pybind.cc 52.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89
bool IsCompiledWithBrpc() {
90
#ifndef PADDLE_WITH_DISTRIBUTE
91 92
  return false;
#endif
93 94 95 96 97 98

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
99 100
}

Y
update  
Yancey1989 已提交
101
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
102
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
103 104 105 106 107 108
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
109 110 111 112 113
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

114
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
115 116 117
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
118
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
119
  m.doc() = "C++ core of PaddlePaddle";
120

121 122 123 124
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

125
  BindException(&m);
Y
Yu Yang 已提交
126

S
sneaxiy 已提交
127
  m.def(
S
sneaxiy 已提交
128
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
129 130 131 132
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
133 134 135
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

136 137 138 139 140 141 142
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
143
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
144 145
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
146
      .def("_run_backward",
X
Xin Pan 已提交
147
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
148
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
149
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
150
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
151
      .def("_grad_ivar",
M
minqiyang 已提交
152
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
153
           py::return_value_policy::reference)
M
minqiyang 已提交
154
      .def("_copy_to",
P
Paddle CI 已提交
155
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
156 157 158 159 160
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
161
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
162
      .def("_copy_to",
P
Paddle CI 已提交
163
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
164 165 166 167 168
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
169
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
170
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
171
           py::return_value_policy::reference)
172 173 174 175 176 177
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
178 179 180
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
181
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
182
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
183
            self.SetStopGradient(stop_gradient);
184
          });
185

186
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
187 188 189 190 191 192 193 194
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
195
          py::return_value_policy::reference)
M
minqiyang 已提交
196 197 198 199 200 201 202 203 204 205
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
206 207 208 209 210 211
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
212 213 214 215 216 217 218
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
219 220
          py::return_value_policy::reference);

X
Xin Pan 已提交
221
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
222
  layer.def(py::init<>())
X
Xin Pan 已提交
223 224 225
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
226
      });
X
Xin Pan 已提交
227

X
polish  
Xin Pan 已提交
228
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
229
      .def(py::init<>())
X
Xin Pan 已提交
230 231
      .def_static(
          "apply",
X
Xin Pan 已提交
232
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
233 234 235 236
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
237 238 239 240 241
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
242

243 244
  BindTracer(&m);

245 246 247
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
248
      .def("_get_dims",
249
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
250
      .def("_set_dims",
Q
qijun 已提交
251
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
252
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
253
           })
Y
yuyang18 已提交
254
      .def("_set_layout",
D
dzhwinter 已提交
255 256 257
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
258
      .def("_alloc_float",
D
dzhwinter 已提交
259
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
260
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
261
           })
Y
yuyang18 已提交
262
      .def("_alloc_float",
Y
Yu Yang 已提交
263
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
264
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
265
           })
Y
yuyang18 已提交
266
      .def("_alloc_int",
Y
Yu Yang 已提交
267
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
268
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
269
           })
Y
yuyang18 已提交
270
      .def("_alloc_int",
D
dzhwinter 已提交
271
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
272
             self.mutable_data<int>(place);
Q
qijun 已提交
273
           })
Y
yuyang18 已提交
274
      .def("_alloc_int",
C
chengduoZH 已提交
275 276 277
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
278
      .def("_alloc_float",
C
chengduoZH 已提交
279 280 281
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
282 283
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
284
      .def("set", PyCPUTensorSetFromArray<double>)
285
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
286
      .def("set", PyCPUTensorSetFromArray<bool>)
287
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
288
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
289
      .def("set", PyCPUTensorSetFromArray<int8_t>)
290
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
291 292
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
293
      .def("set", PyCUDATensorSetFromArray<double>)
294
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
295
      .def("set", PyCUDATensorSetFromArray<bool>)
296
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
297
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
298
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
299 300 301 302 303 304
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
305
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
306
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
307
#endif
308
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
309 310 311 312
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
313
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
314
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
315

X
Xin Pan 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
329
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
330
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
331
     columns, hence [5, 2].
X
Xin Pan 已提交
332 333 334

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
335 336
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
360 361
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
362 363 364 365 366 367 368 369 370 371 372 373 374 375
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
376
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
377 378 379 380 381
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
382
      .def("set_lod",
383
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
384
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
385
             LoD new_lod;
386 387
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
388 389
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
390
             self.set_lod(new_lod);
S
sneaxiy 已提交
391 392 393 394 395 396 397
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
413 414 415 416
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
417
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
S
sneaxiy 已提交
418
           there are two sequences with length 2 and 3 respectively, the 
S
sneaxiy 已提交
419
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].  
S
sneaxiy 已提交
420 421 422 423

