pybind.cc 45.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
52 53
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
54
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
56

57
#include "paddle/fluid/string/to_string.h"
58

D
Dong Zhihong 已提交
59
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
60
#ifndef _WIN32
Y
Yi Wang 已提交
61
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
62
#endif
Y
Yi Wang 已提交
63 64
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
65 66
#endif

M
minqiyang 已提交
67 68
#include "pybind11/stl.h"

69 70 71 72
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
73 74 75
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

76
namespace paddle {
77
namespace pybind {
78
bool IsCompiledWithCUDA() {
79
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
80 81 82 83 84 85
  return false;
#else
  return true;
#endif
}

86
bool IsCompiledWithBrpc() {
87
#ifndef PADDLE_WITH_DISTRIBUTE
88 89
  return false;
#endif
90 91 92 93 94 95

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
96 97
}

Y
update  
Yancey1989 已提交
98
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
100 101 102 103 104 105
  return true;
#else
  return false;
#endif
}

106
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
107 108 109
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
110
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
111
  m.doc() = "C++ core of PaddlePaddle";
112

113 114 115 116
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

117
  BindException(&m);
Y
Yu Yang 已提交
118

S
sneaxiy 已提交
119
  m.def(
S
sneaxiy 已提交
120
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
121 122 123 124
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
125 126 127
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
128 129
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
      m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
135
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
136 137 138 139 140 141
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
142 143 144 145 146 147
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
148 149 150 151 152 153
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
154 155 156 157 158 159
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
160
          });
161

162
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
163 164 165 166 167 168 169 170 171 172
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

X
Xin Pan 已提交
173
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
174
  layer.def(py::init<>())
X
Xin Pan 已提交
175 176 177
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
178
      });
X
Xin Pan 已提交
179 180 181 182 183 184

  py::class_<paddle::imperative::PyLayer>(m, "PyLayer")
      .def(py::init<>())
      .def_static("apply",
                  [](py::object *callable,
                     const std::vector<imperative::VarBase> &inputs)
X
Xin Pan 已提交
185
                      -> std::vector<imperative::VarBase *> {
X
Xin Pan 已提交
186
                        return imperative::PyLayer::Apply(callable, inputs);
X
Xin Pan 已提交
187 188
                      },
                  py::return_value_policy::take_ownership);
X
Xin Pan 已提交
189

190 191
  BindTracer(&m);

192 193 194
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
195
      .def("_get_dims",
196
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
197
      .def("_set_dims",
Q
qijun 已提交
198
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
199
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
200
           })
Y
yuyang18 已提交
201
      .def("_set_layout",
D
dzhwinter 已提交
202 203 204
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
205
      .def("_alloc_float",
D
dzhwinter 已提交
206
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
207
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
208
           })
Y
yuyang18 已提交
209
      .def("_alloc_float",
Y
Yu Yang 已提交
210
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
211
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
212
           })
Y
yuyang18 已提交
213
      .def("_alloc_int",
Y
Yu Yang 已提交
214
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
215
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
216
           })
Y
yuyang18 已提交
217
      .def("_alloc_int",
D
dzhwinter 已提交
218
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
219
             self.mutable_data<int>(place);
Q
qijun 已提交
220
           })
Y
yuyang18 已提交
221
      .def("_alloc_int",
C
chengduoZH 已提交
222 223 224
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
225
      .def("_alloc_float",
C
chengduoZH 已提交
226 227 228
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
229 230
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
231
      .def("set", PyCPUTensorSetFromArray<double>)
232
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
233
      .def("set", PyCPUTensorSetFromArray<bool>)
234
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
235
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
236
      .def("set", PyCPUTensorSetFromArray<int8_t>)
237
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
238 239
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
240
      .def("set", PyCUDATensorSetFromArray<double>)
241
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
242
      .def("set", PyCUDATensorSetFromArray<bool>)
243
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
244
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
245
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
246 247 248 249 250 251
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
252
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
253
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
254
#endif
255
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
256 257 258 259
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
260
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
261

