pybind.cc 46.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/ir.h"
53 54
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
55
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
57

58
#include "paddle/fluid/string/to_string.h"
59

D
Dong Zhihong 已提交
60
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
61
#ifndef _WIN32
Y
Yi Wang 已提交
62
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
63
#endif
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
66 67
#endif

M
minqiyang 已提交
68 69
#include "pybind11/stl.h"

70 71 72 73
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
74 75 76
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

77
namespace paddle {
78
namespace pybind {
79
bool IsCompiledWithCUDA() {
80
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
81 82 83 84 85 86
  return false;
#else
  return true;
#endif
}

87
bool IsCompiledWithBrpc() {
88
#ifndef PADDLE_WITH_DISTRIBUTE
89 90
  return false;
#endif
91 92 93 94 95 96

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
97 98
}

Y
update  
Yancey1989 已提交
99
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
100
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
101 102 103 104 105 106
  return true;
#else
  return false;
#endif
}

107
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
108 109 110
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
111
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
112
  m.doc() = "C++ core of PaddlePaddle";
113

114 115 116 117
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

118
  BindException(&m);
Y
Yu Yang 已提交
119

S
sneaxiy 已提交
120
  m.def(
S
sneaxiy 已提交
121
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
122 123 124 125
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
126 127 128
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
129
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
135
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
136
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
137
      .def("_grad_ivar",
M
minqiyang 已提交
138
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
139
           py::return_value_policy::reference)
P
Paddle CI 已提交
140 141 142 143 144 145 146
      .def("_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::take_ownership)
      .def("_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
              bool blocking) { return self.NewVarBase(place, blocking); },
M
minqiyang 已提交
147
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
148
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
149
           py::return_value_policy::reference)
150 151 152 153 154 155
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
156 157 158
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
159
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
160
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
161
            self.SetStopGradient(stop_gradient);
162
          });
163

164
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
165 166 167 168 169 170 171 172
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
173 174 175 176 177 178 179
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
180 181 182 183 184 185 186
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
187 188
          py::return_value_policy::reference);

X
Xin Pan 已提交
189
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
190
  layer.def(py::init<>())
X
Xin Pan 已提交
191 192 193
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
194
      });
X
Xin Pan 已提交
195

X
polish  
Xin Pan 已提交
196
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
197
      .def(py::init<>())
X
Xin Pan 已提交
198 199
      .def_static(
          "apply",
X
Xin Pan 已提交
200
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
201 202 203 204
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
205 206 207 208 209
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
210

211 212
  BindTracer(&m);

213 214 215
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
216
      .def("_get_dims",
217
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
218
      .def("_set_dims",
Q
qijun 已提交
219
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
220
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
221
           })
Y
yuyang18 已提交
222
      .def("_set_layout",
D
dzhwinter 已提交
223 224 225
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
226
      .def("_alloc_float",
D
dzhwinter 已提交
227
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_alloc_float",
Y
Yu Yang 已提交
231
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
232
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
233
           })
Y
yuyang18 已提交
234
      .def("_alloc_int",
Y
Yu Yang 已提交
235
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
236
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
237
           })
Y
yuyang18 已提交
238
      .def("_alloc_int",
D
dzhwinter 已提交
239
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
240
             self.mutable_data<int>(place);
Q
qijun 已提交
241
           })
Y
yuyang18 已提交
242
      .def("_alloc_int",
C
chengduoZH 已提交
243 244 245
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
246
      .def("_alloc_float",
C
chengduoZH 已提交
247 248 249
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
250 251
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
252
      .def("set", PyCPUTensorSetFromArray<double>)
253
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
254
      .def("set", PyCPUTensorSetFromArray<bool>)
255
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
256
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
257
      .def("set", PyCPUTensorSetFromArray<int8_t>)
258
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
259 260
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
261
      .def("set", PyCUDATensorSetFromArray<double>)
262
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
263
      .def("set", PyCUDATensorSetFromArray<bool>)
264
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
265
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
266
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
267 268 269 270 271 272
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
273
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
274
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
275
#endif
276
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
277 278 279 280
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
281
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
282

