pybind.cc 63.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
21
#include <unordered_set>
C
chengduoZH 已提交
22 23
#include <utility>
#include <vector>
24

Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
30
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/framework/op_info.h"
35
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
36
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
41
#include "paddle/fluid/framework/version.h"
42
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
43
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
45
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
46
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
54
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
62
#ifndef _WIN32
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
64
#endif
65 66
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
67
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
68
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/tensor_py.h"
70
#include "paddle/fluid/string/to_string.h"
71

D
Dong Zhihong 已提交
72
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
73
#ifndef _WIN32
Y
Yi Wang 已提交
74
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
75
#endif
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
78 79
#endif

M
minqiyang 已提交
80 81
#include "pybind11/stl.h"

82 83 84 85
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
86 87 88
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

89
namespace paddle {
90
namespace pybind {
91
bool IsCompiledWithCUDA() {
92
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
93 94 95 96 97 98
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

107 108 109 110 111 112 113 114
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

115
bool IsCompiledWithBrpc() {
116
#ifndef PADDLE_WITH_DISTRIBUTE
117 118
  return false;
#endif
119 120 121 122 123 124

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
125 126
}

Y
update  
Yancey1989 已提交
127
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
128
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
129 130 131 132 133 134
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
135 136 137 138 139 140 141 142 143 144
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

145
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
146 147 148
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
149
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
150

151
  m.doc() = "C++ core of PaddlePaddle";
152

153 154 155 156
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

157
  BindException(&m);
Y
Yu Yang 已提交
158

S
sneaxiy 已提交
159
  m.def(
S
sneaxiy 已提交
160
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
161 162 163 164
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
165 166 167
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
168 169 170
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
171
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
172

173
  m.def("_set_fuse_parameter_group_size",
174
        &paddle::framework::ir::SetFuseParameterGroupsSize);
175
  m.def("_set_fuse_parameter_memory_size",
176
        &paddle::framework::ir::SetFuseParameterMemorySize);
177

S
sneaxiy 已提交
178 179 180
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

181 182 183 184 185 186 187
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

188 189 190 191 192 193 194 195 196 197 198 199
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
      m, "BackwardStrategy", R"DOC()DOC");
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

M
minqiyang 已提交
200
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
201 202
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
203
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
204

M
minqiyang 已提交
205
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
206 207 208 209 210 211 212 213
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
214
      .def("_run_backward",
215 216 217 218
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst) {
             self.RunBackward(bckst);
           })
M
minqiyang 已提交
219
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
220
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
221
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
222
      .def("_grad_ivar",
M
minqiyang 已提交
223
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
224
           py::return_value_policy::reference)
M
minqiyang 已提交
225
      .def("_copy_to",
P
Paddle CI 已提交
226
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
227 228 229 230 231
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
232
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
233
      .def("_copy_to",
P
Paddle CI 已提交
234
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
235 236 237 238 239
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
240
           py::return_value_policy::take_ownership)
241 242
      .def("value",
           [](const imperative::VarBase &self) { return self.var_.get(); },
M
minqiyang 已提交
243
           py::return_value_policy::reference)
244 245 246
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
247
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
248 249 250 251
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
252

253
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
254
      .def(py::init<const std::string &>())
255
      .def("register_backward_hooks",
Y
Yan Xu 已提交
256 257 258
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
259 260 261 262 263 264 265 266 267 268
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
269 270 271 272 273 274
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
275
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
276
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
277 278 279 280 281 282
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
283 284
          py::return_value_policy::reference);

X
Xin Pan 已提交
285
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
286
  layer.def(py::init<>())
X
Xin Pan 已提交
287
      .def("forward", [](imperative::Layer &self,
288
                         const std::vector<imperative::VarBase *> &inputs) {
X
Xin Pan 已提交
289
        return self.Forward(inputs);
X
Xin Pan 已提交
290
      });
X
Xin Pan 已提交
291

X
polish  
Xin Pan 已提交
292
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
293
      .def(py::init<>())
X
Xin Pan 已提交
294 295
      .def_static(
          "apply",
X
Xin Pan 已提交
296
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
297
              -> std::vector<imperative::VarBase *> {
298 299 300 301 302
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  // TODO(minqiyang): use unique_name generator to set a name
303 304
                  outputs.emplace_back(new imperative::VarBase(
                      "", std::move(ret_vars[i]), nullptr, true));
305 306 307
                }

                return outputs;
X
Xin Pan 已提交
308 309
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
310 311 312 313 314
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
315

