nn.py 314.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
101
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
L
liuhongyu 已提交
172
    'cudnn_lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329 330 331
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
    tmp = helper.create_variable_for_type_inference(dtype)
333 334
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
335 336 337 338 339
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
340 341 342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
345 346 347
    return tmp


W
wopeizl 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
P
peizhilin 已提交
364

W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
376

W
wopeizl 已提交
377 378 379 380
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
468 469


L
liuhongyu 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
def cudnn_lstm(input,
               init_h,
               init_c,
               batch_size,
               max_len,
               dropout_prob,
               input_size,
               hidden_size,
               num_layers,
               is_bidirec=False,
               dtype='float32',
               is_test=False,
               name=None,
               default_initializer=None,
               fix_seed=False,
               seed=0):
    """
    CUDNN LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    it = sigmoid(Wi X xt + Ri X ht-1 + bWi + bRi)
    ft = sigmoid(Wf X xt + Rf X ht-1 + bWf + bRf)
    ot = sigmoid(Wo X xt + Ro X ht-1 + bWo + bRo)
    c't = tanh(Wc X xt + Rc X ht-1 + bWc + bRc)
    ct = ft * ct-1 + it * c't
    ht = ot * tanh(ct)

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication
    and tanh is the hyperbolic tangent function. it, ft, ot, c't represent the input, forget, output and new gates respectively.


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        batch_size (int): total distance numer of the batch
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        dropout_prob(float): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        input_size (int): hidden size of the input tensor
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        is_bidirec (bool): If it is bidirectional
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used


    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.cudnn_lstm( input, init_h, init_c, batch_size, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'batch_size': batch_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'fix_seed': fix_seed,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
621 622 623 624 625 626 627 628 629 630 631
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
632 633
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
634 635 636
    """
    **Dynamic LSTMP Layer**

637 638 639 640 641 642
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
643 644 645 646 647

    The formula is as follows:

    .. math::

648
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
649

650
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
651

652
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
653

654
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
655

656
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
657

658
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
659

660
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
661

Y
Yibing Liu 已提交
662 663 664 665 666 667
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
668
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
669
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
670
          bias vector).
Y
Yibing Liu 已提交
671 672 673
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
674
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
675
    * :math:`h`: The hidden state.
676
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
677 678
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
679
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
680
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
681
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
682 683
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
684 685 686 687

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
688

Y
Yibing Liu 已提交
689 690 691 692 693 694 695 696 697 698 699 700
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
701
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
702 703
                               hidden-hidden weight and projection weight.

704 705
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
706 707
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
708 709
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
710
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
711 712 713 714 715

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
716
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
717 718 719 720 721 722
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
723
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
724 725 726
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
727
                                - The shape is (1 x 7D).
C
chengduo 已提交
728 729 730 731 732

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
733 734 735 736 737 738 739 740 741
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
742
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
743 744
                              default "tanh".
        proj_activation(str): The activation for projection output.
745
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
746 747
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
748 749
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
750 751

    Returns:
752 753 754 755
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
756 757

    Examples:
758

Y
Yibing Liu 已提交
759 760
        .. code-block:: python

761 762 763 764
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
765
            hidden_dim, proj_dim = 512, 256
766
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
767
                                     act=None, bias_attr=None)
768 769 770
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
771 772 773 774
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
775
    """
776

C
chengduo 已提交
777
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
778
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
779
    size = size // 4
Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
790 791 792 793 794 795
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
824 825 826 827 828 829 830 831 832
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
833
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
834

835
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
836
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
837

G
guosheng 已提交
838 839 840 841 842 843 844 845 846
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
847

G
guosheng 已提交
848
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
849

G
guosheng 已提交
850
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
851 852
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
853 854 855 856
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
857
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
858 859

    Args:
860 861
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
862
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
863
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
864 865
            is the hidden size.
        size(int): The dimension of the gru cell.
866
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
867 868
            hidden-hidden weight matrix. Note:

869
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
870
              :math:`D` is the hidden size.
871
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
872
              The first part are weights of the update gate and reset gate with
873
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
874
              candidate hidden state with shape :math:`(D \\times D)`.
875 876 877 878 879

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
880
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
881
            the bias in the update gate, reset gate and candidate calculations.
882 883 884
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
885 886
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
887
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
888 889 890
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
891
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
892
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
893 894 895 896
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
897 898

    Returns:
G
guosheng 已提交
899
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
900
            and sequence length is the same with the input.
901

G
guosheng 已提交
902
    Examples:
903

G
guosheng 已提交
904 905
        .. code-block:: python

906 907 908 909
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
910
            hidden_dim = 512
911
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
912 913 914 915 916 917 918 919 920 921
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
922
    batch_size = input.shape[0]
G
guosheng 已提交
923
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
924
    if h_0:
G
guosheng 已提交
925
        assert h_0.shape == (
Y
Yancey 已提交
926 927 928
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
929

X
Xin Pan 已提交
930 931 932 933
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
952 953 954
def gru_unit(input,
             hidden,
             size,
955 956
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
957
             activation='tanh',
958
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
959
    """
960
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
961

962 963
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
964

965
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
966

967
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
968

969
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
970 971

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
972 973 974
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
975 976
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

977 978
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
979 980 981
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
982 983 984

    Args:
        input (Variable): The fc transformed input value of current step.
985
        hidden (Variable): The hidden value of gru unit from previous step.
986
        size (integer): The input dimension value.
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1001
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1002
            the bias in the update gate, reset gate and candidate calculations.
1003 1004 1005
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1006 1007
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1008 1009 1010 1011
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1012

1013 1014 1015 1016 1017 1018
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1019

1020
             # assuming we have x_t_data and prev_hidden of size=10
1021
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1022 1023
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1036
    size = size // 3
Y
Yu Yang 已提交
1037 1038

    # create weight
1039 1040
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1041

X
Xin Pan 已提交
1042 1043 1044
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1045
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1046
    # create bias
1047
    if helper.bias_attr:
Y
Yu Yang 已提交
1048 1049 1050
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1051
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1052 1053 1054

    helper.append_op(
        type='gru_unit',
1055
        inputs=inputs,
Y
Yu Yang 已提交
1056 1057 1058 1059 1060 1061
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1062 1063
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1064 1065 1066 1067 1068
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1069
@templatedoc()
1070
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1071 1072 1073 1074 1075 1076 1077
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1078
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1079 1080 1081 1082
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1083 1084 1085
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1086 1087

    """
Y
Yu Yang 已提交
1088 1089 1090 1091 1092 1093
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1094 1095 1096 1097 1098 1099 1100 1101
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1117 1118 1119 1120
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yuyang18 已提交
1121

W
wopeizl 已提交
1122 1123
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1124

W
wopeizl 已提交
1125
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
1126

W
wopeizl 已提交
1127
        label(${label_type}): ${label_comment}
Y
yuyang18 已提交
1128

W
wopeizl 已提交
1129 1130
    Returns:
        Variable: ${viterbi_path_comment}
1131

W
wopeizl 已提交
1132 1133
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1134

W
wopeizl 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
P
peizhilin 已提交
1145
                "Transition": transition,
W
wopeizl 已提交
1146 1147
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1148

W
wopeizl 已提交
1149
    return viterbi_path
Y
Yu Yang 已提交
1150 1151


Y
yi.wu 已提交
1152
@templatedoc()
F
fengjiayi 已提交
1153
def cos_sim(X, Y):
Y
Yu Yang 已提交
1154
    """
Y
yi.wu 已提交
1155 1156 1157
    ${comment}

    Args:
1158 1159
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1160

Y
yi.wu 已提交
1161
    Returns:
1162
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1163
    """
F
fengjiayi 已提交
1164
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1165 1166 1167
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1178 1179 1180 1181 1182
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1183
            dropout_implementation="downgrade_in_infer"):
1184 1185 1186 1187 1188
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1189
    training. The dropout operator randomly sets (according to the given dropout
1190 1191 1192 1193
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1194 1195
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1196 1197 1198 1199 1200 1201 1202
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1214
                                           dropout op can be removed from the program.
P
phlrain 已提交
1215
                                           the program will be efficient
1216

P
phlrain 已提交
1217

1218 1219

    Returns:
1220
        Variable: A tensor variable is the shape with `x`.
1221 1222

    Examples:
1223

1224 1225
        .. code-block:: python

1226 1227
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1228 1229
    """

F
fengjiayi 已提交
1230
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1231 1232 1233
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1234 1235 1236 1237

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1238 1239 1240 1241 1242
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1243 1244 1245 1246
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1247 1248
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1249
        })
1250 1251 1252
    return out


1253
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1254
    """
Y
Yibing Liu 已提交
1255 1256
    **Cross Entropy Layer**

1257 1258 1259
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1260 1261

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1262
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1263

Y
Yibing Liu 已提交
1264
        .. math::
Y
yangyaming 已提交
1265

Y
Yibing Liu 已提交
1266 1267 1268
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1269 1270
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1271 1272 1273 1274 1275

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1276
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1277 1278 1279
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1280 1281
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1282
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1283

Y
Yibing Liu 已提交
1284
    Args:
Y
yangyaming 已提交
1285
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1286 1287 1288 1289
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1290
        label (Variable|list): the ground truth which is a 2-D tensor. When
1291 1292 1293 1294
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1295
        soft_label (bool): a flag indicating whether to
1296
                                           interpretate the given labels as soft
1297
                                           labels. Default: `False`.
M
minqiyang 已提交
1298 1299
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1300
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1301 1302 1303 1304 1305

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1306 1307 1308 1309 1310
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1311 1312 1313 1314 1315 1316

