pybind.cc 54.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
58
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

90 91 92 93 94 95 96 97
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

106
bool IsCompiledWithBrpc() {
107
#ifndef PADDLE_WITH_DISTRIBUTE
108 109
  return false;
#endif
110 111 112 113 114 115

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
116 117
}

Y
update  
Yancey1989 已提交
118
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
119
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
120 121 122 123 124 125
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
126 127 128 129 130
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

131
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
132 133 134
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
135
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
136
  m.doc() = "C++ core of PaddlePaddle";
137

138 139 140 141
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

142
  BindException(&m);
Y
Yu Yang 已提交
143

S
sneaxiy 已提交
144
  m.def(
S
sneaxiy 已提交
145
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
146 147 148 149
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
150 151 152
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

153 154 155 156 157 158 159
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
160
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
161 162
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
163
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
164

M
minqiyang 已提交
165
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
166 167 168 169 170 171 172 173
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
174
      .def("_run_backward",
X
Xin Pan 已提交
175
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
176
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
177
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
178
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
179
      .def("_grad_ivar",
M
minqiyang 已提交
180
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
181
           py::return_value_policy::reference)
M
minqiyang 已提交
182
      .def("_copy_to",
P
Paddle CI 已提交
183
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
184 185 186 187 188
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
189
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
190
      .def("_copy_to",
P
Paddle CI 已提交
191
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
192 193 194 195 196
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
197
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
198
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
199
           py::return_value_policy::reference)
200 201 202
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
203
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
204 205 206 207
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
208

209
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
210
      .def(py::init<const std::string &>())
211 212 213 214
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
215 216 217 218 219 220 221 222 223 224
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
225 226 227 228 229 230
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
231 232 233 234 235 236 237
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
238 239
          py::return_value_policy::reference);

X
Xin Pan 已提交
240
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
241
  layer.def(py::init<>())
X
Xin Pan 已提交
242 243 244
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
245
      });
X
Xin Pan 已提交
246

X
polish  
Xin Pan 已提交
247
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
248
      .def(py::init<>())
X
Xin Pan 已提交
249 250
      .def_static(
          "apply",
X
Xin Pan 已提交
251
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
252
              -> std::vector<imperative::VarBase *> {
253 254 255 256 257 258 259 260 261 262 263
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
264 265
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
266 267 268 269 270
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
271

272 273
  BindTracer(&m);

274 275 276
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
277 278
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
279
      .def("_get_dims",
280
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
281
      .def("_set_dims",
Q
qijun 已提交
282
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
283
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
284
           })
Y
yuyang18 已提交
285
      .def("_set_layout",
D
dzhwinter 已提交
286 287 288
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
289
      .def("_alloc_float",
D
dzhwinter 已提交
290
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
291
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
292
           })
Y
yuyang18 已提交
293
      .def("_alloc_float",
Y
Yu Yang 已提交
294
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
295
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
296
           })
Y
yuyang18 已提交
297
      .def("_alloc_int",
Y
Yu Yang 已提交
298
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
299
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
300
           })
Y
yuyang18 已提交
301
      .def("_alloc_int",
D
dzhwinter 已提交
302
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
303
             self.mutable_data<int>(place);
Q
qijun 已提交
304
           })
Y
yuyang18 已提交
305
      .def("_alloc_int",
C
chengduoZH 已提交
306 307 308
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
309
      .def("_alloc_float",
C
chengduoZH 已提交
310 311 312
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
313 314
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
315
      .def("set", PyCPUTensorSetFromArray<double>)
316
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
317
      .def("set", PyCPUTensorSetFromArray<bool>)
318
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
319
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
320
      .def("set", PyCPUTensorSetFromArray<int8_t>)
321
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
322 323
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
324
      .def("set", PyCUDATensorSetFromArray<double>)
325
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
326
      .def("set", PyCUDATensorSetFromArray<bool>)
327
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
328
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
329
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
330 331 332 333 334 335
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
336
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
337
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
338
#endif
339
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
340 341 342 343
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
344
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
345
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
346

X
Xin Pan 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
360
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
361
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
362
     columns, hence [5, 2].
X
Xin Pan 已提交
363 364 365

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
366 367
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
391 392
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
393 394 395 396 397 398 399 400 401 402 403 404 405 406
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
407
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
408 409 410 411 412
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
413
      .def("set_lod",
414
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
415
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
416
             LoD new_lod;
417 418
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
419 420
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
421
             self.set_lod(new_lod);
S
sneaxiy 已提交
422 423 424 425 426 427 428
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
444 445 446 447
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
448
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
449 450
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
451 452

