Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9597fd05
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9597fd05
编写于
1月 09, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish
test=develop
上级
7aad6afd
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
136 addition
and
111 deletion
+136
-111
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+60
-30
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+20
-67
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+3
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+6
-4
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+7
-4
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+40
-4
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
9597fd05
...
...
@@ -128,26 +128,23 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
return
{};
}
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
tmp_vars
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_outputs
;
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tmp_vars
.
emplace_back
(
tmp_var
);
outputs
.
push_back
(
tmp_var
);
}
}
if
(
backward_id_
>
0
)
{
VLOG
(
3
)
<<
"py_layer_grad"
;
PyLayer
::
ApplyGrad
(
backward_id_
,
grad_input_vars_
[
"X@GRAD"
],
&
(
grad_outputs
[
"Out@GRAD"
])
);
grad_outputs
[
"Out@GRAD"
]
=
PyLayer
::
ApplyGrad
(
backward_id_
,
grad_input_vars_
[
"X@GRAD"
]
);
}
else
{
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
outputs
.
push_back
(
tmp_var
);
}
}
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
// No need to do compile time infer shape here.
...
...
@@ -170,10 +167,13 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
auto
&
origin_outputs
=
it
.
second
;
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
origin_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
grad
=
outputs
[
i
];
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
AddTo
(
outputs
[
i
],
orig_grad
);
AddTo
(
grad
,
orig_grad
);
delete
grad
;
}
}
return
input_vars_
;
...
...
@@ -197,30 +197,60 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
py_funcs_
[
func_id
]
=
py_func
;
}
int
PyLayer
::
NumFuncs
()
{
return
py_funcs_
.
size
();
}
std
::
vector
<
VarBase
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
std
::
vector
<
framework
::
LoDTensor
>
tensor_inputs
;
std
::
vector
<
VarBase
*>
ret
;
std
::
vector
<
framework
::
Variable
*>
invars
;
for
(
const
VarBase
*
in
:
inputs
)
{
tensor_inputs
.
push_back
(
in
->
var_
->
Get
<
framework
::
LoDTensor
>
()
);
invars
.
push_back
(
in
->
var_
);
}
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
CallPythonFunc
(
py_funcs_
[
func_id
],
tensor_inputs
,
&
ret
);
std
::
vector
<
Variable
*>
outvars
=
CallPythonFunc
(
py_funcs_
[
func_id
],
invars
);
std
::
vector
<
VarBase
*>
ret
;
for
(
Variable
*
v
:
outvars
)
{
ret
.
push_back
(
new
VarBase
(
v
,
new
Variable
()));
}
return
ret
;
}
void
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
,
std
::
vector
<
framework
::
Variable
*>*
outputs
)
{
std
::
vector
<
framework
::
LoDTensor
>
tensor_inputs
;
std
::
vector
<
VarBase
*>
ret
;
std
::
vector
<
Variable
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
)
;
}
for
(
const
Variable
*
in
:
inputs
)
{
tensor_inputs
.
push_back
(
in
->
Get
<
framework
::
LoDTensor
>
());
std
::
vector
<
framework
::
Variable
*>
PyLayer
::
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variable
*>&
ins
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
Get
<
framework
::
LoDTensor
>
();
in_args
[
i
]
=
t
.
IsInitialized
()
?
py
::
cast
(
t
)
:
py
::
cast
(
nullptr
);
}
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
CallPythonFunc
(
py_funcs_
[
func_id
],
tensor_inputs
,
outputs
);
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
// TODO(panyx0718): Who owns the returned LoDTensor.
auto
ret
=
callable
(
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
std
::
vector
<
framework
::
Variable
*>
outs
;
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
auto
*
py_out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
py_out_tensor
,
"Output tensor %d should not be nullptr"
,
i
);
auto
*
var
=
new
framework
::
Variable
();
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
outs
.
push_back
(
var
);
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
}
return
outs
;
}
}
// namespace imperative
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
9597fd05
...
...
@@ -87,12 +87,15 @@ class OpBase;
class
VarBase
{
public:
VarBase
()
VarBase
()
:
VarBase
(
new
framework
::
Variable
(),
new
framework
::
Variable
())
{}
// Owns `var` and `grad`
VarBase
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad
)
:
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()
),
grads_
(
new
framework
::
Variable
()
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
false
)
{}
explicit
VarBase
(
bool
stop_gradient
)
...
...
@@ -131,8 +134,8 @@ class OpBase {
public:
OpBase
()
:
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
),
forward_id_
(
-
1
),
grad_op_desc_
(
nullptr
),
backward_id_
(
-
1
)
{}
virtual
~
OpBase
()
{
...
...
@@ -141,10 +144,13 @@ class OpBase {
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
();
// One of `op_desc_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
framework
::
OpDesc
*
op_desc_
;
framework
::
OpDesc
*
grad_op_desc_
;
int
forward_id_
;
// When has backward, one of `grad_op_desc_` or `backward_id_` is set,
// not both.
framework
::
OpDesc
*
grad_op_desc_
;
int
backward_id_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_vars_
;
...
...
@@ -167,76 +173,23 @@ class Layer {
}
};
static
void
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
LoDTensor
>&
ins
,
std
::
vector
<
VarBase
*>*
outs
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
in_args
[
i
]
=
ins
[
i
].
