pybind.cc 42.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/platform/enforce.h"
44
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
47
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
50
#include "paddle/fluid/pybind/imperative.h"
51 52
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
53
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
55

56
#include "paddle/fluid/string/to_string.h"
57

D
Dong Zhihong 已提交
58
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
59
#ifndef _WIN32
Y
Yi Wang 已提交
60
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
61
#endif
Y
Yi Wang 已提交
62 63
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
64 65
#endif

M
minqiyang 已提交
66 67
#include "pybind11/stl.h"

68 69 70 71
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
72 73 74
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

75
namespace paddle {
76
namespace pybind {
77
bool IsCompiledWithCUDA() {
78
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
79 80 81 82 83 84
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
85
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
86
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
87 88 89 90 91 92
  return true;
#else
  return false;
#endif
}

93
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
94 95 96
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
97
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
98
  m.doc() = "C++ core of PaddlePaddle";
99

100 101 102 103
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

104
  BindException(&m);
Y
Yu Yang 已提交
105

S
sneaxiy 已提交
106 107 108 109 110 111
  m.def(
      "append_python_callable_object_and_return_id",
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
      .def(py::init<>())
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
      .def("_grad", &imperative::VarBase::Grad)
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

148 149 150
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
151
      .def("_get_dims",
152
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
153
      .def("_set_dims",
Q
qijun 已提交
154
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
155
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
156
           })
Y
yuyang18 已提交
157
      .def("_set_layout",
D
dzhwinter 已提交
158 159 160
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
161
      .def("_alloc_float",
D
dzhwinter 已提交
162
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
163
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
164
           })
Y
yuyang18 已提交
165
      .def("_alloc_float",
Y
Yu Yang 已提交
166
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
167
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
168
           })
Y
yuyang18 已提交
169
      .def("_alloc_int",
Y
Yu Yang 已提交
170
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
171
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
172
           })
Y
yuyang18 已提交
173
      .def("_alloc_int",
D
dzhwinter 已提交
174
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
175
             self.mutable_data<int>(place);
Q
qijun 已提交
176
           })
Y
yuyang18 已提交
177
      .def("_alloc_int",
C
chengduoZH 已提交
178 179 180
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
181
      .def("_alloc_float",
C
chengduoZH 已提交
182 183 184
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
185 186
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
187
      .def("set", PyCPUTensorSetFromArray<double>)
188
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
189
      .def("set", PyCPUTensorSetFromArray<bool>)
190
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
191
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
192
      .def("set", PyCPUTensorSetFromArray<int8_t>)
193
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
194 195
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
196
      .def("set", PyCUDATensorSetFromArray<double>)
197
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
198
      .def("set", PyCUDATensorSetFromArray<bool>)
199
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
200
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
201
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
202 203 204 205 206 207
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
208
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
209
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
210
#endif
211
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
212 213 214 215 216
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
217

X
Xin Pan 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
231
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
232
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
233
     columns, hence [5, 2].
X
Xin Pan 已提交
234 235 236

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
237 238
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
262 263
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
264 265 266 267 268 269 270 271 272 273 274 275 276 277
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
278
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
279 280 281 282 283
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
284
      .def("set_lod",
285
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
286
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
287
             LoD new_lod;
288 289
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
290 291
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
292
             self.set_lod(new_lod);
D
dangqingqing 已提交
293
           })
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
319
      // Set above comments of set_lod.
320 321 322 323 324 325 326 327 328 329 330 331 332
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
333 334
      });

Q
qijun 已提交
335 336 337 338 339 340 341 342 343 344 345
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
346 347
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
348 349
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
350 351 352 353 354 355 356 357 358
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
359
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
360
      .def("rows", [](SelectedRows &self) {
361 362 363 364 365
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
366
      });
Q
qijun 已提交
367

368
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
369 370 371

All parameter, weight, gradient are variables in Paddle.
)DOC")
372
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
373
      .def("set_int",
374 375
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
376 377 378 379 380 381 382
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
383
      .def("get_tensor",
384 385
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
386 387
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
388 389 390
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
391 392 393 394 395
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
396 397 398
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
399
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
400 401 402 403 404
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
405
#endif
Y
Refine  
Yu Yang 已提交
406 407 408 409 410
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
411
           py::return_value_policy::reference);
412

Y
Refine  
Yu Yang 已提交
413
  py::class_<framework::ReaderHolder>(m, "Reader", "")
414
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
415

S
sneaxiy 已提交
416 417 418 419
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
420 421
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
422
      .def("push",
S
sneaxiy 已提交
423
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
424
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
425
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
426
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
427
           })
S
sneaxiy 已提交
428 429 430 431
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
432

S
sneaxiy 已提交
433
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
434
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
435
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
436
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
437 438 439 440 441 442
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
443 444
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
445
              return holder->GetQueue();
S
sneaxiy 已提交
446
            },
S
sneaxiy 已提交
447
        py::return_value_policy::copy);
S
sneaxiy 已提交
448

Q
Qiao Longfei 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
469
      .def("var",
470
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
471
             return self.Var(name);
Y
Yu Yang 已提交
472
           },
473
           py::return_value_policy::reference)
474
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
475
      .def(py::init<>())
476
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
477
           py::return_value_policy::reference)
Y
Yu Yang 已提交
478
      .def("drop_kids", &Scope::DropKids);
479

