pybind.cc 45.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/ir.h"
53 54
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
55
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
57

58
#include "paddle/fluid/string/to_string.h"
59

D
Dong Zhihong 已提交
60
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
61
#ifndef _WIN32
Y
Yi Wang 已提交
62
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
63
#endif
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
66 67
#endif

M
minqiyang 已提交
68 69
#include "pybind11/stl.h"

70 71 72 73
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
74 75 76
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

77
namespace paddle {
78
namespace pybind {
79
bool IsCompiledWithCUDA() {
80
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
81 82 83 84 85 86
  return false;
#else
  return true;
#endif
}

87
bool IsCompiledWithBrpc() {
88
#ifndef PADDLE_WITH_DISTRIBUTE
89 90
  return false;
#endif
91 92 93 94 95 96

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
97 98
}

Y
update  
Yancey1989 已提交
99
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
100
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
101 102 103 104 105 106
  return true;
#else
  return false;
#endif
}

107
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
108 109 110
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
111
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
112
  m.doc() = "C++ core of PaddlePaddle";
113

114 115 116 117
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

118
  BindException(&m);
Y
Yu Yang 已提交
119

S
sneaxiy 已提交
120
  m.def(
S
sneaxiy 已提交
121
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
122 123 124 125
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
126 127 128
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
129
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
135
      .def("_grad_value", &imperative::VarBase::GradValue)
M
minqiyang 已提交
136
      .def("_grad_ivar",
M
minqiyang 已提交
137
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
138
           py::return_value_policy::reference)
M
minqiyang 已提交
139
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
140
           py::return_value_policy::reference)
141 142 143 144 145 146 147
      .def("wait_device",
           [](const imperative::VarBase &self) {
             platform::DeviceContext *dev_ctx =
                 platform::DeviceContextPool::Instance().Get(
                     self.var_->Get<framework::LoDTensor>().place());
             dev_ctx->Wait();
           })
148 149 150 151 152 153
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
154 155 156 157 158 159
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
160
          });
161

162
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
163 164 165 166 167 168 169 170
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
171 172 173 174 175 176 177
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
178 179 180 181 182 183 184
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
185 186
          py::return_value_policy::reference);

X
Xin Pan 已提交
187
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
188
  layer.def(py::init<>())
X
Xin Pan 已提交
189 190 191
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
192
      });
X
Xin Pan 已提交
193

X
polish  
Xin Pan 已提交
194
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
195
      .def(py::init<>())
X
Xin Pan 已提交
196 197
      .def_static(
          "apply",
X
Xin Pan 已提交
198
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
199 200 201 202
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
203 204 205 206 207
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
208

209 210
  BindTracer(&m);

211 212 213
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
214
      .def("_get_dims",
215
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
216
      .def("_set_dims",
Q
qijun 已提交
217
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
218
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
219
           })
Y
yuyang18 已提交
220
      .def("_set_layout",
D
dzhwinter 已提交
221 222 223
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
224
      .def("_alloc_float",
D
dzhwinter 已提交
225
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
226
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
227
           })
Y
yuyang18 已提交
228
      .def("_alloc_float",
Y
Yu Yang 已提交
229
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
230
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
231
           })
Y
yuyang18 已提交
232
      .def("_alloc_int",
Y
Yu Yang 已提交
233
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
234
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
235
           })
Y
yuyang18 已提交
236
      .def("_alloc_int",
D
dzhwinter 已提交
237
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
238
             self.mutable_data<int>(place);
Q
qijun 已提交
239
           })
Y
yuyang18 已提交
240
      .def("_alloc_int",
C
chengduoZH 已提交
241 242 243
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
244
      .def("_alloc_float",
C
chengduoZH 已提交
245 246 247
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
248 249
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
250
      .def("set", PyCPUTensorSetFromArray<double>)
251
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
252
      .def("set", PyCPUTensorSetFromArray<bool>)
253
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
254
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
255
      .def("set", PyCPUTensorSetFromArray<int8_t>)
256
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
257 258
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
259
      .def("set", PyCUDATensorSetFromArray<double>)
260
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
261
      .def("set", PyCUDATensorSetFromArray<bool>)
262
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
263
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
264
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
265 266 267 268 269 270
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
271
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
272
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
273
#endif
274
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
275 276 277 278
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
279
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
280

X
Xin Pan 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
294
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
295
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
296
     columns, hence [5, 2].
X
Xin Pan 已提交
297 298 299

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
300 301
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
325 326
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
327 328 329 330 331 332 333 334 335 336 337 338 339 340
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
341
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
342 343 344 345 346
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
347
      .def("set_lod",
348
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
349
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
350
             LoD new_lod;
351 352
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
353 354
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
355
             self.set_lod(new_lod);
D
dangqingqing 已提交
356
           })
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
382
      // Set above comments of set_lod.
383 384 385 386 387 388 389 390 391 392 393 394 395
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
396 397
      });

Q
qijun 已提交
398 399 400 401 402 403 404 405 406 407 408
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
409 410
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
411 412
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
413 414 415 416 417 418 419 420 421
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
422
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
423
      .def("rows", [](SelectedRows &self) {
424 425 426 427 428
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
429
      });
Q
qijun 已提交
430