IsInitialized
()
?
py
::
cast
(
ins
[
i
])
:
py
::
cast
(
nullptr
);
}
// TODO(panyx0718): Who owns the returned LoDTensor.
auto
ret
=
callable
(
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
auto
*
py_out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
py_out_tensor
,
"Output tensor %d should not be nullptr"
,
i
);
VarBase
*
var
=
new
VarBase
();
auto
*
tensor
=
var
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
outs
->
push_back
(
var
);
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
}
}
static
void
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
LoDTensor
>&
ins
,
std
::
vector
<
framework
::
Variable
*>*
outs
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
in_args
[
i
]
=
ins
[
i
].
IsInitialized
()
?
py
::
cast
(
ins
[
i
])
:
py
::
cast
(
nullptr
);
}
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
// TODO(panyx0718): Who owns the returned LoDTensor.
auto
ret
=
callable
(
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
auto
*
py_out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
py_out_tensor
,
"Output tensor %d should not be nullptr"
,
i
);
auto
*
tensor
=
(
*
outs
)[
i
]
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
}
}
class
PyLayer
{
public:
virtual
~
PyLayer
()
{}
static
void
RegisterFunc
(
int
func_id
,
const
py
::
object
&
py_func
);
static
int
NumFuncs
();
static
std
::
vector
<
VarBase
*>
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
);
static
void
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
,
std
::
vector
<
framework
::
Variable
*>*
outputs
);
static
std
::
vector
<
framework
::
Variable
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
);
private:
static
std
::
vector
<
framework
::
Variable
*>
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variable
*>&
ins
);
};
}
// namespace imperative
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
9597fd05
...
...
@@ -132,8 +132,9 @@ class Tracer {
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
// TODO(panyx): Is this leaked?
auto
grad_to_var
=
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
();
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
.
get
());
op
->
grad_op_desc_
=
grad_op_desc
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
9597fd05
...
...
@@ -191,7 +191,7 @@ PYBIND11_MODULE(core, m) {
return
self
.
Forward
(
inputs
);
});
py
::
class_
<
paddle
::
imperative
::
PyLayer
>
(
m
,
"PyLayer"
)
py
::
class_
<
imperative
::
PyLayer
>
(
m
,
"PyLayer"
)
.
def
(
py
::
init
<>
())
.
def_static
(
"apply"
,
...
...
@@ -200,9 +200,11 @@ PYBIND11_MODULE(core, m) {
return
imperative
::
PyLayer
::
Apply
(
func_id
,
inputs
);
},
py
::
return_value_policy
::
take_ownership
)
.
def_static
(
"register_func"
,
[](
int
func_id
,
const
py
::
object
&
callable
)
{
imperative
::
PyLayer
::
RegisterFunc
(
func_id
,
callable
);
});
.
def_static
(
"register_func"
,
[](
int
func_id
,
const
py
::
object
&
callable
)
{
imperative
::
PyLayer
::
RegisterFunc
(
func_id
,
callable
);
})
.
def_static
(
"num_funcs"
,
&
imperative
::
PyLayer
::
NumFuncs
);
BindTracer
(
&
m
);
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
9597fd05
...
...
@@ -68,12 +68,15 @@ class PyLayer(core.PyLayer):
block
=
framework
.
default_main_program
().
current_block
()
inputs
=
[
x
.
_ivar
for
x
in
inputs
]
PyLayer
.
register_func
(
1
,
cls
.
forward
)
PyLayer
.
register_func
(
2
,
cls
.
backward
)
if
not
hasattr
(
cls
,
'forward_id'
):
cls
.
forward_id
=
core
.
PyLayer
.
num_funcs
()
+
1
PyLayer
.
register_func
(
cls
.
forward_id
,
cls
.
forward
)
cls
.
backward_id
=
core
.
PyLayer
.
num_funcs
()
+
1
PyLayer
.
register_func
(
cls
.
backward_id
,
cls
.
backward
)
iop
=
core
.
OpBase
()
iop
.
forward_id
=
1
iop
.
backward_id
=
2
iop
.
forward_id
=
cls
.
forward_id
iop
.
backward_id
=
cls
.
backward_id
block
.
ops
.
append
(
iop
)
ivars
=
tracer
.
py_trace
(
iop
,
inputs
,
False
)
# ivars = core.PyLayer.apply(cls.forward, inputs)
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
9597fd05
...
...
@@ -81,14 +81,52 @@ class MLP(fluid.imperative.Layer):
class
TestImperative
(
unittest
.
TestCase
):
"""
def
test_layer
(
self
):
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
()
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
"""
def
test_pylayer_func_id
(
self
):
with
fluid
.
imperative
.
guard
():
class
PyLayer1
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer1
,
self
).
__init__
()
@
staticmethod
def
forward
(
inputs
):
return
inputs
@
staticmethod
def
backward
(
inputs
):
return
inputs
class
PyLayer2
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
PyLayer2
,
self
).
__init__
()
@
staticmethod
def
forward
(
inputs
):
return
inputs
@
staticmethod
def
backward
(
inputs
):
return
inputs
py_layer_1
=
PyLayer1
()
py_layer_2
=
PyLayer2
()
py_layer_1
([
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))])
py_layer_2
([
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))])
id
=
py_layer_1
.
forward_id
self
.
assertGreater
(
id
,
0
)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
py_layer_1
([
fluid
.
imperative
.
base
.
to_variable
(
np
.
ones
([
2
,
2
]))])
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
...
...
@@ -118,7 +156,6 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
"""
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
...
...
@@ -172,7 +209,6 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
"""
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录