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1317
    """
F
fengjiayi 已提交
1318
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1319
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1320 1321 1322 1323 1324
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1325 1326
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1327 1328 1329
    return out


F
fengjiayi 已提交
1330
def square_error_cost(input, label):
Y
Yu Yang 已提交
1331
    """
1332 1333
    **Square error cost layer**

1334 1335
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1350 1351
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1352 1353

    Returns:
G
guosheng 已提交
1354
        Variable: The tensor variable storing the element-wise squared error \
1355
                  difference of input and label.
1356 1357 1358 1359 1360 1361 1362 1363

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1364
    """
F
fengjiayi 已提交
1365
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1366
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1367 1368 1369 1370 1371 1372
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1373
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1374
    helper.append_op(
F
fengjiayi 已提交
1375 1376
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1377 1378 1379
    return square_out


Y
yi.wu 已提交
1380
@templatedoc()
Y
Yu Yang 已提交
1381 1382 1383 1384
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1385
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1386
    """
Y
yi.wu 已提交
1387
    **Chunk Evaluator**
Y
yi.wu 已提交
1388

Y
yangyaming 已提交
1389
    This function computes and outputs the precision, recall and
1390
    F1-score of chunk detection.
Y
yi.wu 已提交
1391

Y
yi.wu 已提交
1392 1393 1394 1395 1396 1397 1398 1399
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1400

Y
yi.wu 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1426

Y
yi.wu 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1451
    Args:
1452 1453 1454 1455 1456
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1457

Y
yi.wu 已提交
1458
    Returns:
Y
update  
yi.wu 已提交
1459 1460 1461
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1462

Y
yi.wu 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1475
    """
F
fengjiayi 已提交
1476
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1477 1478

    # prepare output
X
Xin Pan 已提交
1479 1480 1481 1482 1483 1484 1485
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1486 1487 1488 1489 1490 1491 1492 1493

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1494 1495 1496 1497
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1498 1499 1500
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1501 1502
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1503
        })
1504 1505
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1506 1507


1508
@templatedoc()
Y
Yu Yang 已提交
1509 1510 1511 1512 1513 1514 1515
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1516 1517
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1518 1519 1520 1521
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1522 1523 1524 1525 1526 1527 1528

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1542

1543 1544
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1545 1546 1547 1548 1549 1550 1551
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1552
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1563
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1570
def sequence_softmax(input, use_cudnn=False, name=None):
1571 1572 1573
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1574
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1591 1592 1593
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1606 1607
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1608
    softmax_out = helper.create_variable_for_type_inference(dtype)
1609 1610 1611 1612 1613 1614 1615 1616
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1617
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1618
    """
1619
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1620
    has the same shape as the input.
Q
qiaolongfei 已提交
1621

1622 1623 1624 1625 1626 1627
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1628
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1629 1630 1631 1632 1633 1634 1635

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1636
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1637 1638 1639 1640 1641 1642 1643 1644

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1645 1646 1647
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1660 1661
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1662
    softmax_out = helper.create_variable_for_type_inference(dtype)
1663 1664 1665 1666 1667 1668 1669 1670
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1671 1672 1673
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1674 1675
           stride=1,
           padding=0,
1676
           dilation=1,
Y
Yu Yang 已提交
1677 1678 1679
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1680
           use_cudnn=True,
1681 1682
           act=None,
           name=None):
Y
Yu Yang 已提交
1683
    """
C
chengduoZH 已提交
1684
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1685 1686
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1687
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1688 1689 1690 1691 1692 1693 1694
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1695 1696 1697
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1698

1699
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1700

C
chengduoZH 已提交
1701 1702
    .. math::

C
refine  
chengduoZH 已提交
1703
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1704

T
tensor-tang 已提交
1705
    Where:
C
chengduoZH 已提交
1706

1707 1708 1709 1710 1711
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1712
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1713 1714 1715

    Example:

1716 1717
        - Input:

W
weixing02 已提交
1718
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1719

W
weixing02 已提交
1720
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1721

1722
        - Output:
T
tensor-tang 已提交
1723

W
weixing02 已提交
1724
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1725

C
chengduoZH 已提交
1726
        Where
1727 1728

        .. math::
C
chengduoZH 已提交
1729

W
weixing02 已提交
1730 1731
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1732 1733

    Args:
1734
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1735
        num_filters(int): The number of filter. It is as same as the output
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1764 1765
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1766 1767
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1768
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1769
            will be named automatically. Default: None
C
chengduoZH 已提交
1770 1771

    Returns:
G
guosheng 已提交
1772
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1773 1774
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1775
    Raises:
1776 1777
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1778

C
chengduoZH 已提交
1779 1780 1781
    Examples:
        .. code-block:: python

1782 1783
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1784 1785 1786
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1787
    assert param_attr is not False, "param_attr should not be False here."
1788
    l_type = 'conv2d'
X
xzl 已提交
1789 1790
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1791
        l_type = 'depthwise_conv2d'
1792 1793 1794 1795

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1796 1797 1798 1799 1800
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1801
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1802

C
chengduoZH 已提交
1803 1804 1805
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1806
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1807

C
chengduoZH 已提交
1808 1809
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1810 1811

    input_shape = input.shape
M
minqiyang 已提交
1812
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1813 1814

    def _get_default_param_initializer():
C
chengduo 已提交
1815 1816
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1817 1818 1819 1820 1821 1822 1823 1824
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1825
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1841
    helper.append_op(
1842
        type=l_type,
Y
Yu Yang 已提交
1843 1844 1845 1846 1847
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1848 1849 1850
        attrs={
            'strides': stride,
            'paddings': padding,
1851
            'dilations': dilation,
C
chengduoZH 已提交
1852
            'groups': groups,
1853
            'use_cudnn': use_cudnn,
1854
            'use_mkldnn': False,
C
chengduoZH 已提交
1855
        })
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1879 1880 1881 1882 1883 1884
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1894 1895
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1896 1897 1898
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1899
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1925
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1926 1927
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1928
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1929 1930
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1931
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1932 1933
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1934
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1935 1936 1937 1938 1939 1940
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1951 1952
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1953 1954
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1955
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1956
            will be named automatically. Default: None.
C
chengduoZH 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1969 1970
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1971 1972 1973
    """

    l_type = 'conv3d'
C
chengduo 已提交
1974
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1985
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1999 2000 2001
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2002 2003 2004 2005 2006 2007 2008 2009
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2010
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2025
            'use_mkldnn': False
C
chengduoZH 已提交
2026 2027
        })

2028
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2029 2030 2031 2032

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2033
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2034
    """
Y
yangyaming 已提交
2035 2036 2037
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2049
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2050 2051 2052 2053 2054
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2055
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2056 2057 2058 2059 2060 2061 2062

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2063 2064
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2065

L
Luo Tao 已提交
2066 2067
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2068
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2069
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2070
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2071 2072 2073 2074 2075 2076 2077

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2078

Y
yangyaming 已提交
2079
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2080 2081 2082 2083 2084
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2085 2086
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2087
    """
F
fengjiayi 已提交
2088
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2089
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2090 2091
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2092 2093 2094 2095 2096 2097

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2098 2099
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2100

Y
yangyaming 已提交
2101 2102 2103 2104 2105
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2106 2107 2108
    return pool_out


C
add doc  
chengduoZH 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2128
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2129 2130 2131 2132 2133
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2134
def sequence_first_step(input):
L
Luo Tao 已提交
2135
    """
L
Luo Tao 已提交
2136
    This function gets the first step of sequence.
L
Luo Tao 已提交
2137 2138 2139 2140

    .. code-block:: text

       x is a 1-level LoDTensor:
2141
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2142 2143 2144 2145 2146
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2147
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2148
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2149

L
Luo Tao 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2159

Y
yangyaming 已提交
2160
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2161 2162 2163
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2164 2165 2166
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2167
def sequence_last_step(input):
L
Luo Tao 已提交
2168
    """
L
Luo Tao 已提交
2169
    This function gets the last step of sequence.
L
Luo Tao 已提交
2170 2171 2172 2173

    .. code-block:: text

       x is a 1-level LoDTensor:
2174
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2175 2176 2177 2178 2179
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2180
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2181
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2182

L
Luo Tao 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2192

Y
yangyaming 已提交
2193
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2194 2195 2196
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2197 2198 2199
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2200 2201 2202 2203
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2204
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2205 2206 2207 2208 2209
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2210

Y
Yibing Liu 已提交
2211 2212
	- Case:

2213
            Given the input Variable **input**:
2214

2215 2216 2217
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2218

2219
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2220

2221
            the output Variable will be
2222

2223 2224 2225
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2226 2227

    NOTE: The first dimension size of **input**, **offset** and **length**
2228
          should be equal. The **offset** should start from 0.
2229

Y
Yibing Liu 已提交
2230
    Args:
2231
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2232
                         sequences.
Y
Yibing Liu 已提交
2233 2234 2235 2236 2237 2238
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2239
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2250
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2251 2252 2253 2254
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2255
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2270
@templatedoc()
Y
Yu Yang 已提交
2271
def pool2d(input,
C
chengduoZH 已提交
2272 2273
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2274 2275
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2276
           global_pooling=False,
C
chengduoZH 已提交
2277
           use_cudnn=True,
2278
           ceil_mode=False,
2279 2280
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2281
    """
F
fengjiayi 已提交
2282
    ${comment}
2283 2284

    Args:
2285 2286 2287
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2288
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2289
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2290 2291
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2292
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2293 2294 2295 2296 2297 2298
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2299 2300 2301
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2302
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2303
                        layer will be named automatically.
2304
        exclusive (bool): Whether to exclude padding points in average pooling
2305
                          mode, default is true
F
fengjiayi 已提交
2306