316
  BindImperative(&m);
317

318
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
319
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
320 321
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
322
      .def("_get_dims",
323
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
324
      .def("_set_dims",
Q
qijun 已提交
325
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
326
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
327
           })
Y
yuyang18 已提交
328
      .def("_set_layout",
D
dzhwinter 已提交
329 330 331
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
332
      .def("_alloc_float",
D
dzhwinter 已提交
333
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
334
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
335
           })
Y
yuyang18 已提交
336
      .def("_alloc_float",
Y
Yu Yang 已提交
337
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
338
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
339
           })
Y
yuyang18 已提交
340
      .def("_alloc_int",
Y
Yu Yang 已提交
341
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
342
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
343
           })
Y
yuyang18 已提交
344
      .def("_alloc_int",
D
dzhwinter 已提交
345
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
346
             self.mutable_data<int>(place);
Q
qijun 已提交
347
           })
Y
yuyang18 已提交
348
      .def("_alloc_int",
C
chengduoZH 已提交
349 350 351
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
352
      .def("_alloc_float",
C
chengduoZH 已提交
353 354 355
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
356 357
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
358
      .def("set", PyCPUTensorSetFromArray<double>)
359
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
360
      .def("set", PyCPUTensorSetFromArray<bool>)
361
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
362
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
363
      .def("set", PyCPUTensorSetFromArray<int8_t>)
364
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
365 366
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
367
      .def("set", PyCUDATensorSetFromArray<double>)
368
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
369
      .def("set", PyCUDATensorSetFromArray<bool>)
370
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
371
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
372
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
373 374 375 376 377 378
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
379
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
380
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
381
#endif
382
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
383 384 385 386
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
387
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
388 389
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
390

X
Xin Pan 已提交
391 392 393 394 395 396 397 398 399
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
400 401 402
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
403

Z
Zeng Jinle 已提交
404 405 406
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
407

Z
Zeng Jinle 已提交
408 409 410
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
411

Z
Zeng Jinle 已提交
412
    x.shape = [5, 2]
X
Xin Pan 已提交
413

Z
Zeng Jinle 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
431 432 433 434 435 436 437 438 439 440 441 442

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
443
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
444 445 446 447 448 449 450 451 452 453 454 455 456 457
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
458
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
459 460 461 462 463
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
464
      .def("set_lod",
465
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
466
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
467
             LoD new_lod;
468 469
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
470 471
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
472
             self.set_lod(new_lod);
S
sneaxiy 已提交
473 474 475 476 477 478
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
479 480 481 482 483 484 485 486 487 488

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
489
           )DOC")
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
505 506 507 508
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
509
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
510 511
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
512 513

           Args:
514
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
515 516 517 518 519 520 521 522 523 524

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
525
           )DOC")
526 527 528 529 530 531 532 533
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
534 535 536 537 538 539
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
540 541 542 543 544 545 546 547 548 549 550

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
551
           )DOC")
G
gongweibao 已提交
552
      // Set above comments of set_lod.
553 554 555 556 557 558 559 560
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
561 562 563 564 565
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
566
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
567 568 569 570 571 572 573 574 575 576 577

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
578 579 580 581 582 583 584 585 586 587 588 589
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
590 591 592 593 594 595 596 597 598 599 600

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
601 602 603 604 605 606 607
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
608
           )DOC");
D
dangqingqing 已提交
609

Q
qijun 已提交
610 611 612 613 614 615 616 617 618 619 620
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
621 622
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
623 624
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
625 626 627 628 629 630 631 632 633
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
634
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
635
      .def("rows", [](SelectedRows &self) {
636 637 638 639 640
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
641
      });
Q
qijun 已提交
642

643
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
644 645 646

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
647
      .def(py::init<>())
648
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
649
      .def("set_int",
650 651
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
652 653 654 655 656 657 658
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
659
      .def("get_tensor",
660 661
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
662 663
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
664 665 666
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
667 668 669 670 671
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
672 673 674
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
675
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
676 677 678 679 680
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
681
#endif
Y
Refine  
Yu Yang 已提交
682 683 684 685 686
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
687
           py::return_value_policy::reference);
688