           Args:
                recursive_sequence_lengths (List[List[int]]): sequence lengths. 
           )DOC")
424 425 426 427 428 429 430 431
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
432 433 434 435 436 437 438
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
439
      // Set above comments of set_lod.
440 441 442 443 444 445 446 447
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
               out (List[List[int]): the sequence lengths. 
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
467

Q
qijun 已提交
468 469 470 471 472 473 474 475 476 477 478
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
479 480
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
481 482
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
483 484 485 486 487 488 489 490 491
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
492
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
493
      .def("rows", [](SelectedRows &self) {
494 495 496 497 498
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
499
      });
Q
qijun 已提交
500

501
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
502 503 504

All parameter, weight, gradient are variables in Paddle.
)DOC")
505
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
506
      .def("set_int",
507 508
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
509 510 511 512 513 514 515
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
516
      .def("get_tensor",
517 518
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
519 520
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
521 522 523
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
524 525 526 527 528
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
529 530 531
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
532
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
533 534 535 536 537
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
538
#endif
Y
Refine  
Yu Yang 已提交
539 540 541 542 543
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
544
           py::return_value_policy::reference);
545

Y
Refine  
Yu Yang 已提交
546
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
547
      .def("start", &framework::ReaderHolder::Start)
548
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
549

S
sneaxiy 已提交
550 551 552 553
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
554 555
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
556
      .def("push",
S
sneaxiy 已提交
557
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
558
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
559
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
560
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
561
           })
S
sneaxiy 已提交
562 563 564 565
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
566

S
sneaxiy 已提交
567
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
568 569 570 571 572 573
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
574
        py::return_value_policy::copy);
S
sneaxiy 已提交
575

S
sneaxiy 已提交
576
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
596 597
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
598
      .def("var",
599
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
600
             return self.Var(name);
Y
Yu Yang 已提交
601
           },
S
sneaxiy 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
           py::arg("name"),
           R"DOC(
           Find or create variable named :code:`name` in the current scope. 

           If the variable named :code:`name` does not exist in the 
           current scope, the variable would be created. Otherwise,
           return the existing variable. 

           Args:
               name (str): the variable name.  
          
           Returns:
               out (core.Variable): the found or created variable. 
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
           Find variable named :code:`name` in the current scope or 
           its parent scope. Return None if not found.
        
           Args:
               name (str): the variable name.
            
           Returns:
               out (core.Variable|None): the found variable or None.   
           )DOC",
628
           py::return_value_policy::reference)
629
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
630 631 632 633 634 635
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
636
           py::return_value_policy::reference)
S
sneaxiy 已提交
637 638 639 640
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
641

S
sneaxiy 已提交
642 643 644 645 646 647
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
648 649 650 651 652 653
        R"DOC(
        Create a new scope.
        
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
654 655
        py::return_value_policy::reference);

Y
Yu Yang 已提交
656 657
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
658 659
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
660 661 662 663 664 665 666 667 668 669
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
670 671
    return ret_values;
  });
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
688
  m.def("prune", [](const ProgramDesc &origin,
689
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
690
    ProgramDesc prog_with_targets(origin);
691
    for (const auto &t : targets) {
692
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
693
    }
694
    proto::ProgramDesc pruned_desc;
695
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
696
    return new ProgramDesc(pruned_desc);
697
  });
698 699 700 701
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
702 703 704
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
705 706
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
707
  // clang-format off
Y
Yu Yang 已提交
708
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
709 710
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
711
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
712 713 714
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
715
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
716
                      -> paddle::platform::DeviceContext* {
717
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
718
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
719
#else
Q
qijun 已提交
720
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
721
#endif
C
chengduoZH 已提交
722 723 724 725 726 727 728 729 730 731 732
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
733
// clang-format on
P
peizhilin 已提交
734
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
735 736
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
737
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
738 739 740 741 742 743 744 745 746 747 748 749
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
750 751 752 753 754
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
755
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
756

757 758
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
759 760 761 762 763
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
764
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
765

C
chengduoZH 已提交
766
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
767
      .def("__init__",
S
sneaxiy 已提交
768
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
769 770 771
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
772
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
773
           })
S
sneaxiy 已提交
774 775 776 777 778 779 780
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
781 782
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
783 784
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
785 786 787 788
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
789 790 791 792 793 794
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
795 796 797 798 799
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
800
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
801
             self = gpu_place;
C
chengduoZH 已提交
802 803
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
804 805
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
806
      });
Y
Yu Yang 已提交
807