           Args:
453
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
454
           )DOC")
455 456 457 458 459 460 461 462
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
463 464 465 466 467 468 469
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
470
      // Set above comments of set_lod.
471 472 473 474 475 476 477 478
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
479 480 481 482 483
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
484
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
498

Q
qijun 已提交
499 500 501 502 503 504 505 506 507 508 509
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
510 511
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
512 513
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
514 515 516 517 518 519 520 521 522
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
523
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
524
      .def("rows", [](SelectedRows &self) {
525 526 527 528 529
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
530
      });
Q
qijun 已提交
531

532
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
533 534 535

All parameter, weight, gradient are variables in Paddle.
)DOC")
536
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
537
      .def("set_int",
538 539
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
540 541 542 543 544 545 546
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
547
      .def("get_tensor",
548 549
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
550 551
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
552 553 554
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
555 556 557 558 559
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
560 561 562
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
563
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
564 565 566 567 568
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
569
#endif
Y
Refine  
Yu Yang 已提交
570 571 572 573 574
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
575
           py::return_value_policy::reference);
576

Y
Refine  
Yu Yang 已提交
577
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
578
      .def("start", &framework::ReaderHolder::Start)
579
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
580

S
sneaxiy 已提交
581 582 583 584
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
585 586
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
587
      .def("push",
S
sneaxiy 已提交
588
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
589
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
590
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
591
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
592
           })
S
sneaxiy 已提交
593 594 595 596
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
597

S
sneaxiy 已提交
598
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
599 600 601 602 603 604
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
605
        py::return_value_policy::copy);
S
sneaxiy 已提交
606

S
sneaxiy 已提交
607
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
627 628
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
629
      .def("var",
630
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
631
             return self.Var(name);
Y
Yu Yang 已提交
632
           },
S
sneaxiy 已提交
633 634
           py::arg("name"),
           R"DOC(
635
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
636

637
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
638
           current scope, the variable would be created. Otherwise,
639
           return the existing variable.
S
sneaxiy 已提交
640 641

           Args:
642 643
               name (str): the variable name.

S
sneaxiy 已提交
644
           Returns:
645
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
646 647 648 649
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
650
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
651
           its parent scope. Return None if not found.
652

S
sneaxiy 已提交
653 654
           Args:
               name (str): the variable name.
655

S
sneaxiy 已提交
656
           Returns:
657
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
658
           )DOC",
659
           py::return_value_policy::reference)
660
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
661 662 663 664 665 666
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
667
           py::return_value_policy::reference)
S
sneaxiy 已提交
668 669 670
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
671 672
           )DOC")
      .def("_kids", &Scope::kids);
673

S
sneaxiy 已提交
674 675 676 677 678 679
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
680 681
        R"DOC(
        Create a new scope.
682

S
sneaxiy 已提交
683 684 685
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
686 687
        py::return_value_policy::reference);

Y
Yu Yang 已提交
688 689
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
690 691
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
692 693 694 695 696 697 698 699 700 701
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
702 703
    return ret_values;
  });
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
720
  m.def("prune", [](const ProgramDesc &origin,
721
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
722
    ProgramDesc prog_with_targets(origin);
723
    for (const auto &t : targets) {
724
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
725
    }
726
    proto::ProgramDesc pruned_desc;
727
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
728
    return new ProgramDesc(pruned_desc);
729
  });
730 731 732 733
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
734 735 736
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
737 738
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
739
  // clang-format off
Y
Yu Yang 已提交
740
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
741 742
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
743
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
744 745 746
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
747
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
748
                      -> paddle::platform::DeviceContext* {
749
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
750
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
751
#else
Q
qijun 已提交
752
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
753
#endif
C
chengduoZH 已提交
754 755 756 757 758 759 760 761 762 763 764
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
765
// clang-format on
P
peizhilin 已提交
766
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
767 768
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
769
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
770 771 772 773 774 775 776 777 778 779 780 781
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
782 783 784 785 786
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
787
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
788

789 790
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
791 792 793 794 795
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
796
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
797

C
chengduoZH 已提交
798
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
799
      .def("__init__",
S
sneaxiy 已提交
800
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
801 802 803
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
804
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
805
           })
S
sneaxiy 已提交
806 807 808 809 810 811 812
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
813 814
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
815 816
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
817 818 819 820
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
821 822 823 824 825 826
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
827 828 829 830 831
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
832
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
833
             self = gpu_place;
C
chengduoZH 已提交
834 835
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
836 837
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
838
      });
Y
Yu Yang 已提交
839

