(shape, Variable)):
6285 6286 6287 6288 6289
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6290
    out = helper.create_variable_for_type_inference(x.dtype)
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6308 6309


W
whs 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6428 6429 6430 6431 6432 6433 6434 6435
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6436

6437 6438
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6439

6440 6441 6442 6443
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6444

6445 6446 6447 6448 6449
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6450 6451 6452

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6488
    out = helper.create_variable_for_type_inference("float32")
6489 6490 6491 6492 6493 6494 6495 6496

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6497 6498


M
minqiyang 已提交
6499 6500
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6501
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6502
    which compares left score and right score passed in.
M
minqiyang 已提交
6503
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6504 6505 6506 6507 6508 6509

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6510
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6511 6512
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6513
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6514 6515 6516
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6517
       Variable: The ranking loss.
M
minqiyang 已提交
6518
    Raises:
M
minqiyang 已提交
6519
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6520 6521 6522 6523 6524 6525 6526
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6527
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6528 6529 6530 6531 6532 6533
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6534 6535
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6561

W
whs 已提交
6562 6563
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6564

W
whs 已提交
6565
      Case 0:
M
minqiyang 已提交
6566

W
whs 已提交
6567 6568 6569
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6570

W
whs 已提交
6571 6572 6573
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6574

W
whs 已提交
6575
      Case 1:
M
minqiyang 已提交
6576

W
whs 已提交
6577 6578
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6579

W
whs 已提交
6580 6581 6582
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6583

W
whs 已提交
6584
      Case 2:
M
minqiyang 已提交
6585

W
whs 已提交
6586 6587
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6588

W
whs 已提交
6589 6590 6591
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6592 6593


W
whs 已提交
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6620
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6649
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6672
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6695
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6719
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6744
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6768
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6769 6770 6771 6772 6773 6774 6775 6776
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6791
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6792
                        will be named automatically.
J
jerrywgz 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6820
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6844
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6867
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6889
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6890 6891 6892 6893 6894 6895 6896 6897
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6911

6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6922 6923
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6939
        ValueError: If axis is not in range [0, rank(x)].
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6956 6957
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6958
    helper.append_op(
6959
        type='flatten2',
6960
        inputs={"X": x},
6961 6962
        outputs={'Out': out,
                 'XShape': x_shape},
6963 6964
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6965 6966


C
chenweihang 已提交
6967
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6968
    """
C
chenweihang 已提交
6969
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6970
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6971 6972
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6973

C
chenweihang 已提交
6974 6975 6976 6977
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6978
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6979 6980 6981 6982 6983 6984
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6985
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6986 6987 6988
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6989 6990 6991
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7003 7004
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7005 7006 7007 7008 7009 7010
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7011
    return out
7012

7013

S
sneaxiy 已提交
7014 7015 7016 7017 7018 7019 7020 7021 7022
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7023

S
sneaxiy 已提交
7024
    .. math::
7025

S
sneaxiy 已提交
7026 7027 7028
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7029
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7030 7031 7032 7033
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7034 7035 7036
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7037 7038
    Returns:
        Variable: The output sequence mask.
7039

S
sneaxiy 已提交
7040 7041
    """

Q
qingqing01 已提交
7042
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7043
    if name is None:
X
Xin Pan 已提交
7044
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7045
    else:
X
Xin Pan 已提交
7046
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7047

Q
qingqing01 已提交
7048 7049 7050
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7051 7052
        outputs={'Y': out},
        attrs={
7053
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7054 7055 7056
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7057 7058


X
Xin Pan 已提交
7059
def stack(x, axis=0):
S
sneaxiy 已提交
7060 7061 7062 7063
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7064 7065 7066 7067 7068 7069 7070

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7071
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7072
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7073 7074

    Args:
7075
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7076
        axis (int|None): The axis along which all inputs are stacked.
7077

S
sneaxiy 已提交
7078 7079
    Returns:
        Variable: The stacked variable.
7080

S
sneaxiy 已提交
7081 7082
    """

X
Xin Pan 已提交
7083 7084 7085 7086 7087 7088
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7089
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7090
    helper.append_op(
S
sneaxiy 已提交
7091 7092
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7093

X
Xin Pan 已提交
7094
    return out
D
dzhwinter 已提交
7095 7096 7097 7098 7099 7100 7101


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7102

D
dzhwinter 已提交
7103 7104 7105
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7106
    raised.
D
dzhwinter 已提交
7107 7108