X
Xin Pan 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
275
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
276
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
277
     columns, hence [5, 2].
X
Xin Pan 已提交
278 279 280

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
281 282
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
306 307
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
308 309 310 311 312 313 314 315 316 317 318 319 320 321
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
322
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
323 324 325 326 327
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
328
      .def("set_lod",
329
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
330
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
331
             LoD new_lod;
332 333
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
334 335
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
336
             self.set_lod(new_lod);
D
dangqingqing 已提交
337
           })
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
363
      // Set above comments of set_lod.
364 365 366 367 368 369 370 371 372 373 374 375 376
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
377 378
      });

Q
qijun 已提交
379 380 381 382 383 384 385 386 387 388 389
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
390 391
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
392 393
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
394 395 396 397 398 399 400 401 402
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
403
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
404
      .def("rows", [](SelectedRows &self) {
405 406 407 408 409
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
410
      });
Q
qijun 已提交
411

412
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
413 414 415

All parameter, weight, gradient are variables in Paddle.
)DOC")
416
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
417
      .def("set_int",
418 419
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
420 421 422 423 424 425 426
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
427
      .def("get_tensor",
428 429
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
430 431
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
432 433 434
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
435 436 437 438 439
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
440 441 442
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
443
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
444 445 446 447 448
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
449
#endif
Y
Refine  
Yu Yang 已提交
450 451 452 453 454
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
455
           py::return_value_policy::reference);
456

Y
Refine  
Yu Yang 已提交
457
  py::class_<framework::ReaderHolder>(m, "Reader", "")
458
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
459

S
sneaxiy 已提交
460 461 462 463
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
464 465
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
466
      .def("push",
S
sneaxiy 已提交
467
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
468
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
469
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
470
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
471
           })
S
sneaxiy 已提交
472 473 474 475
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
476

S
sneaxiy 已提交
477
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
478
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
479
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
480
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
481 482 483 484 485 486
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
487 488
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
489
              return holder->GetQueue();
S
sneaxiy 已提交
490
            },
S
sneaxiy 已提交
491
        py::return_value_policy::copy);
S
sneaxiy 已提交
492

S
sneaxiy 已提交
493
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
513 514
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
515
      .def("var",
516
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
517
             return self.Var(name);
Y
Yu Yang 已提交
518
           },
519
           py::return_value_policy::reference)
520
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
521
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
522
           py::return_value_policy::reference)
Y
Yu Yang 已提交
523
      .def("drop_kids", &Scope::DropKids);
524

S
sneaxiy 已提交
525 526 527 528 529 530 531 532
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
533 534
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
535 536
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
537 538 539 540 541 542 543 544 545 546
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
547 548
    return ret_values;
  });
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
565
  m.def("prune", [](const ProgramDesc &origin,
566
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
567
    ProgramDesc prog_with_targets(origin);
568
    for (const auto &t : targets) {
569
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
570
    }
571
    proto::ProgramDesc pruned_desc;
572
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
573
    return new ProgramDesc(pruned_desc);
574
  });
575 576 577 578
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
579 580 581
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
582 583
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
584
  // clang-format off
Y
Yu Yang 已提交
585
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
586 587
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
588
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
589 590 591
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
592
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
593
                      -> paddle::platform::DeviceContext* {
594
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
595
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
596
#else
Q
qijun 已提交
597
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
598
#endif
C
chengduoZH 已提交
599 600 601 602 603 604 605 606 607 608 609
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
610
// clang-format on
P
peizhilin 已提交
611
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
612 613
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
614
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
615
      .def(py::init<int>())
D
dzhwinter 已提交
616
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
617

618 619 620
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
621

C
chengduoZH 已提交
622 623 624 625
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
626 627 628 629 630 631 632
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
633
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
634
             self = gpu_place;
C
chengduoZH 已提交
635 636
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
637 638
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
639
      });
Y
Yu Yang 已提交
640