2307
    Returns:
F
fengjiayi 已提交
2308
        Variable: The pooling result.
F
fengjiayi 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2322 2323 2324 2325
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2326
                            global_pooling=False)
Y
Yu Yang 已提交
2327 2328 2329 2330 2331
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2332

C
chengduoZH 已提交
2333 2334 2335 2336 2337
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2338 2339 2340 2341
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2342 2343
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2344

C
Add doc  
chengduoZH 已提交
2345
    l_type = 'pool2d'
2346 2347

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2348
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2349
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2350 2351

    helper.append_op(
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2363 2364
            "use_mkldnn": False,
            "exclusive": exclusive,
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2378 2379
           name=None,
           exclusive=True):
2380 2381
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2382
    pooling configurations mentioned in input parameters.
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2395
        exclusive (bool): Whether to exclude padding points in average pooling
2396
                          mode, default is true
2397

2398
    Returns:
2399
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2400 2401 2402 2403 2404
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2405

C
chengduoZH 已提交
2406 2407 2408 2409 2410
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2411 2412 2413
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2414

C
chengduoZH 已提交
2415 2416
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2417

2418 2419
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2420
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2421
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2422 2423

    helper.append_op(
2424
        type=l_type,
Y
Yu Yang 已提交
2425 2426 2427 2428 2429 2430 2431
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2432
            "paddings": pool_padding,
2433
            "use_cudnn": use_cudnn,
2434
            "ceil_mode": ceil_mode,
2435 2436
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2449
               data_layout='NCHW',
Y
Yang Yang 已提交
2450
               in_place=False,
2451 2452
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2453
               moving_variance_name=None,
2454 2455
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2456
    """
Q
qiaolongfei 已提交
2457 2458 2459 2460
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2461

Q
qiaolongfei 已提交
2462
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2463

Q
qiaolongfei 已提交
2464 2465
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2466 2467 2468
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2481 2482

    Args:
Q
qiaolongfei 已提交
2483
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2484 2485 2486 2487
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2488 2489 2490 2491 2492 2493 2494 2495
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2496
        data_layout(string, default NCHW): NCHW|NHWC
2497
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2498 2499 2500 2501
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2502
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2503
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2504 2505

    Returns:
Q
qiaolongfei 已提交
2506
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2507 2508 2509 2510 2511 2512 2513

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2514
    """
C
chengduo 已提交
2515
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2538
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2539

2540 2541
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2542 2543 2544
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2545
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2546
        shape=param_shape,
2547 2548 2549 2550 2551 2552 2553
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2554
            trainable=False,
W
wanghaoshuang 已提交
2555
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2556
        shape=param_shape,
2557 2558
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2559 2560 2561 2562 2563 2564

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2565 2566 2567 2568
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2569

X
Xin Pan 已提交
2570 2571
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2589 2590 2591 2592
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2593
            "use_mkldnn": False,
2594
            "fuse_with_relu": fuse_with_relu
2595
        })
Y
Yu Yang 已提交
2596 2597 2598 2599

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2600
@templatedoc()
G
guosheng 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2611
    ${comment}
G
guosheng 已提交
2612 2613 2614

    The formula is as follows:

Y
yuyang18 已提交
2615
    ..  math::
G
guosheng 已提交
2616 2617 2618 2619 2620 2621 2622

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2623 2624 2625 2626 2627 2628 2629 2630
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2631

G
guosheng 已提交
2632 2633
    Args:
        input(Variable): The input tensor variable.
2634
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2635
            normalization. Default True.
2636
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2637 2638
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2639
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2640
            Default 1.
2641
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2642
            division by zero. Default 1e-05.
G
guosheng 已提交
2643
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2644 2645
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2646 2647
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2648
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2649 2650
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2651
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2652
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2653
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2654 2655 2656
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2657 2658

    Returns:
Y
yuyang18 已提交
2659
        ${y_comment}
G
guosheng 已提交
2660 2661 2662

    Examples:

Y
yuyang18 已提交
2663 2664 2665
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2681
    if shift:
G
guosheng 已提交
2682 2683 2684 2685 2686 2687
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2688 2689 2690 2691 2692
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2786 2787 2788 2789
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2790 2791 2792
                     padding=0,
                     stride=1,
                     dilation=1,
2793
                     groups=None,
C
caoying03 已提交
2794
                     param_attr=None,
2795
                     bias_attr=None,
C
chengduoZH 已提交
2796
                     use_cudnn=True,
2797
                     act=None,
C
caoying03 已提交
2798
                     name=None):
Y
Yu Yang 已提交
2799
    """
2800 2801 2802 2803 2804 2805 2806 2807
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2808 2809
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2810 2811 2812
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2813 2814 2815 2816 2817

    For each input :math:`X`, the equation is:

    .. math::

2818
        Out = \sigma (W \\ast X + b)
2819

2820
    Where:
2821 2822 2823

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2824 2825 2826 2827
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2828

2829 2830 2831 2832
    Example:

        - Input:

2833
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2834

2835
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2836 2837 2838

        - Output:

2839
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2840 2841

        Where
Y
Yu Yang 已提交
2842

2843 2844
        .. math::

2845 2846 2847 2848
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2849 2850

    Args:
2851 2852 2853 2854
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2855 2856 2857 2858
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2887
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2888 2889 2890
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2891
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2892
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2893 2894

    Returns:
2895
        Variable: The tensor variable storing the convolution transpose result.
2896 2897

    Raises:
2898 2899
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2900 2901 2902 2903

    Examples:
       .. code-block:: python

2904 2905
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2906
    """
C
chengduo 已提交
2907
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2908 2909 2910 2911 2912 2913 2914 2915
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2916 2917 2918
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2919 2920 2921
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2922

C
chengduoZH 已提交
2923 2924
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2925

Y
Yu Yang 已提交
2926 2927 2928 2929 2930
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2931

Y
Yu Yang 已提交
2932 2933
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2934

C
chengduoZH 已提交
2935
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2936
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2937
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2938
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2939
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2940 2941 2942
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2943

2944 2945 2946 2947 2948 2949 2950
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2951
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2952
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2953

Y
Yu Yang 已提交
2954 2955 2956
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2957
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2958
    helper.append_op(
2959
        type=op_type,
Y
Yu Yang 已提交
2960 2961
        inputs={'Input': [input],
                'Filter': [img_filter]},
2962
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2963
        attrs={
2964
            'output_size': output_size,
2965 2966 2967 2968 2969
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2970 2971
        })

2972 2973 2974
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2975 2976


2977
def conv3d_transpose(input,
Y
Yu Yang 已提交
2978 2979 2980
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2981 2982 2983
                     padding=0,
                     stride=1,
                     dilation=1,
2984
                     groups=None,
C
caoying03 已提交
2985
                     param_attr=None,
2986
                     bias_attr=None,
C
chengduoZH 已提交
2987
                     use_cudnn=True,
2988
                     act=None,
C
caoying03 已提交
2989
                     name=None):
Y
Yu Yang 已提交
2990
    """
2991
    **Convlution3D transpose layer**
2992

2993
    The convolution3D transpose layer calculates the output based on the input,
2994
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2995 2996 2997 2998 2999 3000
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3001 3002 3003
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3004 3005 3006 3007 3008

    For each input :math:`X`, the equation is:

    .. math::

3009
        Out = \sigma (W \\ast X + b)
3010 3011 3012

    In the above equation:

3013 3014
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3015 3016 3017 3018
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3019

3020 3021 3022 3023
    Example:

        - Input:

3024
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3025

3026
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3027 3028 3029

        - Output:

3030
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3031 3032

        Where
Y
Yu Yang 已提交
3033

3034 3035
        .. math::

3036 3037 3038
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3039 3040

    Args:
3041
        input(Variable): The input image with [N, C, D, H, W] format.
3042 3043 3044
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3045
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3046 3047
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3048
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3049 3050 3051
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3052 3053
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3054
        stride(int|tuple): The stride size. If stride is a tuple, it must
3055 3056
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3057
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3058 3059 3060
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3061 3062 3063 3064 3065
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3075 3076
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3077 3078
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3079 3080
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3081 3082

    Returns:
3083
        Variable: The tensor variable storing the convolution transpose result.
3084 3085

    Raises:
3086 3087
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3088 3089 3090 3091

    Examples:
       .. code-block:: python

3092 3093
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3094
    """
C
chengduo 已提交
3095
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3096 3097
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3098
    if not isinstance(input, Variable):
3099
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3100 3101
    input_channel = input.shape[1]

3102 3103 3104
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3105

C
chengduoZH 已提交
3106 3107 3108
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3109 3110 3111 3112 3113 3114
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3115 3116 3117
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3118

3119
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3120
                         padding[0] - 1) // dilation[0] + 1
3121
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3122
                         padding[1] - 1) // dilation[1] + 1
3123
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3124
                         padding[2] - 1) // dilation[2] + 1
3125
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3126
    else:
3127 3128
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3129

3130
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3131
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3132 3133 3134
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3135
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3136
    helper.append_op(
3137
        type=l_type,
Y
Yu Yang 已提交
3138 3139
        inputs={'Input': [input],
                'Filter': [img_filter]},
3140
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3141 3142 3143 3144
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3145
            'groups': groups,
C
chengduoZH 已提交
3146 3147
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3148

3149 3150
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3151
    return out
Y
yangyaming 已提交
3152 3153


Y
yangyaming 已提交
3154
def sequence_expand(x, y, ref_level=-1, name=None):
3155
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3156 3157 3158 3159
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3160 3161 3162 3163 3164