Y
Yu Yang 已提交
480 481
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
482 483
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
484 485 486 487 488 489 490 491 492 493
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
494 495
    return ret_values;
  });
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
512
  m.def("prune", [](const ProgramDesc &origin,
513
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
514
    ProgramDesc prog_with_targets(origin);
515
    for (const auto &t : targets) {
516
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
517
    }
518
    proto::ProgramDesc pruned_desc;
519
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
520
    return new ProgramDesc(pruned_desc);
521
  });
522 523 524 525
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
526 527 528
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
529 530
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
531
  // clang-format off
Y
Yu Yang 已提交
532
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
533 534
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
535
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
536 537 538
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
539
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
540
                      -> paddle::platform::DeviceContext* {
541
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
542
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
543
#else
Q
qijun 已提交
544
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
545
#endif
C
chengduoZH 已提交
546 547 548 549 550 551 552 553 554 555 556
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
557
// clang-format on
P
peizhilin 已提交
558
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
559 560
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
561
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
562
      .def(py::init<int>())
D
dzhwinter 已提交
563
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
564

565 566 567
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
568

C
chengduoZH 已提交
569 570 571 572
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
573 574 575 576 577 578 579
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
580
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
581
             self = gpu_place;
C
chengduoZH 已提交
582 583
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
584 585
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
586
      });
Y
Yu Yang 已提交
587

Y
Yu Yang 已提交
588 589 590
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
591
                    proto::OpDesc desc;
Y
Yu Yang 已提交
592 593 594 595 596
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
597
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
598
                  })
599
      .def("run",
600
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
601 602 603
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
604
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
605 606 607 608 609
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
610 611 612 613 614 615 616
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
617 618
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
619
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
620
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
621 622 623 624
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
625

F
fengjiayi 已提交
626
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
627
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
628
      .def("close", &Executor::Close)
S
sneaxiy 已提交
629 630 631 632 633
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
634

D
dzhwinter 已提交
635
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
636
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
637 638
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
639

640
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
641
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
642 643 644 645 646 647
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
648

649
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
650
  m.def("get_fetch_variable", framework::GetFetchVariable);
651
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
652

X
Xin Pan 已提交
653 654
  m.def("_is_program_version_supported", IsProgramVersionSupported);

655 656 657 658 659
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
660

Y
Yu Yang 已提交
661 662 663 664 665 666 667 668 669
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
670
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
671 672
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
689 690 691
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
692
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
693
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
694
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
695

P
peizhilin 已提交
696
#ifndef _WIN32
D
dangqingqing 已提交
697 698 699
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
700
#endif
P
peizhilin 已提交
701
#endif
Y
Yu Yang 已提交
702

703 704 705 706
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
707
      .value("kAll", platform::ProfilerState::kAll)
708 709 710 711 712 713 714 715 716 717 718 719 720
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
721
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
722
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
723

724 725
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
726 727 728 729 730
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
731 732 733
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
734

X
fix  
Xin Pan 已提交
735 736
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
737 738 739 740 741 742 743 744 745 746 747 748 749 750
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
751
  // -- python binds for parallel executor.
Y
yuyang18 已提交
752
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
753 754 755 756
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
757 758 759 760 761 762 763 764 765 766 767
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
768 769 770

        )DOC");

Y
yuyang18 已提交
771
  exec_strategy.def(py::init())
Y
yuyang18 已提交
772 773 774 775 776
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
777 778 779 780 781 782 783 784 785 786
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
787
      .def_property(
788 789 790 791
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
792 793 794 795
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
796 797 798 799 800
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
801 802 803 804
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
805 806 807 808 809 810 811
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
812 813 814 815 816 817 818 819 820 821 822
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
823 824 825 826 827 828
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
829

Y
yuyang18 已提交
830
  exec_strategy.def_property(
Y
yuyang18 已提交
831 832 833 834 835 836 837
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
838 839
      });

C
chengduo 已提交
840 841 842 843
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
844 845 846 847 848 849 850 851 852 853 854
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
855
)DOC");
Y
yuyang18 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
872
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
873
            self.reduce_ = strategy;
C
chengduo 已提交
874 875 876 877 878 879 880
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
881 882 883 884 885
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
886
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
887
            self.gradient_scale_ = strategy;
C
chengduo 已提交
888 889 890 891 892 893
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
894 895 896 897
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
898
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
899
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
900 901 902 903
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
904 905 906
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
907
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
908
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
909 910
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
911 912 913 914 915 916
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
917
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
918 919 920 921 922 923 924 925 926
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
927
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
928 929 930
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
931 932 933 934 935 936
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
937 938 939 940 941 942 943 944 945 946 947 948
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
949 950 951 952 953 954
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
955
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
956 957 958 959 960
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
961
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
962
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
963 964 965 966 967
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
968 969 970 971

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
972
                  const std::string &, Scope *, std::vector<Scope *> &,
973 974
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
975 976 977 978
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
979 980 981 982 983
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
984 985 986 987
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
988 989 990 991 992 993
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
994

995
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
996
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
997
}
998
}  // namespace pybind
999
}  // namespace paddle