Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7aad6afd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7aad6afd
编写于
1月 09, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
forward and backward
test=develop
上级
2349acea
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
175 addition
and
42 deletion
+175
-42
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+43
-22
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+34
-1
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+46
-10
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+8
-1
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+4
-3
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+40
-5
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
7aad6afd
...
...
@@ -57,6 +57,7 @@ class Autograd {
if
(
var
->
stop_gradient_
)
{
return
;
}
VLOG
(
3
)
<<
"start autograd"
;
std
::
deque
<
OpBase
*>
ready
;
ready
.
push_back
(
var
->
pre_op_
);
...
...
@@ -122,11 +123,10 @@ framework::LoDTensor& VarBase::Grad() {
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
!
grad_op_desc_
)
{
if
(
!
grad_op_desc_
&&
backward_id_
<=
0
)
{
LOG
(
WARNING
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
return
{};
}
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
std
::
vector
<
std
::
unique_ptr
<
framework
::
Variable
>>
tmp_vars
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_outputs
;
...
...
@@ -142,23 +142,30 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc_
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
if
(
backward_id_
>
0
)
{
VLOG
(
3
)
<<
"py_layer_grad"
;
PyLayer
::
ApplyGrad
(
backward_id_
,
grad_input_vars_
[
"X@GRAD"
],
&
(
grad_outputs
[
"Out@GRAD"
]));
}
else
{
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc_
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place
);
p
.
op
.
RuntimeInferShape
(
scope
,
place
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
}
for
(
auto
it
:
grad_output_vars_
)
{
auto
&
outputs
=
grad_outputs
[
it
.
first
];
...
...
@@ -175,6 +182,7 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
VLOG
(
3
)
<<
"start backward"
;
auto
grads_t
=
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
grads_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
grads_t
->
numel
(),
1.0
);
...
...
@@ -190,17 +198,30 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
}
std
::
vector
<
VarBase
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
>&
inputs
)
{
const
std
::
vector
<
VarBase
*
>&
inputs
)
{
std
::
vector
<
framework
::
LoDTensor
>
tensor_inputs
;
std
::
vector
<
VarBase
*>
ret
;
for
(
const
VarBase
&
in
:
inputs
)
{
tensor_inputs
.
push_back
(
in
.
var_
->
Get
<
framework
::
LoDTensor
>
());
for
(
const
VarBase
*
in
:
inputs
)
{
tensor_inputs
.
push_back
(
in
->
var_
->
Get
<
framework
::
LoDTensor
>
());
}
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
CallPythonFunc
(
py_funcs_
[
func_id
],
tensor_inputs
,
&
ret
);
return
ret
;
}
void
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
,
std
::
vector
<
framework
::
Variable
*>*
outputs
)
{
std
::
vector
<
framework
::
LoDTensor
>
tensor_inputs
;
std
::
vector
<
VarBase
*>
ret
;
for
(
const
Variable
*
in
:
inputs
)
{
tensor_inputs
.
push_back
(
in
->
Get
<
framework
::
LoDTensor
>
());
}
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
CallPythonFunc
(
py_funcs_
[
func_id
],
tensor_inputs
,
outputs
);
}
}
// namespace imperative
}
// namespace paddle
paddle/fluid/imperative/layer.h
浏览文件 @
7aad6afd
...
...
@@ -196,6 +196,35 @@ static void CallPythonFunc(const py::object& callable,
}
}
static
void
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
LoDTensor
>&
ins
,
std
::
vector
<
framework
::
Variable
*>*
outs
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
in_args
[
i
]
=
ins
[
i
].
IsInitialized
()
?
py
::
cast
(
ins
[
i
])
:
py
::
cast
(
nullptr
);
}
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
// TODO(panyx0718): Who owns the returned LoDTensor.
auto
ret
=
callable
(
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
auto
*
py_out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
py_out_tensor
,
"Output tensor %d should not be nullptr"
,
i
);
auto
*
tensor
=
(
*
outs
)[
i
]
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
}
}
class
PyLayer
{
public:
virtual
~
PyLayer
()
{}
...
...
@@ -203,7 +232,11 @@ class PyLayer {
static
void
RegisterFunc
(
int
func_id
,
const
py
::
object
&
py_func
);
static
std
::
vector
<
VarBase
*>
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
>&
inputs
);
const
std
::
vector
<
VarBase
*>&
inputs
);
static
void
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variable
*>&
inputs
,
std
::
vector
<
framework
::
Variable
*>*
outputs
);
};
}
// namespace imperative
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
7aad6afd
...
...
@@ -131,6 +131,7 @@ class Tracer {
if
(
!
stop_gradient
)
{
framework
::
OpDesc
*
grad_op_desc
;
// TODO(panyx): Is this leaked?
auto
grad_to_var
=
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
();
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
op
->
grad_op_desc_
=
grad_op_desc
;
...
...
@@ -143,12 +144,14 @@ class Tracer {
if
(
var_it
==
grad_to_var
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
// Douts.
grad_in_vars
.
push_back
(
var
->
grads_
);
}
}
...
...