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3165
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3166
                x.data = [[a], [b], [c], [d]]
3167 3168 3169
                x.dims = [4, 1]

            y is a LoDTensor:
3170 3171
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3172

Y
yangyaming 已提交
3173
            ref_level: 0
3174

Y
yangyaming 已提交
3175
            then output is a 1-level LoDTensor:
3176
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3177
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3178 3179 3180 3181
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3182
                x.data = [[a], [b], [c]]
3183 3184 3185
                x.dims = [3, 1]

            y is a LoDTensor:
3186
                y.lod = [[2, 0, 3]]
3187

Y
yangyaming 已提交
3188
            ref_level: -1
3189

Y
yangyaming 已提交
3190 3191 3192
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3193 3194 3195
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3196 3197
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3198
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3199
                        will be named automatically.
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3210
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3211
    """
Y
yangyaming 已提交
3212
    helper = LayerHelper('sequence_expand', input=x, **locals())
3213
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3214
    tmp = helper.create_variable_for_type_inference(dtype)
3215
    helper.append_op(
Y
yangyaming 已提交
3216 3217 3218 3219 3220
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3221
    return tmp
3222 3223


C
chengduo 已提交
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3280
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3281 3282 3283 3284 3285 3286 3287 3288
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3289
@templatedoc()
3290
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3291 3292 3293 3294 3295
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3296 3297 3298
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3299
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3300 3301 3302 3303
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3304 3305 3306
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3307

F
fengjiayi 已提交
3308
    Returns:
M
minqiyang 已提交
3309
        Variable: The padded sequence batch and the original lengths before
3310
                  padding. All sequences has the same length.
M
minqiyang 已提交
3311

F
fengjiayi 已提交
3312 3313 3314 3315 3316 3317 3318
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3319
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3320
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3321 3322 3323 3324 3325
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3326 3327
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3328 3329 3330 3331

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3332 3333 3334 3335 3336 3337
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3338 3339
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3340
        attrs={'padded_length': maxlen})
3341
    return out, length
F
fengjiayi 已提交
3342 3343


3344
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3345
    """
3346
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3347

3348 3349
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3359 3360 3361
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3362
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3363 3364 3365 3366 3367 3368

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3369
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3370 3371 3372 3373 3374 3375

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3376 3377
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3392
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3404 3405 3406 3407 3408 3409 3410 3411 3412
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3413 3414
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3415 3416 3417

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3418 3419

    This layer does the search in beams for one time step. Specifically, it
3420 3421 3422 3423 3424 3425
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3426

3427 3428 3429 3430 3431 3432 3433 3434
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3435

3436
    Args:
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3462

3463
    Returns:
3464 3465
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3466 3467 3468 3469

    Examples:
        .. code-block:: python

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3487 3488 3489 3490
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3491 3492 3493
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3494 3495 3496 3497 3498

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3499
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3517 3518 3519 3520 3521 3522 3523
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3534

3535 3536 3537 3538 3539 3540
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3541

3542 3543 3544 3545 3546 3547 3548 3549
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3550 3551
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3567 3568 3569 3570
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3571
              param_attr=None,
C
caoying03 已提交
3572 3573
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3574 3575 3576 3577
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3578
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3579

3580
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3581

3582
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3583

3584
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3585 3586 3587

            h_t & = o_t tanh(c_t)

3588 3589 3590 3591 3592 3593
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3594 3595 3596

        .. math::

3597
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3598 3599 3600 3601 3602 3603 3604 3605

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3606
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3607 3608

    Args:
Y
yangyaming 已提交
3609 3610 3611 3612 3613 3614
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3615
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3628 3629
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3630 3631

    Returns:
Y
yangyaming 已提交
3632
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3633 3634

    Raises:
3635 3636 3637 3638
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3639 3640 3641 3642 3643 3644

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3645
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3646
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3647
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3664
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3665 3666 3667 3668
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3669 3670
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3671 3672 3673
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3674
    size = cell_t_prev.shape[1]
3675
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3676 3677
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3678
                param_attr=param_attr,
3679
                bias_attr=bias_attr)
Y
yangyaming 已提交
3680
    dtype = x_t.dtype
X
Xin Pan 已提交
3681 3682
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3692
    return h, c
G
guosheng 已提交
3693 3694


C
caoying03 已提交
3695
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3696
    """
Y
yangyaming 已提交
3697
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3698 3699 3700

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3701
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3702 3703
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3704 3705
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3706
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3707
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3708
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3709 3710
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3711 3712 3713

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3714

G
guosheng 已提交
3715 3716 3717 3718 3719 3720
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3721
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3722 3723 3724 3725
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3726 3727 3728 3729

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3730
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3731 3732 3733
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3734 3735
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3736
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3737 3738
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3739 3740 3741 3742 3743
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3744
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3745 3746 3747 3748
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3749 3750


C
caoying03 已提交
3751
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3752
    """
Y
Yibing Liu 已提交
3753
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3754 3755 3756

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3757 3758 3759
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3760
            must be in the range :math:`[-rank(input), rank(input))`. If
3761
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3762
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3763 3764
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3765
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3766
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3767
                       will be named automatically.
G
guosheng 已提交
3768 3769

    Returns:
Y
Yibing Liu 已提交
3770
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3771

G
guosheng 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3782 3783
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3784 3785 3786 3787 3788 3789 3790

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3791 3792
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3793
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3794 3795
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3796 3797 3798 3799 3800
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3801
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3802 3803 3804 3805
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3806 3807


C
caoying03 已提交
3808
def reduce_max(input, dim=None, keep_dim=False, name=None):
3809
    """
Y
yangyaming 已提交
3810
    Computes the maximum of tensor elements over the given dimension.
3811 3812 3813

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3814
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3815 3816 3817
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3818
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3819 3820
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3821
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3822 3823
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3824 3825 3826

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3839 3840 3841 3842 3843 3844 3845

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3846 3847
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3848
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3849 3850
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3851 3852 3853 3854 3855
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3856
            'dim': dim if dim != None else [0],
3857 3858 3859 3860 3861 3862
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3863
def reduce_min(input, dim=None, keep_dim=False, name=None):
3864
    """
Y
yangyaming 已提交
3865
    Computes the minimum of tensor elements over the given dimension.
3866 3867 3868

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3869
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3870 3871 3872
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3873
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3874 3875
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3876
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3877 3878
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3879 3880 3881

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3882

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3894 3895 3896 3897 3898 3899 3900

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3901 3902
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3903
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3904 3905
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3906 3907 3908 3909 3910
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3911
            'dim': dim if dim != None else [0],
3912 3913 3914 3915
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3916 3917


3918 3919 3920 3921 3922 3923
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3924
        dim (list|int|None): The dimensions along which the product is performed. If
3925 3926
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3927 3928
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3929 3930 3931
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3932
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3933
            layer will be named automatically.
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3948
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3949
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3950 3951 3952 3953 3954 3955 3956

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3957 3958
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3959
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3960 3961
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3962 3963 3964 3965 3966
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3967
            'dim': dim if dim != None else [0],
3968 3969 3970 3971 3972 3973
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3974
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3975
    """
C
caoying03 已提交
3976
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3977 3978 3979

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3980 3981 3982 3983 3984
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3985
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3986
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3987
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3988 3989
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3990 3991

    Returns:
D
dzhwinter 已提交
3992
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4002 4003
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4019
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4042
    .. math::
4043 4044

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4045 4046 4047 4048 4049

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4050
        x(Variable|list): The input tensor to l2_normalize layer.
4051
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4052 4053
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4054
        epsilon(float): The epsilon value is used to avoid division by zero, \
4055
            the defalut value is 1e-10.
4056
        name(str|None): A name for this layer(optional). If set None, the layer \
4057
            will be named automatically.
C
caoying03 已提交
4058 4059

    Returns:
4060
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4061 4062

    Examples:
4063

C
caoying03 已提交
4064 4065
        .. code-block:: python

4066 4067 4068 4069
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4070 4071
    """

F
fengjiayi 已提交
4072 4073
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4074 4075
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4076 4077
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4078
    helper.append_op(
4079 4080 4081 4082
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4083
        attrs={
4084 4085
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4086 4087
        })
    return out
4088 4089


S
sneaxiy 已提交
4090
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4091
    """
Y
ying 已提交
4092 4093 4094 4095
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4096

C
chengduoZH 已提交
4097
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4098
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4099

4100 4101 4102 4103 4104
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4105
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4106

C
chengduoZH 已提交
4107
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4108
      performs in the following way.
G
guosheng 已提交
4109

4110
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4111
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4112
        last two dimensions and a batched matrix multiply supporting broadcast
4113
        applies on the two tensors.
G
guosheng 已提交
4114

Y
ying 已提交
4115 4116
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4117
    removed after matrix multiplication.
G
guosheng 已提交
4118 4119 4120

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4121 4122 4123
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4124
        alpha (float): The scale of output. Default 1.0.
4125
        name(str|None): A name for this layer(optional). If set None, the layer
4126
            will be named automatically.
G
guosheng 已提交
4127 4128

    Returns:
4129
        Variable: The product Tensor variable.
G
guosheng 已提交
4130

G
guosheng 已提交
4131 4132 4133
    Examples:
        .. code-block:: python

4134
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4135 4136
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4137

4138 4139
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4140

4141 4142
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4143

4144 4145
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4146 4147 4148 4149

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4150 4151
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4152