X
Xin Pan 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
296
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
297
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
298
     columns, hence [5, 2].
X
Xin Pan 已提交
299 300 301

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
302 303
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
327 328
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
329 330 331 332 333 334 335 336 337 338 339 340 341 342
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
343
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
344 345 346 347 348
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
349
      .def("set_lod",
350
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
351
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
352
             LoD new_lod;
353 354
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
355 356
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
357
             self.set_lod(new_lod);
D
dangqingqing 已提交
358
           })
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
384
      // Set above comments of set_lod.
385 386 387 388 389 390 391 392 393 394 395 396 397
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
398 399
      });

Q
qijun 已提交
400 401 402 403 404 405 406 407 408 409 410
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
411 412
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
413 414
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
415 416 417 418 419 420 421 422 423
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
424
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
425
      .def("rows", [](SelectedRows &self) {
426 427 428 429 430
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
431
      });
Q
qijun 已提交
432

433
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
434 435 436

All parameter, weight, gradient are variables in Paddle.
)DOC")
437
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
438
      .def("set_int",
439 440
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
441 442 443 444 445 446 447
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
448
      .def("get_tensor",
449 450
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
451 452
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
453 454 455
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
456 457 458 459 460
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
461 462 463
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
464
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
465 466 467 468 469
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
470
#endif
Y
Refine  
Yu Yang 已提交
471 472 473 474 475
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
476
           py::return_value_policy::reference);
477

Y
Refine  
Yu Yang 已提交
478
  py::class_<framework::ReaderHolder>(m, "Reader", "")
479
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
480

S
sneaxiy 已提交
481 482 483 484
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
485 486
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
487
      .def("push",
S
sneaxiy 已提交
488
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
489
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
490
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
491
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
492
           })
S
sneaxiy 已提交
493 494 495 496
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
497

S
sneaxiy 已提交
498
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
499
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
500
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
501
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
502 503 504 505 506 507
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
508 509
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
510
              return holder->GetQueue();
S
sneaxiy 已提交
511
            },
S
sneaxiy 已提交
512
        py::return_value_policy::copy);
S
sneaxiy 已提交
513

S
sneaxiy 已提交
514
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
534 535
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
536
      .def("var",
537
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
538
             return self.Var(name);
Y
Yu Yang 已提交
539
           },
540
           py::return_value_policy::reference)
541
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
542
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
543
           py::return_value_policy::reference)
Y
Yu Yang 已提交
544
      .def("drop_kids", &Scope::DropKids);
545

S
sneaxiy 已提交
546 547 548 549 550 551 552 553
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
554 555
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
556 557
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
558 559 560 561 562 563 564 565 566 567
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
568 569
    return ret_values;
  });
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
586
  m.def("prune", [](const ProgramDesc &origin,
587
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
588
    ProgramDesc prog_with_targets(origin);
589
    for (const auto &t : targets) {
590
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
591
    }
592
    proto::ProgramDesc pruned_desc;
593
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
594
    return new ProgramDesc(pruned_desc);
595
  });
596 597 598 599
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
600 601 602
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
603 604
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
605
  // clang-format off
Y
Yu Yang 已提交
606
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
607 608
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
609
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
610 611 612
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
613
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
614
                      -> paddle::platform::DeviceContext* {
615
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
616
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
617
#else
Q
qijun 已提交
618
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
619
#endif
C
chengduoZH 已提交
620 621 622 623 624 625 626 627 628 629 630
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
631
// clang-format on
P
peizhilin 已提交
632
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
633 634
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
635
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
636
      .def(py::init<int>())
D
dzhwinter 已提交
637
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
638

639 640 641
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
642

C
chengduoZH 已提交
643 644 645 646
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
647 648 649 650 651 652 653
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
654
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
655
             self = gpu_place;
C
chengduoZH 已提交
656 657
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
658 659
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
660
      });
Y
Yu Yang 已提交
661