S
sneaxiy 已提交
689
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
690

S
sneaxiy 已提交
691 692 693 694
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
695

S
sneaxiy 已提交
696 697
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
698
      .def("push",
S
sneaxiy 已提交
699
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
700
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
701
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
702
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
703
           })
S
sneaxiy 已提交
704 705 706 707
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
708

S
sneaxiy 已提交
709
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
710 711
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
712
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
713 714 715 716
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
717
        py::return_value_policy::copy);
S
sneaxiy 已提交
718

S
sneaxiy 已提交
719
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
739 740
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
741
      .def("var",
742
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
743
             return self.Var(name);
Y
Yu Yang 已提交
744
           },
S
sneaxiy 已提交
745 746
           py::arg("name"),
           R"DOC(
747
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
748

749
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
750
           current scope, the variable would be created. Otherwise,
751
           return the existing variable.
S
sneaxiy 已提交
752 753

           Args:
754 755
               name (str): the variable name.

S
sneaxiy 已提交
756
           Returns:
757
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
758 759 760 761
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
762
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
763
           its parent scope. Return None if not found.
764

S
sneaxiy 已提交
765 766
           Args:
               name (str): the variable name.
767

S
sneaxiy 已提交
768
           Returns:
769
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
770
           )DOC",
771
           py::return_value_policy::reference)
772
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
773 774 775 776 777 778
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
779
           py::return_value_policy::reference)
S
sneaxiy 已提交
780 781 782
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
783 784
           )DOC")
      .def("_kids", &Scope::kids);
785

S
sneaxiy 已提交
786 787 788 789 790 791
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
792 793
        R"DOC(
        Create a new scope.
794

S
sneaxiy 已提交
795 796 797
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
798 799
        py::return_value_policy::reference);

Y
Yu Yang 已提交
800 801
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
802 803
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
804 805 806 807 808 809 810 811 812 813
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
814 815
    return ret_values;
  });
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
832
  m.def("prune", [](const ProgramDesc &origin,
833
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
834
    ProgramDesc prog_with_targets(origin);
835
    for (const auto &t : targets) {
836
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
837
    }
838
    proto::ProgramDesc pruned_desc;
839
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
840
    return new ProgramDesc(pruned_desc);
841
  });
842 843 844 845
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
846 847 848
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
849 850
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
851
  // clang-format off
Y
Yu Yang 已提交
852
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
853 854
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
855
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
856 857 858
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
859
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
860
                      -> paddle::platform::DeviceContext* {
861
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
862
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
863
#else
Q
qijun 已提交
864
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
865
#endif
C
chengduoZH 已提交
866 867 868 869 870 871 872 873 874 875 876
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
877
// clang-format on
P
peizhilin 已提交
878
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
879 880
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
881 882 883 884
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
885 886 887 888 889 890

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

891
        )DOC")
S
sneaxiy 已提交
892 893 894 895 896 897 898 899 900 901 902 903
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
904 905 906 907 908 909
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
910
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
911

912 913 914
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
915 916 917 918 919 920

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

921
        )DOC")
922
      .def(py::init<>())
S
sneaxiy 已提交
923 924 925 926 927 928
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
929
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
930

931 932 933
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
934 935 936 937 938 939

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

940
        )DOC")
S
sneaxiy 已提交
941
      .def("__init__",
S
sneaxiy 已提交
942
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
943 944 945
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
946
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
947
           })
S
sneaxiy 已提交
948 949 950 951 952 953 954 955
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
956 957
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
958 959
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
960 961 962 963 964
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
965 966
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
967 968 969 970 971 972
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
973 974 975 976
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
977 978
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
979 980 981 982 983
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
984
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
985
             self = gpu_place;
C
chengduoZH 已提交
986 987
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
988 989
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
990
      });
Y
Yu Yang 已提交
991

Y
Yu Yang 已提交
992 993 994
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
995
                    proto::OpDesc desc;
Y
Yu Yang 已提交
996 997 998 999 1000
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
1001
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
1002
                  })
1003
      .def("run",
1004
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1005 1006 1007
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1008
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1009 1010 1011 1012 1013
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1014 1015 1016 1017 1018 1019 1020
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1021 1022
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1023
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1024
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1025 1026 1027 1028
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1029