Y
ying 已提交
4153
            # x: [M], y: [N]
4154
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4155
    """
Y
ying 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4168
            y_shape = y_shape + [1]
Y
ying 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4185
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4186
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4187
    helper.append_op(
4188 4189 4190 4191
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4192 4193 4194
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4195
            'alpha': float(alpha),
S
sneaxiy 已提交
4196
        })
4197
    return out
4198 4199


4200
def topk(input, k, name=None):
Q
qingqing01 已提交
4201 4202 4203 4204
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4205
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4206 4207 4208 4209 4210 4211
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4233 4234 4235
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4236
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4237
                 of input.
4238
        name(str|None): A name for this layer(optional). If set None, the layer
4239
                       will be named automatically.
F
fengjiayi 已提交
4240
                       Default: None
Q
qingqing01 已提交
4241 4242

    Returns:
4243 4244 4245
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4246
        within the last dimension of input.
Q
qingqing01 已提交
4247

F
fengjiayi 已提交
4248 4249
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4250 4251 4252 4253 4254 4255 4256

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4257 4258
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4270
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4271
    """
Y
ying 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4281

Y
ying 已提交
4282
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4283

4284
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4285 4286
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4287
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4288

4289
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4290 4291
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4292

4293 4294 4295
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4296
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4297
                          the length of reference string.
4298
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4299
                                     calculating edit distance.
4300
        name (str): The name of this layer. It is optional.
4301

W
wanghaoshuang 已提交
4302
    Returns:
W
wanghaoshuang 已提交
4303
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4304 4305 4306 4307

    Examples:
        .. code-block:: python

T
tink2123 已提交
4308 4309
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4310
            cost = fluid.layers.edit_distance(input=x,label=y)
4311
    """
4312
    helper = LayerHelper("edit_distance", **locals())
4313

4314
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4315
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4316 4317
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4318 4319 4320 4321 4322

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4323
            attrs={"tokens": ignored_tokens})
4324 4325 4326 4327 4328
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4329
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4330
            attrs={"tokens": ignored_tokens})
4331 4332
        label = erased_label

4333
    # edit distance op
X
Xin Pan 已提交
4334 4335
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4336 4337 4338 4339
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4340 4341
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4342 4343
        attrs={"normalized": normalized})

4344
    return edit_distance_out, sequence_num
4345 4346 4347 4348 4349


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4350

Y
ying 已提交
4351 4352 4353 4354
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4372
        input.lod = [[4, 4]]
4373 4374 4375 4376 4377 4378 4379

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4380
        output.lod = [[2, 1]]
4381 4382 4383

    Args:

Y
ying 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4393
        name (str): The name of this layer. It is optional.
4394 4395

    Returns:
4396
        Variable: CTC greedy decode result. If all the sequences in result were
4397
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4398 4399 4400 4401 4402

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4403

4404
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4405
    """
4406
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4407
    _, topk_indices = topk(input, k=1)
4408 4409

    # ctc align op
X
Xin Pan 已提交
4410
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4411 4412 4413
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4414
        outputs={"Output": [ctc_out]},
4415 4416
        attrs={"merge_repeated": True,
               "blank": blank})
4417
    return ctc_out
4418 4419


W
Wu Yi 已提交
4420
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4421
    """
4422 4423
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4424
    to compute Connectionist Temporal Classification (CTC) loss.
4425 4426
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4427 4428 4429
    input tensor.

    Args:
4430
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4431 4432 4433 4434
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4435
       label (Variable): The ground truth of variable-length sequence,
4436 4437 4438
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4439 4440
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4441 4442 4443
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4444
         follewed by a mean_op.
W
Wu Yi 已提交
4445
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4446 4447

    Returns:
4448 4449
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4450 4451

    Examples:
4452

W
wanghaoshuang 已提交
4453
        .. code-block:: python
4454

4455 4456 4457
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4458 4459

    """
F
fengjiayi 已提交
4460
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4461 4462
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4463 4464 4465 4466 4467 4468
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4469 4470 4471 4472 4473
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4474
    return loss_out
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4490 4491 4492
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4493 4494 4495 4496 4497
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4498

4499
            out.lod  = [[0, 1, 3]]
4500 4501 4502 4503

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4504 4505 4506 4507 4508 4509 4510
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4511 4512 4513

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4514 4515

    Returns:
4516

4517 4518 4519 4520 4521
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4522
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4523
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4524 4525
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4526
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4527 4528 4529 4530 4531 4532
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4533 4534


4535 4536 4537 4538
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4539 4540 4541 4542 4543 4544
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4545
        num_neg_samples=None,
4546 4547 4548 4549
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4550 4551 4552 4553 4554 4555 4556
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4557 4558
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4559
            sample is 1.0.
C
chengduo 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4569
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4570 4571
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4572 4573 4574
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4575
        custom_dist (Variable): A tensor with shape [num_total_classes].
4576 4577 4578 4579
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4580

4581
    Returns:
Y
Yibing Liu 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4609 4610 4611 4612 4613 4614 4615 4616 4617

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4618

4619
    """
Y
Yang Yu 已提交
4620 4621 4622
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4623 4624

    dim = input.shape[1]
Y
Yang Yu 已提交
4625 4626 4627 4628 4629 4630
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4644 4645 4646
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4647

Y
Yang Yu 已提交
4648 4649 4650 4651 4652
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4673 4674
    attrs = {
        'num_total_classes': int(num_total_classes),
4675 4676 4677
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4678
    }
Y
Yang Yu 已提交
4679 4680 4681

    helper.append_op(
        type='nce',
C
chengduo 已提交
4682
        inputs=inputs,
Y
Yang Yu 已提交
4683 4684 4685 4686 4687 4688
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4689
    return cost / (num_neg_samples + 1)
4690 4691


C
chengduo 已提交
4692 4693 4694 4695 4696 4697
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4698 4699
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4700
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4710

W
weixing02 已提交
4711
    Args:
M
minqiyang 已提交
4712
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4713 4714 4715 4716 4717
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4729 4730 4731 4732 4733 4734 4735 4736

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4737 4738 4739
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4740 4741 4742 4743
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4744 4745
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4746 4747
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4748
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4749 4750 4751 4752 4753
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4754 4755 4756 4757 4758 4759 4760 4761
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4762 4763
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4764
        inputs=inputs,
W
weixing02 已提交
4765 4766 4767 4768 4769 4770
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4771
def transpose(x, perm, name=None):
Y
ying 已提交
4772 4773 4774 4775 4776 4777 4778
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4779 4780 4781
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4782 4783 4784 4785 4786 4787 4788

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4789
            # use append_batch_size=False to avoid prepending extra
4790
            # batch size in shape
4791
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4792
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4793
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4794 4795
    """

Y
fix ci.  
ying 已提交
4796
    if len(perm) != len(x.shape):
Y
ying 已提交
4797 4798 4799
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4800 4801 4802 4803 4804 4805
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4806 4807

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4808 4809
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4810
    helper.append_op(
4811
        type='transpose2',
Y
fix ci.  
ying 已提交
4812
        inputs={'X': [x]},
4813 4814
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4815 4816
        attrs={'axis': perm})
    return out
4817 4818


4819 4820 4821 4822 4823 4824 4825
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4826
    """
4827 4828 4829 4830 4831 4832 4833
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4862 4863 4864 4865 4866 4867 4868 4869 4870
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4871 4872 4873
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4874 4875 4876 4877 4878
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4906 4907 4908
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4921
            output.dims = {8, 8}
4922

4923
            output.lod = [[4, 4]]
4924

D
dzhwinter 已提交
4925
     Examples:
4926 4927 4928

        .. code-block:: python

4929 4930
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4931 4932

    """
W
wanghaoshuang 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4943 4944 4945 4946 4947 4948 4949
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4950
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4951
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4952
    helper.append_op(
4953
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4954
    return out
4955 4956


Y
yuyang18 已提交
4957
@templatedoc()
4958
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4959 4960
    """
    ${comment}
4961 4962

    Args:
Y
yuyang18 已提交
4963
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4964 4965
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4966 4967 4968 4969 4970
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4971
        ${out_comment}.
4972 4973

    Examples:
Y
yuyang18 已提交
4974 4975 4976 4977
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4978 4979 4980 4981 4982 4983
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4984
    out = helper.create_variable_for_type_inference(dtype)
4985 4986 4987 4988 4989
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4990
    return helper.append_activation(out)
4991 4992


Y
yuyang18 已提交
4993
@templatedoc()
4994 4995
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4996 4997 4998 4999 5000 5001 5002
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5003 5004

    Args:
Y
yuyang18 已提交
5005 5006
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5007 5008

    Returns:
Y
yuyang18 已提交
5009
        ${out_comment}.
5010 5011
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5012 5013 5014 5015 5016

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5017
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5018 5019 5020 5021 5022 5023
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5024 5025


5026 5027 5028
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5029
                               ignore_index=-100,
5030 5031
                               numeric_stable_mode=False,
                               return_softmax=False):
5032 5033
    """
    **Softmax With Cross Entropy Operator.**
5034

5035 5036 5037 5038
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5039

5040 5041 5042
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5043

5044 5045 5046
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5047

5048
    The equation is as follows:
5049

5050
    1) Hard label (one-hot label, so every sample has exactly one class)
5051

5052 5053 5054 5055
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5056

5057 5058 5059
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5060

5061 5062 5063 5064
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5065 5066 5067
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5068

S
sneaxiy 已提交
5069 5070 5071 5072 5073 5074 5075 5076
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5077 5078 5079 5080 5081 5082 5083 5084
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5085 5086
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5087
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5088 5089 5090
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5091 5092 5093
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5094
                                    stable algorithm. Default: False
5095
        return_softmax (bool): A flag indicating whether to return the softmax
5096
                               along with the cross entropy loss. Default: False
5097

5098
    Returns:
5099 5100 5101 5102
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5103
                              2-D tensor with shape [N x K].
5104 5105 5106 5107 5108 5109 5110

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5111 5112
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5113 5114
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5115 5116
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5117 5118 5119 5120 5121 5122
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5123 5124 5125 5126 5127
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5128 5129 5130 5131

    if return_softmax:
        return loss, softmax

5132 5133 5134 5135 5136
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5137 5138
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5139
    For each instance, it computes the smooth L1 loss element by element first
5140
    and then sums all the losses. So the shape of ouput Variable is
5141
    [batch_size, 1].
5142

5143 5144
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5145
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5146
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5147
            L1 loss op with same shape as :attr:`x`.
5148
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5149 5150
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5151
            by this tensor element by element.
5152
        outside_weight (Variable|None): A tensor with rank at least 2. This
5153 5154
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5155
            element by element.
5156
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5157 5158
           scalar with default value 1.0.