Y
Yu Yang 已提交
662 663 664
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
665
                    proto::OpDesc desc;
Y
Yu Yang 已提交
666 667 668 669 670
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
671
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
672
                  })
673
      .def("run",
674
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
675 676 677
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
678
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
679 680 681 682 683
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
684 685 686 687 688 689 690
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
691 692
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
693
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
694
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
695 696 697 698
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
699

F
fengjiayi 已提交
700
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
701
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
702
      .def("close", &Executor::Close)
S
sneaxiy 已提交
703 704 705 706 707
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
708

D
dzhwinter 已提交
709
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
710
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
711 712
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
713

714
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
715
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
716
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
717 718 719 720 721 722
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
723

724
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
725
  m.def("get_fetch_variable", framework::GetFetchVariable);
726
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
727

X
Xin Pan 已提交
728 729
  m.def("_is_program_version_supported", IsProgramVersionSupported);

730 731 732 733 734
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
735

Y
Yu Yang 已提交
736 737 738 739 740 741 742 743 744
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
745
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
746 747
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
764 765 766
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
767
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
768
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
769
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
770

P
peizhilin 已提交
771
#ifndef _WIN32
D
dangqingqing 已提交
772 773 774
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
775
#endif
P
peizhilin 已提交
776
#endif
Y
Yu Yang 已提交
777

778 779 780 781
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
782
      .value("kAll", platform::ProfilerState::kAll)
783 784 785 786 787 788 789 790 791 792 793 794 795
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
796
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
797
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
798

799 800
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
801 802 803 804 805
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
806 807
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
808 809 810 811 812 813
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
        graph.reset(optim_graph.release());
      });
814

X
fix  
Xin Pan 已提交
815 816
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
817 818 819 820 821 822 823 824 825 826 827 828 829 830
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
831
  // -- python binds for parallel executor.
Y
yuyang18 已提交
832
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
833 834 835 836
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
837 838 839 840 841 842 843 844 845 846 847
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
848 849 850

        )DOC");

Y
yuyang18 已提交
851
  exec_strategy.def(py::init())
Y
yuyang18 已提交
852 853 854 855 856
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
857 858 859 860 861 862 863 864 865 866
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
867
      .def_property(
868 869 870 871
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
872 873 874 875
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
876 877 878 879 880
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
881 882 883 884
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
885 886 887 888 889 890 891
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
892 893 894 895 896 897 898 899 900 901 902
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
903 904 905 906 907 908
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
909

Y
yuyang18 已提交
910
  exec_strategy.def_property(
Y
yuyang18 已提交
911 912 913 914 915 916 917
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
918 919
      });

C
chengduo 已提交
920 921 922 923
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
924 925 926 927 928 929 930 931 932 933 934
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
935
)DOC");
Y
yuyang18 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
952
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
953
            self.reduce_ = strategy;
C
chengduo 已提交
954 955 956 957 958 959 960
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
961 962 963 964 965
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
966
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
967
            self.gradient_scale_ = strategy;
C
chengduo 已提交
968 969 970 971 972 973
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
974 975 976 977
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
978
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
979
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
980 981 982 983
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
984 985 986 987 988 989
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
990
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
991 992 993 994 995 996 997 998 999
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1000
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1001 1002 1003
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
1004 1005 1006 1007 1008 1009
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1022 1023 1024 1025 1026 1027
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1028
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1029 1030 1031 1032 1033
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1048 1049 1050 1051
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1052 1053 1054 1055
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1056 1057 1058 1059
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1060
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1061
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1062 1063 1064 1065 1066
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1067 1068 1069

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1070
                  const std::string &, Scope *, std::vector<Scope *> &,
1071
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1072 1073 1074 1075
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1076 1077 1078 1079 1080
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1081 1082 1083 1084
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1085 1086 1087 1088 1089 1090
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1091

1092
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1093
  BindAsyncExecutor(&m);
F
flame 已提交
1094 1095 1096

  BindGraph(&m);
  BindNode(&m);
L
Luo Tao 已提交
1097
}
1098
}  // namespace pybind
1099
}  // namespace paddle