trainer.py 30.1 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
M
Mark Ma 已提交
25
import typing
26
from PIL import Image, ImageOps
K
Kaipeng Deng 已提交
27 28

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
39 40
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
41
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
42
import ppdet.utils.stats as stats
43
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
44

45
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
46
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
47 48

from ppdet.utils.logger import setup_logger
49
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
50 51 52

__all__ = ['Trainer']

53 54
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
55 56 57 58 59 60 61

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
62
        self.optimizer = None
63
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
64

G
George Ni 已提交
65
        # build data loader
66 67 68 69 70 71 72 73 74
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
81 82
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
83

F
FlyingQianMM 已提交
84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
85 86
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
87
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
88

K
Kaipeng Deng 已提交
89
        # build model
90 91 92 93 94
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
95

96 97 98
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

99 100
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
101 102
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
103
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
104 105 106 107
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
108

K
Kaipeng Deng 已提交
109 110 111 112 113
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
114 115 116 117 118 119
            reader_name = '{}Reader'.format(self.mode.capitalize())
            # If metric is VOC, need to be set collate_batch=False.
            if cfg.metric == 'VOC':
                cfg[reader_name]['collate_batch'] = False
            self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                              self._eval_batch_sampler)
K
Kaipeng Deng 已提交
120
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
121 122 123 124 125

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
126
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
127

M
minghaoBD 已提交
128 129 130 131
        if self.cfg.get('unstructured_prune'):
            self.pruner = create('UnstructuredPruner')(self.model,
                                                       steps_per_epoch)

W
wangguanzhong 已提交
132 133
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
134

K
Kaipeng Deng 已提交
135 136 137
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
138
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
139 140 141 142 143 144 145 146 147 148 149

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
150
            if self.cfg.get('use_vdl', False):
151
                self._callbacks.append(VisualDLWriter(self))
152 153
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
154 155 156
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
157 158
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
159
            self._compose_callback = ComposeCallback(self._callbacks)
160
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
161 162
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
163 164 165 166
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
167 168
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
169 170
            self._metrics = []
            return
171
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
172
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
173
            # TODO: bias should be unified
174
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
175 176
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
177
            save_prediction_only = self.cfg.get('save_prediction_only', False)
178 179 180

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
181 182
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
183 184 185 186

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
187
            dataset = self.dataset
188 189 190 191
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
192
                dataset = eval_dataset
193

194
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
195 196 197 198 199 200 201 202 203 204 205
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
206
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
207 208 209 210 211 212 213 214 215
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
216
                        save_prediction_only=save_prediction_only)
217
                ]
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
247 248 249
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
250
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
251
                    class_num=self.cfg.num_classes,
252 253
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
254
            ]
255 256 257 258 259 260 261 262 263
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
264 265 266 267
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
268
            save_prediction_only = self.cfg.get('save_prediction_only', False)
269
            self._metrics = [
270 271 272 273 274 275
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
276
            ]
Z
zhiboniu 已提交
277 278 279 280
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
281
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
282
            self._metrics = [
283 284 285 286 287 288
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
289
            ]
G
George Ni 已提交
290 291
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
292
        else:
293
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
294
                self.cfg.metric))
K
Kaipeng Deng 已提交
295 296 297 298 299 300 301
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
302
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
316
    def load_weights(self, weights):
317 318
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
319
        self.start_epoch = 0
320
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
321 322
        logger.debug("Load weights {} to start training".format(weights))

323 324 325 326 327 328 329
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
330
    def resume_weights(self, weights):
331 332 333 334 335 336
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
337
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
338

K
Kaipeng Deng 已提交
339
    def train(self, validate=False):
K
Kaipeng Deng 已提交
340
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
341
        Init_mark = False
K
Kaipeng Deng 已提交
342

W
wangxinxin08 已提交
343 344 345 346 347 348
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)

349
        model = self.model
350
        if self.cfg.get('fleet', False):
351
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
352
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
353
        elif self._nranks > 1:
G
George Ni 已提交
354 355 356 357
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
358 359

        # initial fp16
360
        if self.cfg.get('fp16', False):
361 362
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
363

K
Kaipeng Deng 已提交
364 365 366 367 368 369 370 371 372 373 374 375
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
376
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
377 378 379
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
380
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
381

382 383
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
384
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
385
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
386 387 388
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
389
            model.train()
K
Kaipeng Deng 已提交
390 391 392 393
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
394
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
395
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
396
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
397

398
                if self.cfg.get('fp16', False):
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
416 417
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
418 419
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
420 421 422
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
423
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
424 425 426 427
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
428 429
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
430
                iter_tic = time.time()
K
Kaipeng Deng 已提交
431

432 433
            # apply ema weight on model
            if self.use_ema:
434
                weight = copy.deepcopy(self.model.state_dict())
435
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
436 437
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
438

K
Kaipeng Deng 已提交
439 440
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
441
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
442
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
443 444 445 446 447 448 449 450
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
451 452 453
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
454 455 456 457
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
458 459 460 461 462 463
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
464
                with paddle.no_grad():
465
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
466 467
                    self._eval_with_loader(self._eval_loader)

468 469 470 471
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

472 473
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
474
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
475 476 477
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
478 479
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
480
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
481 482 483
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
K
Kaipeng Deng 已提交
484
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
485 486 487 488 489 490 491 492 493
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
494 495 496 497 498
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
499 500 501 502 503 504 505 506 507
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
508
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
509 510 511
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
512
    def evaluate(self):
513 514
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
515

C
cnn 已提交
516 517 518 519 520
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
521 522 523 524 525 526
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
527 528
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
529

K
Kaipeng Deng 已提交
530 531 532
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
533
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
534 535
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
536
        results = []
K
Kaipeng Deng 已提交
537 538 539 540
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
541

K
Kaipeng Deng 已提交
542
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
543 544 545 546
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
547
            for key, value in outs.items():
548 549
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
550 551 552
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
553 554
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
555

556
        for outs in results:
K
Kaipeng Deng 已提交
557 558
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
559

K
Kaipeng Deng 已提交
560 561 562 563
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
564
                image = ImageOps.exif_transpose(image)
565
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
566

567
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
568 569 570 571
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
572 573
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
574 575 576 577
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
578
                    int(im_id), catid2name, draw_threshold)
579
                self.status['result_image'] = np.array(image.copy())
580 581
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
582 583 584 585 586
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
587 588
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
589 590 591 592 593 594 595
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
596 597 598 599 600 601 602 603 604 605 606 607
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
608
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
609
        image_shape = None
610 611
        im_shape = [None, 2]
        scale_factor = [None, 2]
612 613 614 615 616 617
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
618
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
619
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
620
        if image_shape is None:
G
Guanghua Yu 已提交
621
            image_shape = [None, 3, -1, -1]
622

G
Guanghua Yu 已提交
623 624
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
625 626 627
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
628

629 630 631 632 633
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
634

K
Kaipeng Deng 已提交
635 636 637 638 639 640 641
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
642
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
643
            "im_shape": InputSpec(
644
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
645
            "scale_factor": InputSpec(
646
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
647
        }]
G
George Ni 已提交
648 649 650 651 652
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
653 654 655 656 657 658 659 660 661 662 663 664
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
665 666 667 668 669 670 671
        # TODO: Hard code, delete it when support prune input_spec.
        if self.cfg.architecture == 'PicoDet':
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
672 673 674 675 676 677 678 679
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
680

G
Guanghua Yu 已提交
681 682
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
683 684 685

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
686 687 688 689 690
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
691
            self.cfg.slim.save_quantized_model(
692 693
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
694 695
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
696

G
Guanghua Yu 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))