5159
    Returns:
5160
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5161 5162 5163 5164 5165

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5166 5167
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5168
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5169
            out = fluid.layers.smooth_l1(x=fc, y=label)
5170
    """
5171

5172
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5173 5174
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5187 5188 5189 5190


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5191
    This layer creates the one-hot representations for input indices.
5192 5193

    Args:
Y
Yibing Liu 已提交
5194 5195
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5196 5197

    Returns:
Y
Yibing Liu 已提交
5198
        Variable: The one-hot representations of input.
5199 5200

    Examples:
C
caoying03 已提交
5201
        .. code-block:: python
5202

Y
Yibing Liu 已提交
5203 5204
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5205 5206
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5207
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5208 5209 5210 5211 5212 5213
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5214 5215


Y
Yu Yang 已提交
5216
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5217
    """
Y
yi.wu 已提交
5218 5219 5220
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5221 5222 5223 5224 5225 5226

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5227 5228
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5229 5230 5231 5232 5233 5234

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5235 5236
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5237 5238
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5239 5240 5241 5242 5243
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5244
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5245
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5246 5247
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5248 5249
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5250 5251 5252
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5253 5254


5255
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5256
    """
C
caoying03 已提交
5257 5258
    Gives a new shape to the input Tensor without changing its data.

5259 5260 5261 5262 5263
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5264

5265
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5266

5267 5268 5269 5270
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5271
    2. 0 means the actual dimension value is going to be copied from the
5272 5273 5274 5275
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5276 5277

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5278
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5279
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5280

5281
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5282 5283
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5284 5285
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5286
    dimensions.
C
caoying03 已提交
5287

5288
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5289 5290 5291 5292
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5293 5294

    Args:
5295
        x(variable): The input tensor.
C
caoying03 已提交
5296 5297
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5298 5299 5300 5301 5302
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5303 5304
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5305 5306 5307 5308 5309 5310 5311
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5312
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5313

5314
    Returns:
G
guosheng 已提交
5315 5316 5317 5318
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5319

X
Xin Pan 已提交
5320 5321 5322
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5323 5324
    Examples:
        .. code-block:: python
G
guosheng 已提交
5325

5326
            data = fluid.layers.data(
5327
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5328
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5329
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5330 5331 5332
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5333
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5334 5335 5336 5337 5338
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5339

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5355
    helper = LayerHelper("reshape2", **locals())
5356 5357
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5358
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5359
    helper.append_op(
5360
        type="reshape2",
X
Xin Pan 已提交
5361
        inputs=inputs,
D
dzhwinter 已提交
5362
        attrs={"shape": shape},
5363 5364
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5365

D
dzhwinter 已提交
5366
    return helper.append_activation(out)
5367

5368

5369
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5370
    """
M
minqiyang 已提交
5371 5372 5373
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5374
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5375

Y
Yibing Liu 已提交
5376 5377
    Examples:
    Case 1:
M
minqiyang 已提交
5378
      Given
Y
Yibing Liu 已提交
5379 5380 5381 5382 5383 5384 5385 5386
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5387
        and
Y
Yibing Liu 已提交
5388 5389 5390
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5391

Y
Yibing Liu 已提交
5392
    Args:
5393
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5394
        axes (list): List of integers, indicating the dimensions to be squeezed.
5395
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5396 5397 5398 5399 5400 5401 5402 5403

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5404
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5405 5406
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5407 5408
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5409
    helper.append_op(
5410
        type="squeeze2",
5411
        inputs={"X": input},
Y
Yibing Liu 已提交
5412
        attrs={"axes": axes},
5413 5414
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5415

5416 5417 5418
    return out


5419
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5420
    """
M
minqiyang 已提交
5421 5422 5423
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5424

M
minqiyang 已提交
5425 5426
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5427
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5428

Y
Yibing Liu 已提交
5429
    Args:
5430
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5431
        axes (list): List of integers, indicating the dimensions to be inserted.
5432
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5433 5434 5435 5436 5437 5438 5439 5440

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5441
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5442 5443
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5444 5445
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5446
    helper.append_op(
5447
        type="unsqueeze2",
5448
        inputs={"X": input},
Y
Yibing Liu 已提交
5449
        attrs={"axes": axes},
5450 5451
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5452

5453 5454
    return out

5455

Y
yangyaming 已提交
5456
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5457
    """
Y
Yibing Liu 已提交
5458
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5459 5460 5461 5462
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5463
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5464 5465 5466 5467 5468 5469

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5470
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5471 5472 5473
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5474
            target_lod: [4, 2]
Y
yangyaming 已提交
5475 5476

            then we get a 1-level LoDTensor:
5477
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5478 5479 5480 5481 5482 5483
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5484
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5485 5486 5487 5488
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5489
                y.data = [[2, 4]]
Y
yangyaming 已提交
5490 5491 5492
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5493
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5494 5495 5496 5497 5498 5499
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5500
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5501 5502 5503 5504
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5505
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5506 5507 5508 5509
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5510
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5511 5512 5513 5514 5515
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5516
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5517
                           from :attr:`y`.
Y
yangyaming 已提交
5518
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5519
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5520 5521

    Returns:
Y
Yibing Liu 已提交
5522
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5523 5524

    Raises:
Y
Yibing Liu 已提交
5525
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5535
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5561
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5590 5591
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5604 5605 5606
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5620 5621 5622 5623


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5624
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5625
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5626

G
guosheng 已提交
5627 5628 5629 5630
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5653
                         The length of :attr:paddings must be
G
guosheng 已提交
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5664

G
guosheng 已提交
5665 5666 5667 5668 5669 5670
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5671
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5672 5673 5674 5675 5676 5677 5678
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5679 5680


C
chengduo 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5751
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5761 5762 5763 5764 5765 5766 5767
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5768 5769
    called label-smoothing regularization (LSR).

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5793
                              be :math:`(1, class\_num)`.
5794 5795
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5796
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5816
    smooth_label = helper.create_variable_for_type_inference(dtype)
5817 5818 5819 5820 5821 5822 5823
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5824 5825


W
wopeizl 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5862 5863


J
jerrywgz 已提交
5864 5865 5866 5867 5868 5869
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5870 5871
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5888 5889 5890
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5891 5892 5893 5894 5895 5896
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5897
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5938 5939
        .. code-block:: python

W
whs 已提交
5940 5941 5942 5943
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5944
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5945 5946 5947 5948 5949 5950
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5951 5952


5953 5954 5955 5956
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5957 5958
                 resample='BILINEAR',
                 actual_shape=None):
5959
    """
Q
qiaolongfei 已提交
5960
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5961

5962
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5963 5964 5965
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5966

5967
        'BILINEAR' : Bilinear interpolation
5968
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5969

5970
    Args:
5971
        input (Variable): The input tensor of image resize layer,
5972 5973
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5974
        out_shape(list|tuple|Variable|None): Output shape of image resize
5975 5976
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5977
        scale(float|None): The multiplier for the input height or width.
5978 5979 5980
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5981 5982
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5983
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5984
                       currently.
5985
                       Default: 'BILINEAR'
5986 5987 5988
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5989
                                :attr:`out_shape` and :attr:`scale` specifying
5990 5991 5992 5993 5994 5995 5996
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5997 5998
                                constructing stage.
                                Default: None
5999 6000

    Returns:
Q
update  
qiaolongfei 已提交
6001 6002
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6003

6004 6005 6006
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6007
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6008 6009 6010 6011
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6012 6013 6014
    Examples:
        .. code-block:: python

6015
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6016
    """
6017 6018 6019 6020
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6021 6022
    if resample not in resample_methods:
        raise ValueError(
6023
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6024
        )
6025
    if out_shape is None and scale is None:
6026
        raise ValueError("One of out_shape and scale must not be None.")
6027
    helper = LayerHelper('interpolate', **locals())
6028
    dtype = helper.input_dtype()
6029 6030 6031 6032

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6033 6034 6035
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6036
    if out_shape is not None:
6037 6038 6039 6040
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6041
            inputs['OutSize'] = out_shape
6042 6043 6044 6045 6046 6047 6048 6049
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6050 6051 6052 6053
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6054 6055 6056 6057 6058
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6059
    out = helper.create_variable_for_type_inference(dtype)
6060
    helper.append_op(
6061
        type='interpolate',
6062
        inputs=inputs,
6063
        outputs={"Out": out},
6064 6065 6066 6067 6068
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
6069
    return out
F
stash  
fengjiayi 已提交
6070 6071


6072
@templatedoc(op_type="interpolate")
6073 6074 6075 6076 6077
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6078
    """
6079 6080
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6081 6082
    in priority order.

6083 6084 6085 6086
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6087 6088
    again in the other direction.