Y
Yu Yang 已提交
840 841 842
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
843
                    proto::OpDesc desc;
Y
Yu Yang 已提交
844 845 846 847 848
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
849
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
850
                  })
851
      .def("run",
852
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
853 854 855
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
856
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
857 858 859 860 861
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
862 863 864 865 866 867 868
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
869 870
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
871
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
872
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
873 874 875 876
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
877

F
fengjiayi 已提交
878
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
879
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
880
      .def("close", &Executor::Close)
S
sneaxiy 已提交
881
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
882 883
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
884
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
885 886
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
887
      });
S
sneaxiy 已提交
888

D
dzhwinter 已提交
889
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
890
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
891 892
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
893

894
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
895
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
896
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
897
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
898
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
899 900 901 902 903 904
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
905

906
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
907
  m.def("get_fetch_variable", framework::GetFetchVariable);
908
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
909

X
Xin Pan 已提交
910 911
  m.def("_is_program_version_supported", IsProgramVersionSupported);

912 913 914 915 916
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
917

Y
Yu Yang 已提交
918 919 920 921 922 923 924 925 926
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
927
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
928 929
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
930 931 932 933 934 935 936 937 938 939
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
940 941 942 943 944 945 946
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
947

D
dzhwinter 已提交
948 949 950
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
951
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
952
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
953
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
954

P
peizhilin 已提交
955
#ifndef _WIN32
D
dangqingqing 已提交
956 957 958
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
959
#endif
P
peizhilin 已提交
960
#endif
Y
Yu Yang 已提交
961

962 963 964 965
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
966
      .value("kAll", platform::ProfilerState::kAll)
967 968 969 970 971 972 973 974 975 976 977 978 979
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
980
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
981
  m.def("reset_profiler", platform::ResetProfiler);
982
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
983 984 985
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
986

987 988
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
989
      .def("has", &ir::Pass::Has)
990 991 992
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
993
           })
994
      .def(
995
          "set",
996 997 998
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
999 1000
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1001 1002 1003 1004
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1005
        optim_graph.release();
F
flame 已提交
1006
      });
1007

X
fix  
Xin Pan 已提交
1008 1009
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1024
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1025

Y
yuyang18 已提交
1026
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1027 1028 1029 1030
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1042 1043 1044

        )DOC");

Y
yuyang18 已提交
1045
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1046 1047 1048 1049 1050
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1061
      .def_property(
1062 1063 1064 1065
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1066 1067 1068 1069
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1070 1071 1072 1073 1074
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1075 1076 1077 1078
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1079 1080 1081 1082 1083 1084 1085
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1097 1098 1099 1100 1101 1102
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1103

Y
yuyang18 已提交
1104
  exec_strategy.def_property(
Y
yuyang18 已提交
1105 1106 1107 1108 1109 1110 1111
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1112 1113
      });

C
chengduo 已提交
1114 1115 1116 1117
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1129
)DOC");
Y
yuyang18 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1146
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1147
            self.reduce_ = strategy;
C
chengduo 已提交
1148 1149 1150 1151 1152 1153 1154
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1155 1156 1157 1158 1159
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1160
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1161
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1162 1163 1164 1165 1166 1167
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1168 1169 1170 1171
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1172
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1173
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1174 1175 1176 1177
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1178 1179 1180 1181 1182 1183
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1184
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1194
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1195 1196
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1197
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1198 1199 1200 1201 1202 1203
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1216 1217 1218 1219 1220 1221
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1222
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1223 1224 1225 1226 1227
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1257 1258 1259 1260
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1261 1262 1263 1264
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1265
      .def_property(
D
dzhwinter 已提交
1266 1267 1268
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1269 1270 1271 1272
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1273
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1274
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1275 1276 1277 1278 1279
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1280 1281

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1282
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1283
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1284
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1285 1286 1287 1288
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1289 1290 1291 1292 1293
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1294 1295 1296 1297
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1298 1299 1300 1301 1302 1303
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1304

1305
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1306
  BindAsyncExecutor(&m);
F
flame 已提交
1307 1308
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1309
  BindInferenceApi(&m);
L
Luo Tao 已提交
1310
}
1311
}  // namespace pybind
1312
}  // namespace paddle