    Args:
M
minqiyang 已提交
7109
        x (Variable): Input variable.
D
dzhwinter 已提交
7110 7111
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7112

D
dzhwinter 已提交
7113 7114
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7115

D
dzhwinter 已提交
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7127
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7128 7129 7130 7131 7132 7133 7134 7135

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7148

W
whs 已提交
7149 7150 7151 7152
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7153

W
whs 已提交
7154
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7155

W
whs 已提交
7156
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7157

W
whs 已提交
7158 7159 7160 7161
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7162

W
whs 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7179
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7180 7181 7182 7183 7184 7185
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7186 7187


G
fix  
gongweibao 已提交
7188 7189 7190
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7191
@templatedoc()
G
fix  
gongweibao 已提交
7192 7193 7194 7195 7196 7197 7198 7199 7200
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7201
    ${comment}
G
fix  
gongweibao 已提交
7202 7203

    Args:
G
gongweibao 已提交
7204 7205 7206
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7207
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7208 7209 7210
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7211 7212
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7213
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7214 7215 7216 7217

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7218
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7235 7236


G
gongweibao 已提交
7237
@templatedoc()
X
Xin Pan 已提交
7238
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7239
    """
G
gongweibao 已提交
7240
    ${comment}
G
fix  
gongweibao 已提交
7241 7242

    Args:
G
gongweibao 已提交
7243 7244 7245 7246
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7247 7248 7249
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7250
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7251 7252 7253 7254

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7255
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7266
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7267 7268 7269 7270 7271
        })

    return out


G
gongweibao 已提交
7272
@templatedoc()
G
fix  
gongweibao 已提交
7273
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7274
    """
G
gongweibao 已提交
7275
    ${comment}
G
fix  
gongweibao 已提交
7276 7277

    Args:
G
gongweibao 已提交
7278 7279 7280 7281
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7282
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7283 7284

    Returns:
G
gongweibao 已提交
7285
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7286 7287 7288 7289

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7290
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7302
@templatedoc()
G
fix  
gongweibao 已提交
7303 7304 7305 7306 7307 7308 7309 7310 7311
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7312
    ${comment}
G
fix  
gongweibao 已提交
7313 7314

    Args:
G
gongweibao 已提交
7315 7316
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7317
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7318 7319 7320 7321
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7322
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7323 7324

    Returns:
G
gongweibao 已提交
7325
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7326 7327 7328
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7329
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7348
@templatedoc()
X
Xin Pan 已提交
7349
def sum(x):
G
fix  
gongweibao 已提交
7350
    """
G
gongweibao 已提交
7351
    ${comment}
G
fix  
gongweibao 已提交
7352 7353

    Args:
G
gongweibao 已提交
7354
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7355 7356

    Returns:
G
gongweibao 已提交
7357
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7358 7359 7360
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7361 7362
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7363 7364 7365 7366
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7367
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7368 7369 7370 7371

    return out


G
gongweibao 已提交
7372
@templatedoc()
G
fix  
gongweibao 已提交
7373 7374
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7375
    ${comment}
G
fix  
gongweibao 已提交
7376 7377

    Args:
G
gongweibao 已提交
7378 7379 7380 7381
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7382 7383

    Returns:
G
gongweibao 已提交
7384
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7385 7386 7387 7388

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7389 7390
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7402
@templatedoc()
G
fix  
gongweibao 已提交
7403 7404
def shape(input):
    """
G
gongweibao 已提交
7405
    ${comment}
G
fix  
gongweibao 已提交
7406 7407

    Args:
G
gongweibao 已提交
7408
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7409 7410

    Returns:
G
gongweibao 已提交
7411
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7412 7413 7414 7415

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7416 7417
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7418
    helper.append_op(
G
fix  
gongweibao 已提交
7419
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7420 7421

    return out
G
merge  
gongweibao 已提交
7422 7423


S
sneaxiy 已提交
7424 7425 7426 7427 7428 7429 7430 7431
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7432 7433
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7434
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7435 7436 7437
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7438

S
sneaxiy 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7450
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7451 7452 7453 7454 7455 7456 7457 7458
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7459
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7460
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7461 7462 7463 7464 7465 7466

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7467
    if name is None:
X
Xin Pan 已提交
7468
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7469 7470 7471
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7472 7473 7474 7475 7476 7477 7478 7479 7480 7481

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7482
    return helper.append_activation(out)
S
sneaxiy 已提交
7483 7484