6089
    For details of bilinear interpolation, please refer to Wikipedia:
6090
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6091 6092 6093 6094 6095

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6096

Y
yuyang18 已提交
6097 6098 6099 6100 6101
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6102 6103 6104
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6105
                                :attr:`out_shape` and :attr:`scale` specifying
6106 6107 6108 6109 6110 6111 6112
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6113 6114
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6115 6116 6117

    Returns:
        ${out_comment}.
6118 6119 6120 6121 6122

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6123 6124
    """

6125
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6126 6127


6128
@templatedoc(op_type="interpolate")
6129 6130 6131 6132 6133
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6134
    """
6135
    Resize input by performing nearest neighbor interpolation in both the
6136 6137
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6138 6139
    out_shape and scale in priority order.

6140
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6141
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6142 6143 6144 6145 6146

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6147

Y
yuyang18 已提交
6148 6149 6150 6151 6152
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6153 6154 6155
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6156
                                :attr:`out_shape` and :attr:`scale` specifying
6157 6158 6159 6160 6161 6162 6163
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6164 6165
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6166 6167 6168

    Returns:
        ${out_comment}.
6169 6170 6171 6172 6173

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6174 6175
    """

6176
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6177 6178 6179 6180


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6181 6182 6183
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6184 6185 6186 6187 6188 6189 6190
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6191
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6192

6193
    Returns:
Q
update  
qiaolongfei 已提交
6194
        Variable: The output is a 4-D tensor of the shape
6195
        (num_batches, channls, out_h, out_w).
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6206 6207 6208
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6209 6210 6211
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6212 6213
def gather(input, index):
    """
Q
qiaolongfei 已提交
6214 6215
    **Gather Layer**

6216
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6217 6218 6219 6220
    of X indexed by `index` and concatenate them together.

    .. math::

6221
        Out = X[Index]
W
whs 已提交
6222 6223 6224 6225 6226 6227 6228


    .. code-block:: text


                Given:

6229 6230
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6241
        input (Variable): The source input with rank>=1.
W
whs 已提交
6242 6243 6244 6245 6246 6247
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6248

W
whs 已提交
6249 6250 6251 6252 6253 6254
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6255
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6256 6257 6258 6259 6260 6261 6262 6263
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6295
    out = helper.create_variable_for_type_inference(dtype)
6296 6297 6298 6299 6300 6301 6302 6303 6304
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6355
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6378

6379 6380 6381
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6382
    """
F
stash  
fengjiayi 已提交
6383
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6384
    dtype = x.dtype
X
Xin Pan 已提交
6385
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6386
    if seed is None:
6387
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6388
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6389
    if isinstance(seed, int):
F
fengjiayi 已提交
6390 6391 6392 6393 6394
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6395 6396 6397 6398
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6399
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6400 6401
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6402 6403
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6404
    return out
W
whs 已提交
6405 6406


6407
def log(x, name=None):
W
wanghaoshuang 已提交
6408 6409 6410 6411 6412
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6413
        Out = \\ln(x)
W
wanghaoshuang 已提交
6414 6415

    Args:
6416
        x (Variable): Input tensor.
6417 6418
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6419 6420 6421 6422 6423 6424 6425 6426

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6427
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6428 6429
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6430
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6431
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6432
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6433 6434 6435
    return out


6436
def relu(x, name=None):
W
wanghaoshuang 已提交
6437 6438
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6439
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6440 6441 6442 6443
    the tensor elementwise.

    .. math::

6444
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6445 6446

    Args:
6447
        x (Variable): The input tensor.
6448 6449
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6450 6451 6452 6453 6454 6455 6456 6457

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6458
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6459 6460
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6461
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6462
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6463
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6464
    return out
6465 6466


C
chengduo 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6508 6509 6510
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6511 6512 6513 6514
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6515
    .. math::
6516 6517

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6518

6519
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6520 6521 6522 6523 6524
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6525
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6526
                           Its shape should be the same as input.
6527
        num_classes (int): The possible number of labels.
W
whs 已提交
6528 6529 6530 6531

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6532
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6533 6534 6535 6536

    Examples:

        .. code-block:: python
6537

W
whs 已提交
6538 6539 6540 6541
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6542 6543 6544
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6545 6546
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6547 6548
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6549
        outputs={
W
whs 已提交
6550 6551 6552
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6553 6554 6555
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6630
                    isinstance(shape, Variable)):
6631 6632 6633 6634 6635
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6636
    out = helper.create_variable_for_type_inference(x.dtype)
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6654 6655


W
whs 已提交
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6673

W
whs 已提交
6674
              out_shape = [2, 3, 5, 5]
6675

W
whs 已提交
6676
          Step 1:
6677

W
whs 已提交
6678 6679 6680
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6681

W
whs 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6774 6775 6776 6777 6778 6779 6780 6781
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6782

6783 6784
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6785

6786 6787 6788 6789
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6790

6791 6792 6793 6794 6795
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6796 6797 6798

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6834
    out = helper.create_variable_for_type_inference("float32")
6835 6836 6837 6838 6839 6840 6841 6842

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6843 6844


M
minqiyang 已提交
6845 6846
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6847
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6848
    which compares left score and right score passed in.
M
minqiyang 已提交
6849
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6850 6851 6852 6853 6854 6855

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6856
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6857 6858
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6859
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6860 6861 6862
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6863
       Variable: The ranking loss.
M
minqiyang 已提交
6864
    Raises:
M
minqiyang 已提交
6865
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6866 6867 6868 6869 6870 6871 6872
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6873
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6874 6875 6876 6877 6878 6879
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6880 6881
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6907

W
whs 已提交
6908 6909
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6910

W
whs 已提交
6911
      Case 0:
M
minqiyang 已提交
6912

W
whs 已提交
6913 6914 6915
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6916

W
whs 已提交
6917 6918 6919
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6920

W
whs 已提交
6921
      Case 1:
M
minqiyang 已提交
6922

W
whs 已提交
6923 6924
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6925

W
whs 已提交
6926 6927 6928
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6929

W
whs 已提交
6930
      Case 2:
M
minqiyang 已提交
6931

W
whs 已提交
6932 6933
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6934

W
whs 已提交
6935 6936 6937
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6938 6939


W
whs 已提交
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6966
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6995
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7018
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7041
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7065
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7090
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7114
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7115 7116 7117 7118 7119 7120 7121 7122
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7123 7124 7125 7126
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7127
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7128 7129 7130

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7131 7132
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7133 7134 7135 7136
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7137
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7138
                       will be named automatically.
J
jerrywgz 已提交
7139 7140 7141 7142 7143 7144 7145 7146

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7147
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7161
        attr=helper.param_attr,
J
jerrywgz 已提交
7162 7163 7164 7165
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7166
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7167 7168 7169 7170 7171 7172 7173 7174 7175
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7186
    Returns:
7187
        output(${out_type}): ${out_comment}
7188 7189 7190 7191 7192 7193 7194

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7195 7196
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7197
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7216
    Returns:
7217
        output(${out_type}): ${out_comment}
7218 7219 7220 7221 7222 7223 7224

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7225 7226
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7227
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7245
    Returns:
7246
        output(${out_type}): ${out_comment}
7247 7248 7249 7250 7251 7252 7253

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7254 7255
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7257 7258 7259 7260 7261 7262 7263 7264
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7278

7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7289 7290
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7306
        ValueError: If axis is not in range [0, rank(x)].
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7323 7324
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7325
    helper.append_op(
7326
        type='flatten2',
7327
        inputs={"X": x},
7328 7329
        outputs={'Out': out,
                 'XShape': x_shape},
7330 7331
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7332 7333


C
chenweihang 已提交
7334
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7335
    """
C
chenweihang 已提交
7336
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7337
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7338 7339
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7340

C
chenweihang 已提交
7341 7342 7343 7344
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7345
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7346 7347 7348 7349 7350 7351
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7352
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7353 7354 7355
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7356 7357 7358
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7370 7371
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7372 7373 7374 7375 7376 7377
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7378
    return out
7379

7380

S
sneaxiy 已提交
7381 7382 7383 7384 7385 7386 7387 7388 7389
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7390

S
sneaxiy 已提交
7391
    .. math::
7392

S
sneaxiy 已提交
7393 7394 7395
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7396
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7397 7398 7399 7400
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7401 7402 7403
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7404 7405
    Returns:
        Variable: The output sequence mask.
7406

S
sneaxiy 已提交
7407 7408
    """

Q
qingqing01 已提交
7409
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7410
    if name is None:
X
Xin Pan 已提交
7411
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7412
    else:
X
Xin Pan 已提交
7413
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7414

Q
qingqing01 已提交
7415 7416 7417
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7418 7419
        outputs={'Y': out},
        attrs={
7420
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7421 7422 7423
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7424 7425


X
Xin Pan 已提交
7426
def stack(x, axis=0):
S
sneaxiy 已提交
7427 7428 7429 7430
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7431 7432 7433 7434 7435 7436 7437

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7438
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7439
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7440 7441

    Args:
7442
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7443
        axis (int|None): The axis along which all inputs are stacked.
7444

S
sneaxiy 已提交
7445 7446
    Returns:
        Variable: The stacked variable.
7447

S
sneaxiy 已提交
7448 7449
    """

X
Xin Pan 已提交
7450 7451 7452 7453 7454 7455
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7456
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7457
    helper.append_op(
S
sneaxiy 已提交
7458 7459
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7460

X
Xin Pan 已提交
7461
    return out
D
dzhwinter 已提交
7462 7463 7464 7465 7466 7467 7468