F
fengjiayi 已提交
1030
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1031
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1032
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
1033
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
1034
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1035 1036
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1037
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1038 1039
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1040
      });
S
sneaxiy 已提交
1041

D
dzhwinter 已提交
1042
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1043
  m.def("init_glog", framework::InitGLOG);
1044
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1045 1046
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1047

1048
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1049
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1050
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1051
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1052
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1053 1054 1055 1056 1057 1058
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1059

1060
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1061
  m.def("get_fetch_variable", framework::GetFetchVariable);
1062
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1063

X
Xin Pan 已提交
1064 1065
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1066 1067 1068 1069 1070
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1071

Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1091 1092
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1103 1104 1105 1106 1107 1108
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1123

D
dzhwinter 已提交
1124 1125 1126
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1127
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1128
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1129
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1130

P
peizhilin 已提交
1131
#ifndef _WIN32
D
dangqingqing 已提交
1132 1133 1134
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1135
#endif
P
peizhilin 已提交
1136
#endif
Y
Yu Yang 已提交
1137

1138 1139 1140 1141
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1142
      .value("kAll", platform::ProfilerState::kAll)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1156
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1157
  m.def("reset_profiler", platform::ResetProfiler);
1158
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1159 1160 1161
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1162

1163 1164
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1165
      .def("has", &ir::Pass::Has)
1166 1167 1168
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1169
           })
1170
      .def(
1171
          "set",
1172 1173 1174
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1175 1176
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1177 1178
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1179
        self.Apply(graph.get());
F
flame 已提交
1180
      });
1181

X
fix  
Xin Pan 已提交
1182 1183
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1198
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1199

Y
yuyang18 已提交
1200
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1201 1202 1203 1204
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1216 1217 1218

        )DOC");

Y
yuyang18 已提交
1219
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1220 1221 1222 1223 1224
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1235
      .def_property(
1236 1237 1238 1239
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1240 1241 1242 1243
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1244 1245 1246 1247 1248
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1249 1250 1251 1252
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1253 1254 1255 1256 1257 1258 1259
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1271
              )DOC")
Q
Qiao Longfei 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1283 1284 1285 1286 1287
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1288

Y
yuyang18 已提交
1289
  exec_strategy.def_property(
Y
yuyang18 已提交
1290 1291 1292 1293 1294 1295 1296
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1297 1298
      });

C
chengduo 已提交
1299 1300 1301 1302
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1314
)DOC");
Y
yuyang18 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1331
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1332
            self.reduce_ = strategy;
C
chengduo 已提交
1333 1334 1335 1336 1337 1338 1339
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1340 1341 1342 1343 1344
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1345
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1346
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1347 1348 1349 1350 1351 1352
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1353 1354 1355 1356
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1357
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1358
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1359 1360 1361 1362
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1363 1364 1365 1366 1367 1368
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1369
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1379
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1380 1381
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1382
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1383 1384 1385 1386 1387 1388
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1401 1402 1403 1404 1405 1406
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1407
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1408 1409 1410 1411 1412
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1464 1465 1466
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1477 1478 1479 1480
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1481 1482 1483
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1484
      .def_property(
D
dzhwinter 已提交
1485 1486 1487
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1488 1489 1490 1491
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1492 1493 1494 1495
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1496 1497 1498 1499 1500 1501 1502 1503 1504
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1505
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1506
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1507 1508 1509 1510 1511
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1512 1513

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1514
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1515
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1516
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1517 1518 1519 1520
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1521 1522 1523 1524 1525
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1526 1527 1528
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1529 1530 1531 1532
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1533 1534 1535 1536 1537 1538
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1539

1540
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1541
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1542
  BindFleetWrapper(&m);
W
wopeizl 已提交
1543
#ifndef _WIN32
D
dongdaxiang 已提交
1544
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1545
#endif
F
flame 已提交
1546 1547
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1548
  BindInferenceApi(&m);
1549
  BindDataset(&m);
L
Luo Tao 已提交
1550
}
1551
}  // namespace pybind
1552
}  // namespace paddle