X
Xin Pan 已提交
7485
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7486 7487 7488
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7489
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7490 7491 7492
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7493
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7494 7495 7496
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7497
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7498 7499 7500
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7501
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7502 7503 7504
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7505
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7506 7507 7508
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7509
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7521 7522
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7523
        ])
M
minqiyang 已提交
7524 7525


7526
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7527 7528
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7529 7530
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7531 7532 7533

    if out is None:
        if name is None:
X
Xin Pan 已提交
7534
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7550
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7569
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7588
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7607
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7642 7643 7644 7645
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7674 7675 7676 7677
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7678 7679 7680 7681 7682 7683 7684 7685

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7704
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7734
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7735 7736 7737 7738 7739 7740 7741 7742 7743
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7744 7745
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7768
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7798
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7809 7810


J
JiabinYang 已提交
7811
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7812
    """
J
JiabinYang 已提交
7813
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7814
    
J
JiabinYang 已提交
7815
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7816
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7817
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7818 7819
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7820
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7821 7822 7823
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7824

J
JiabinYang 已提交
7825 7826 7827 7828 7829 7830 7831
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7832
    Args:
J
JiabinYang 已提交
7833
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7834
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7835 7836

    Returns:
J
JiabinYang 已提交
7837
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7838 7839

    Raises:
J
JiabinYang 已提交
7840
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7841 7842 7843 7844 7845 7846

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7847
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7848
                x=data, blocksize=2)
J
JiabinYang 已提交
7849 7850
    """

J
JiabinYang 已提交
7851
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7852

J
JiabinYang 已提交
7853 7854
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7855 7856

    if name is None:
J
JiabinYang 已提交
7857 7858
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7859 7860 7861 7862 7863
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7864
        type="space_to_depth",
J
JiabinYang 已提交
7865
        inputs={"X": x},
J
JiabinYang 已提交
7866
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7867
        outputs={"Out": out})
J
JiabinYang 已提交
7868 7869
    return out

J
JiabinYang 已提交
7870

S
sneaxiy 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7885
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7896 7897


7898 7899 7900 7901 7902 7903
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7904

7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7924
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7937 7938


B
barrierye 已提交
7939 7940
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
7941
    SimilarityFocus Operator
B
barrierye 已提交
7942 7943

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
7944
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
7945
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
7946
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
7947 7948 7949 7950
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
7951 7952 7953
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
7954 7955
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
7956 7957 7958 7959
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8009 8010 8011
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8012
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8013
            1, 2 or 3.
B
barrierye 已提交
8014
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8015 8016 8017 8018 8019 8020 8021 8022

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8023 8024
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8037 8038 8039 8040 8041
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8042 8043 8044 8045 8046 8047 8048
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8049 8050


M
minqiyang 已提交
8051 8052
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8053 8054
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8055 8056
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8095
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8096
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8097 8098 8099 8100 8101 8102 8103 8104 8105

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8106 8107
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8108 8109
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8110 8111 8112 8113 8114 8115 8116
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8117 8118


D
dengkaipeng 已提交
8119
@templatedoc()
8120 8121
def grid_sampler(x, grid, name=None):
    """
8122 8123 8124 8125 8126 8127 8128
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8167 8168

    Args:
8169 8170 8171
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8172 8173

    Returns:
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8184 8185 8186 8187 8188 8189 8190 8191 8192
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8193
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8194 8195
    ipts = {'X': x, 'Grid': grid}

8196
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8197 8198 8199
    return out


G
gmcather 已提交
8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
def yolov3_loss(x, gtbox, img_height, anchors, ignore_thresh, name=None):
    """
    **YOLOv3 Loss Layer**

    This layer 
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type='yolov3_loss',
        inputs={'X': x,
                "GTBox": gtbox},
        outputs={'Loss': loss},
        attrs={
            "img_height": img_height,
            "anchors": anchors,
            "ignore_thresh": ignore_thresh,
        })
    return loss


G
gmcather 已提交
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8331
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8332

Q
Qiao Longfei 已提交
8333
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8334 8335 8336
    For example:

    .. math::
8337
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8338

Q
Qiao Longfei 已提交
8339
    In this formula:
8340 8341
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8342
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8343
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8344 8345 8346
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8347 8348
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8349 8350 8351
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8352
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8353
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8354
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8355 8356 8357 8358
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8359
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8360 8361 8362 8363

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8364
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8365 8366
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8367
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8368 8369 8370 8371

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8372
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)