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7469

D
dzhwinter 已提交
7470 7471 7472
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7473
    raised.
D
dzhwinter 已提交
7474 7475

    Args:
M
minqiyang 已提交
7476
        x (Variable): Input variable.
D
dzhwinter 已提交
7477 7478
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7479

D
dzhwinter 已提交
7480 7481
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7482

D
dzhwinter 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7494
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7495 7496 7497 7498 7499 7500 7501 7502

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7515

W
whs 已提交
7516 7517 7518 7519
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7520

W
whs 已提交
7521
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7522

W
whs 已提交
7523
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7524

W
whs 已提交
7525 7526 7527 7528
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7529

W
whs 已提交
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7546
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7547 7548 7549 7550 7551 7552
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7553 7554


G
fix  
gongweibao 已提交
7555 7556 7557
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7558
@templatedoc()
G
fix  
gongweibao 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7568
    ${comment}
G
fix  
gongweibao 已提交
7569 7570

    Args:
G
gongweibao 已提交
7571 7572 7573
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7574
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7575 7576 7577
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7578 7579
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7580
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7581 7582 7583 7584

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7585
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7602 7603


G
gongweibao 已提交
7604
@templatedoc()
X
Xin Pan 已提交
7605
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7606
    """
G
gongweibao 已提交
7607
    ${comment}
G
fix  
gongweibao 已提交
7608 7609

    Args:
G
gongweibao 已提交
7610 7611 7612 7613
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7614 7615 7616
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7617
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7618 7619 7620 7621

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7622
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7633
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7634 7635 7636 7637 7638
        })

    return out


G
gongweibao 已提交
7639
@templatedoc()
G
fix  
gongweibao 已提交
7640
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7641
    """
G
gongweibao 已提交
7642
    ${comment}
G
fix  
gongweibao 已提交
7643 7644

    Args:
G
gongweibao 已提交
7645 7646 7647 7648
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7649
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7650 7651

    Returns:
G
gongweibao 已提交
7652
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7653 7654 7655 7656

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7657
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7669
@templatedoc()
G
fix  
gongweibao 已提交
7670 7671 7672 7673 7674 7675 7676 7677 7678
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7679
    ${comment}
G
fix  
gongweibao 已提交
7680 7681

    Args:
G
gongweibao 已提交
7682 7683
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7684
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7685 7686 7687 7688
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7689
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7690 7691

    Returns:
G
gongweibao 已提交
7692
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7693 7694 7695
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7696
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7715
@templatedoc()
X
Xin Pan 已提交
7716
def sum(x):
G
fix  
gongweibao 已提交
7717
    """
G
gongweibao 已提交
7718
    ${comment}
G
fix  
gongweibao 已提交
7719 7720

    Args:
G
gongweibao 已提交
7721
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7722 7723

    Returns:
G
gongweibao 已提交
7724
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7725 7726 7727
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7728 7729
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7730 7731 7732 7733
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7734
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7735 7736 7737 7738

    return out


G
gongweibao 已提交
7739
@templatedoc()
G
fix  
gongweibao 已提交
7740 7741
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7742
    ${comment}
G
fix  
gongweibao 已提交
7743 7744

    Args:
G
gongweibao 已提交
7745 7746 7747 7748
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7749 7750

    Returns:
G
gongweibao 已提交
7751
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7752 7753 7754 7755

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7756 7757
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7769
@templatedoc()
G
fix  
gongweibao 已提交
7770 7771
def shape(input):
    """
G
gongweibao 已提交
7772
    ${comment}
G
fix  
gongweibao 已提交
7773 7774

    Args:
G
gongweibao 已提交
7775
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7776 7777

    Returns:
G
gongweibao 已提交
7778
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7779 7780 7781 7782

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7783 7784
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7785
    helper.append_op(
G
fix  
gongweibao 已提交
7786
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7787 7788

    return out
G
merge  
gongweibao 已提交
7789 7790


S
sneaxiy 已提交
7791 7792 7793 7794 7795 7796 7797 7798
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7799 7800
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7801
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7802 7803 7804
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7805

S
sneaxiy 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7817
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7818 7819 7820 7821 7822 7823 7824 7825
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7826
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7827
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7828 7829 7830 7831 7832 7833

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7834
    if name is None:
X
Xin Pan 已提交
7835
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7836 7837 7838
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7849
    return helper.append_activation(out)
S
sneaxiy 已提交
7850 7851


X
Xin Pan 已提交
7852
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7853 7854 7855
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7856
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7857 7858 7859
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7860
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7861 7862 7863
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7864
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7865 7866 7867
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7868
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7869 7870 7871
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7872
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7873 7874 7875
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7876
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7888 7889
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7890
        ])
M
minqiyang 已提交
7891 7892


7893
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7894 7895
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7896 7897
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7898 7899 7900

    if out is None:
        if name is None:
X
Xin Pan 已提交
7901
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7917
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7929 7930 7931 7932 7933 7934 7935 7936 7937

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7938 7939 7940 7941 7942 7943 7944
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7945
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7957 7958 7959 7960 7961 7962 7963 7964 7965

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7966 7967 7968 7969 7970 7971 7972
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7973
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7985 7986 7987 7988 7989 7990 7991 7992 7993

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7994 7995 7996 7997 7998 7999 8000
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8001
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8012 8013 8014 8015 8016 8017 8018

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8019 8020 8021 8022
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8038 8039 8040 8041 8042 8043 8044

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8045 8046 8047 8048 8049
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8050 8051 8052 8053
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8077 8078 8079 8080 8081 8082 8083

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8084 8085 8086 8087 8088
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8089 8090 8091 8092
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8093 8094 8095 8096 8097 8098 8099 8100

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8119
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8149
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8150 8151 8152 8153 8154 8155 8156 8157 8158
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8159 8160
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8183
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8213
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8224 8225


J
JiabinYang 已提交
8226
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8227
    """
J
JiabinYang 已提交
8228
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8229 8230 8231

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8232
    The attr blocksize indicates the input block size.
8233 8234

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8235
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8236 8237

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8238
    (but keeping all data)
J
JiabinYang 已提交
8239

J
JiabinYang 已提交
8240
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8241
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8242 8243 8244 8245 8246
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8247
    Args:
J
JiabinYang 已提交
8248
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8249
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8250 8251

    Returns:
J
JiabinYang 已提交
8252
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8253 8254

    Raises:
J
JiabinYang 已提交
8255
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8256 8257 8258 8259 8260 8261

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8262
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8263
                x=data, blocksize=2)
J
JiabinYang 已提交
8264 8265
    """

J
JiabinYang 已提交
8266
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8267

J
JiabinYang 已提交
8268 8269
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8270 8271

    if name is None:
J
JiabinYang 已提交
8272 8273
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8274 8275 8276 8277 8278
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8279
        type="space_to_depth",
J
JiabinYang 已提交
8280
        inputs={"X": x},
J
JiabinYang 已提交
8281
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8282
        outputs={"Out": out})
J
JiabinYang 已提交
8283 8284
    return out

J
JiabinYang 已提交
8285

S
sneaxiy 已提交
8286 8287
@templatedoc()
def sequence_reverse(x, name=None):
8288
    """
S
sneaxiy 已提交
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8300
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8311 8312


8313 8314 8315 8316 8317 8318
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8319

8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8339
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8352 8353


B
barrierye 已提交
8354
def similarity_focus(input, axis, indexes, name=None):
8355
    """
B
barrierye 已提交
8356
    SimilarityFocus Operator
B
barrierye 已提交
8357 8358

    Generate a similarity focus mask with the same shape of input using the following method:
8359 8360 8361
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8362
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8363 8364 8365 8366 8367 8368 8369
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8370
       each index.
B
barrierye 已提交
8371 8372 8373 8374
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8424
    Args:
8425
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8426
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8427
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8428
            1, 2 or 3.
B
barrierye 已提交
8429
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8430 8431

    Returns:
8432
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8433
            as the input.
8434

B
barrierye 已提交
8435 8436 8437
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8438 8439
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8452 8453 8454 8455 8456
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8457 8458 8459 8460 8461 8462 8463
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8464 8465


M
minqiyang 已提交
8466 8467
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8468 8469
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8470 8471
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8510
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8511
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8512 8513 8514 8515 8516 8517 8518 8519 8520

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8521 8522
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8523 8524
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8525 8526 8527 8528 8529 8530 8531
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8532 8533


D
dengkaipeng 已提交
8534
@templatedoc()
8535 8536
def grid_sampler(x, grid, name=None):
    """
8537
    This operation samples input X by using bilinear interpolation based on
8538
    flow field grid, which is usually gennerated by affine_grid. The grid of
8539 8540 8541 8542
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8543
    interpolation value of 4 nearest corner points.
8544 8545 8546 8547 8548 8549 8550 8551

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8552
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8582 8583

    Args:
8584 8585 8586
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8587 8588

    Returns:
8589
        out(Variable): Output of shape [N, C, H, W] data samples input X
8590 8591 8592 8593 8594 8595 8596 8597 8598
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8608
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8609 8610
    ipts = {'X': x, 'Grid': grid}

8611
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8612 8613 8614
    return out


G
gmcather 已提交
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717 8718


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8719
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8720

Q
Qiao Longfei 已提交
8721
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8722 8723 8724
    For example:

    .. math::
8725
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8726

Q
Qiao Longfei 已提交
8727
    In this formula:
8728 8729
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8730
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8731
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8732 8733 8734
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8735 8736
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8737 8738 8739
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8740
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8741
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8742
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8743 8744 8745 8746
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8747
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8748 8749 8750 8751

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8752
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8753 8754
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8755
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8756 8757 8758 8759

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8760
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)