Y
Yu Yang 已提交
641 642 643
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
644
                    proto::OpDesc desc;
Y
Yu Yang 已提交
645 646 647 648 649
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
650
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
651
                  })
652
      .def("run",
653
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
654 655 656
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
657
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
658 659 660 661 662
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
663 664 665 666 667 668 669
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
670 671
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
672
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
673
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
674 675 676 677
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
678

F
fengjiayi 已提交
679
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
680
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
681
      .def("close", &Executor::Close)
S
sneaxiy 已提交
682 683 684 685 686
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
687

D
dzhwinter 已提交
688
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
689
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
690 691
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
692

693
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
694
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
695
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
696 697 698 699 700 701
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
702

703
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
704
  m.def("get_fetch_variable", framework::GetFetchVariable);
705
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
706

X
Xin Pan 已提交
707 708
  m.def("_is_program_version_supported", IsProgramVersionSupported);

709 710 711 712 713
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
714

Y
Yu Yang 已提交
715 716 717 718 719 720 721 722 723
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
724
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
725 726
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
743 744 745
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
746
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
747
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
748
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
749

P
peizhilin 已提交
750
#ifndef _WIN32
D
dangqingqing 已提交
751 752 753
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
754
#endif
P
peizhilin 已提交
755
#endif
Y
Yu Yang 已提交
756

757 758 759 760
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
761
      .value("kAll", platform::ProfilerState::kAll)
762 763 764 765 766 767 768 769 770 771 772 773 774
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
775
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
776
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
777

778 779
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
780 781 782 783 784
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
785 786 787
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
788

X
fix  
Xin Pan 已提交
789 790
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
791 792 793 794 795 796 797 798 799 800 801 802 803 804
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
805
  // -- python binds for parallel executor.
Y
yuyang18 已提交
806
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
807 808 809 810
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
811 812 813 814 815 816 817 818 819 820 821
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
822 823 824

        )DOC");

Y
yuyang18 已提交
825
  exec_strategy.def(py::init())
Y
yuyang18 已提交
826 827 828 829 830
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
831 832 833 834 835 836 837 838 839 840
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
841
      .def_property(
842 843 844 845
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
846 847 848 849
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
850 851 852 853 854
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
855 856 857 858
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
859 860 861 862 863 864 865
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
866 867 868 869 870 871 872 873 874 875 876
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
877 878 879 880 881 882
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
883

Y
yuyang18 已提交
884
  exec_strategy.def_property(
Y
yuyang18 已提交
885 886 887 888 889 890 891
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
892 893
      });

C
chengduo 已提交
894 895 896 897
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
898 899 900 901 902 903 904 905 906 907 908
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
909
)DOC");
Y
yuyang18 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
926
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
927
            self.reduce_ = strategy;
C
chengduo 已提交
928 929 930 931 932 933 934
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
935 936 937 938 939
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
940
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
941
            self.gradient_scale_ = strategy;
C
chengduo 已提交
942 943 944 945 946 947
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
948 949 950 951
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
952
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
953
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
954 955 956 957
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
958 959 960
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
961
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
962
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
963 964
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
965 966 967 968 969 970
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
971
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
972 973 974 975 976 977 978 979 980
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
981
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
982 983 984
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
985 986 987 988 989 990
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
991 992 993 994 995 996 997 998 999 1000 1001 1002
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1003 1004 1005 1006 1007 1008
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1009
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1010 1011 1012 1013 1014
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1015 1016 1017 1018 1019 1020 1021 1022
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1023
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1024
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1025 1026 1027 1028 1029
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1030 1031 1032

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1033
                  const std::string &, Scope *, std::vector<Scope *> &,
1034 1035
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1036 1037 1038 1039
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1040 1041 1042 1043 1044
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1045 1046 1047 1048
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1049 1050 1051 1052 1053 1054
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1055

1056
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1057
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1058
}
1059
}  // namespace pybind
1060
}  // namespace paddle