@@ -172,18 +175,51 @@ class Tracer {
op
->
block_
=
block
;
}
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
>&
inputs
)
{
std
::
vector
<
VarBase
*>
outputs
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
/*
for (const VarBase& inp : inputs) {
if (inp.pre_op_) {
op->pre_ops_[it.first].push_back(inp->pre_op_);
op->pre_ops_out_idx_[it.first].push_back(inp->pre_op_out_idx_);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
)
{
VLOG
(
3
)
<<
"py_trace"
;
op
->
input_vars_
[
"X"
]
=
inputs
;
op
->
output_vars_
[
"Out"
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
"X"
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
"X"
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
op->pre_ops_[
it.first
].push_back(nullptr);
op
->
pre_ops_
[
"X"
].
push_back
(
nullptr
);
}
}*/
}
auto
&
outputs
=
op
->
output_vars_
[
"Out"
];
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
"Out"
;
out
->
pre_op_out_idx_
=
i
;
}
if
(
!
stop_gradient
)
{
auto
&
grad_input_vars
=
op
->
grad_input_vars_
[
"X@GRAD"
];
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
"Out@GRAD"
];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
var_
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
grads_
);
if
(
!
grad_input_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
out
->
var_
,
grad_input_vars
.
back
());
}
}
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_output_vars
.
push_back
(
inp
->
grads_
);
if
(
!
grad_output_vars
.
back
()
->
IsInitialized
())
{
InitVar
(
inp
->
var_
,
grad_output_vars
.
back
());
}
}
}
return
outputs
;
}
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
7aad6afd
...
...
@@ -175,6 +175,13 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
OpBase
&
self
,
int
forward_id
)
{
self
.
forward_id_
=
forward_id
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"backward_id"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
backward_id_
;
},
[](
imperative
::
OpBase
&
self
,
int
backward_id
)
{
self
.
backward_id_
=
backward_id
;
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
imperative
::
Layer
,
Layer
/* <--- trampoline*/
>
layer
(
m
,
"Layer"
);
...
...
@@ -188,7 +195,7 @@ PYBIND11_MODULE(core, m) {
.
def
(
py
::
init
<>
())
.
def_static
(
"apply"
,
[](
int
func_id
,
const
std
::
vector
<
imperative
::
VarBase
>
&
inputs
)
[](
int
func_id
,
const
std
::
vector
<
imperative
::
VarBase
*
>
&
inputs
)
->
std
::
vector
<
imperative
::
VarBase
*>
{
return
imperative
::
PyLayer
::
Apply
(
func_id
,
inputs
);
},
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
7aad6afd
...
...
@@ -59,22 +59,23 @@ class PyLayer(core.PyLayer):
raise
NotImplementedError
@
staticmethod
def
backward
(
inp
uts
):
def
backward
(
do
uts
):
raise
NotImplementedError
@
classmethod
def
__call__
(
cls
,
inputs
):
tracer
=
framework
.
_imperative_tracer
()
block
=
framework
.
default_main_program
().
current_block
()
inputs
=
map
(
base
.
to_variable
,
inputs
)
inputs
=
[
x
.
_ivar
for
x
in
inputs
]
PyLayer
.
register_func
(
1
,
cls
.
forward
)
PyLayer
.
register_func
(
2
,
cls
.
backward
)
iop
=
core
.
OpBase
()
iop
.
forward_id
=
1
iop
.
backward_id
=
2
block
.
ops
.
append
(
iop
)
ivars
=
tracer
.
py_trace
(
iop
,
inputs
)
ivars
=
tracer
.
py_trace
(
iop
,
inputs
,
False
)
# ivars = core.PyLayer.apply(cls.forward, inputs)
ret
=
[]
for
ivar
in
ivars
:
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
7aad6afd
...
...
@@ -49,8 +49,18 @@ class MyPyLayer(fluid.imperative.PyLayer):
return
tuple
([
tensor
])
@
staticmethod
def
backward
(
douts
,
outs
):
return
np
.
array
(
douts
[
0
])
*
(
1
-
np
.
square
(
np
.
array
(
outs
[
0
])))
def
backward
(
inputs
):
sys
.
stderr
.
write
(
'calling into backward: %s
\n
'
%
str
(
inputs
))
inp
,
out
,
dout
=
inputs
inp
=
np
.
array
(
inp
)
out
=
np
.
array
(
out
)
dout
=
np
.
array
(
dout
)
sys
.
stderr
.
write
(
'calling into backward: %s, %s, %s
\n
'
%
(
inp
,
out
,
dout
))
ret
=
np
.
array
(
dout
)
*
(
1
-
np
.
square
(
np
.
array
(
out
)))
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
ret
,
core
.
CPUPlace
())
return
tuple
([
tensor
])
class
MLP
(
fluid
.
imperative
.
Layer
):
...
...
@@ -71,20 +81,44 @@ class MLP(fluid.imperative.Layer):
class
TestImperative
(
unittest
.
TestCase
):
"""
def test_layer(self):
with fluid.imperative.guard():
cl = core.Layer()
cl.forward([])
l = fluid.imperative.Layer()
self.assertRaises(NotImplementedError, l.forward, [])
"""
def
test_pylayer
(
self
):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
my_py_layer
=
MyPyLayer
()
outs
=
my_py_layer
([
np
.
ones
([
2
,
2
],
np
.
float32
)])
sys
.
stderr
.
write
(
'%s
\n
'
%
outs
[
0
].
_numpy
())
# out.backward()
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
outs
=
my_py_layer
([
var_inp
])
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
outs
[
0
].
_backward
()
dy_grad
=
var_inp
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
x1
=
inp
*
1
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
x
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
tanh
(
x1
))
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
x1
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
"""
def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.imperative.guard():
...
...
@@ -138,6 +172,7 @@ class TestImperative(unittest.TestCase):
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
"""
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录