Y
Yu Yang 已提交
808 809 810
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
811
                    proto::OpDesc desc;
Y
Yu Yang 已提交
812 813 814 815 816
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
817
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
818
                  })
819
      .def("run",
820
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
821 822 823
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
824
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
825 826 827 828 829
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
830 831 832 833 834 835 836
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
837 838
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
839
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
840
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
841 842 843 844
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
845

F
fengjiayi 已提交
846
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
847
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
848
      .def("close", &Executor::Close)
S
sneaxiy 已提交
849 850 851 852 853
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
854

D
dzhwinter 已提交
855
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
856
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
857 858
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
859

860
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
861
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
862
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
863 864 865 866 867 868
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
869

870
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
871
  m.def("get_fetch_variable", framework::GetFetchVariable);
872
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
873

X
Xin Pan 已提交
874 875
  m.def("_is_program_version_supported", IsProgramVersionSupported);

876 877 878 879 880
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
881

Y
Yu Yang 已提交
882 883 884 885 886 887 888 889 890
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
891
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
892 893
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
894 895 896 897 898 899 900 901 902 903
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
904 905 906 907 908 909 910
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
911

D
dzhwinter 已提交
912 913 914
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
915
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
916
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
917
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
918

P
peizhilin 已提交
919
#ifndef _WIN32
D
dangqingqing 已提交
920 921 922
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
923
#endif
P
peizhilin 已提交
924
#endif
Y
Yu Yang 已提交
925

926 927 928 929
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
930
      .value("kAll", platform::ProfilerState::kAll)
931 932 933 934 935 936 937 938 939 940 941 942 943
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
944
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
945
  m.def("reset_profiler", platform::ResetProfiler);
946
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
947 948 949
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
950

951 952
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
953
      .def("has", &ir::Pass::Has)
954 955 956
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
957
           })
958
      .def(
959
          "set",
960 961 962
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
963 964
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
965 966 967 968
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
969
        optim_graph.release();
F
flame 已提交
970
      });
971

X
fix  
Xin Pan 已提交
972 973
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
974 975 976 977 978 979 980 981 982 983 984 985 986 987
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
988
  // -- python binds for parallel executor.
Y
yuyang18 已提交
989
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
990 991 992 993
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1005 1006 1007

        )DOC");

Y
yuyang18 已提交
1008
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1009 1010 1011 1012 1013
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1024
      .def_property(
1025 1026 1027 1028
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1029 1030 1031 1032
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1033 1034 1035 1036 1037
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1038 1039 1040 1041
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1042 1043 1044 1045 1046 1047 1048
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1060 1061 1062 1063 1064 1065
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1066

Y
yuyang18 已提交
1067
  exec_strategy.def_property(
Y
yuyang18 已提交
1068 1069 1070 1071 1072 1073 1074
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1075 1076
      });

C
chengduo 已提交
1077 1078 1079 1080
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1092
)DOC");
Y
yuyang18 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1109
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1110
            self.reduce_ = strategy;
C
chengduo 已提交
1111 1112 1113 1114 1115 1116 1117
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1118 1119 1120 1121 1122
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1123
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1124
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1125 1126 1127 1128 1129 1130
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1131 1132 1133 1134
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1135
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1136
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1137 1138 1139 1140
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1141 1142 1143 1144 1145 1146
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1147
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1157
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1158 1159
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1160
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1161 1162 1163 1164 1165 1166
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1179 1180 1181 1182 1183 1184
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1185
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1186 1187 1188 1189 1190
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1205 1206 1207 1208
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1209 1210 1211 1212
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1213
      .def_property(
D
dzhwinter 已提交
1214 1215 1216
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1217
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1218
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1219 1220 1221 1222 1223
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1224 1225 1226

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1227
                  const std::string &, Scope *, std::vector<Scope *> &,
1228
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1229 1230 1231 1232
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1233 1234 1235 1236 1237
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1238 1239 1240 1241
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1242 1243 1244 1245 1246 1247
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1248

1249
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1250
  BindAsyncExecutor(&m);
F
flame 已提交
1251 1252
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1253
  BindInferenceApi(&m);
L
Luo Tao 已提交
1254
}
1255
}  // namespace pybind
1256
}  // namespace paddle