431
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
432 433 434

All parameter, weight, gradient are variables in Paddle.
)DOC")
435
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
436
      .def("set_int",
437 438
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
439 440 441 442 443 444 445
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
446
      .def("get_tensor",
447 448
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
449 450
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
451 452 453
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
454 455 456 457 458
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
459 460 461
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
462
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
463 464 465 466 467
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
468
#endif
Y
Refine  
Yu Yang 已提交
469 470 471 472 473
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
474
           py::return_value_policy::reference);
475

Y
Refine  
Yu Yang 已提交
476
  py::class_<framework::ReaderHolder>(m, "Reader", "")
477
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
478

S
sneaxiy 已提交
479 480 481 482
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
483 484
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
485
      .def("push",
S
sneaxiy 已提交
486
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
487
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
488
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
489
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
490
           })
S
sneaxiy 已提交
491 492 493 494
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
495

S
sneaxiy 已提交
496
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
497
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
498
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
499
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
500 501 502 503 504 505
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
506 507
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
508
              return holder->GetQueue();
S
sneaxiy 已提交
509
            },
S
sneaxiy 已提交
510
        py::return_value_policy::copy);
S
sneaxiy 已提交
511

S
sneaxiy 已提交
512
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
532 533
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
534
      .def("var",
535
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
536
             return self.Var(name);
Y
Yu Yang 已提交
537
           },
538
           py::return_value_policy::reference)
539
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
540
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
541
           py::return_value_policy::reference)
Y
Yu Yang 已提交
542
      .def("drop_kids", &Scope::DropKids);
543

S
sneaxiy 已提交
544 545 546 547 548 549 550 551
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
552 553
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
554 555
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
556 557 558 559 560 561 562 563 564 565
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
566 567
    return ret_values;
  });
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
584
  m.def("prune", [](const ProgramDesc &origin,
585
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
586
    ProgramDesc prog_with_targets(origin);
587
    for (const auto &t : targets) {
588
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
589
    }
590
    proto::ProgramDesc pruned_desc;
591
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
592
    return new ProgramDesc(pruned_desc);
593
  });
594 595 596 597
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
598 599 600
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
601 602
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
603
  // clang-format off
Y
Yu Yang 已提交
604
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
605 606
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
607
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
608 609 610
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
611
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
612
                      -> paddle::platform::DeviceContext* {
613
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
614
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
615
#else
Q
qijun 已提交
616
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
617
#endif
C
chengduoZH 已提交
618 619 620 621 622 623 624 625 626 627 628
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
629
// clang-format on
P
peizhilin 已提交
630
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
631 632
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
633
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
634
      .def(py::init<int>())
D
dzhwinter 已提交
635
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
636

637 638 639
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
640

C
chengduoZH 已提交
641 642 643 644
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
645 646 647 648 649 650 651
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
652
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
653
             self = gpu_place;
C
chengduoZH 已提交
654 655
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
656 657
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
658
      });
Y
Yu Yang 已提交
659

Y
Yu Yang 已提交
660 661 662
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
663
                    proto::OpDesc desc;
Y
Yu Yang 已提交
664 665 666 667 668
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
669
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
670
                  })
671
      .def("run",
672
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
673 674 675
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
676
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
677 678 679 680 681
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
682 683 684 685 686 687 688
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
689 690
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
691
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
692
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
693 694 695 696
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
697

F
fengjiayi 已提交
698
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
699
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
700
      .def("close", &Executor::Close)
S
sneaxiy 已提交
701 702 703 704 705
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
706

D
dzhwinter 已提交
707
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
708
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
709 710
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
711

712
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
713
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
714
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
715 716 717 718 719 720
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
721

722
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
723
  m.def("get_fetch_variable", framework::GetFetchVariable);
724
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
725

X
Xin Pan 已提交
726 727
  m.def("_is_program_version_supported", IsProgramVersionSupported);

728 729 730 731 732
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
733

Y
Yu Yang 已提交
734 735 736 737 738 739 740 741 742
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
743
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
744 745
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
762 763 764
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
765
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
766
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
767
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
768

P
peizhilin 已提交
769
#ifndef _WIN32
D
dangqingqing 已提交
770 771 772
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
773
#endif
P
peizhilin 已提交
774
#endif
Y
Yu Yang 已提交
775

776 777 778 779
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
780
      .value("kAll", platform::ProfilerState::kAll)
781 782 783 784 785 786 787 788 789 790 791 792 793
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
794
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
795
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
796

797 798
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
799 800 801 802 803
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
804 805
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
806 807 808 809 810 811
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
        graph.reset(optim_graph.release());
      });
812

X
fix  
Xin Pan 已提交
813 814
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
815 816 817 818 819 820 821 822 823 824 825 826 827 828
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
829
  // -- python binds for parallel executor.
Y
yuyang18 已提交
830
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
831 832 833 834
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
835 836 837 838 839 840 841 842 843 844 845
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
846 847 848

        )DOC");

Y
yuyang18 已提交
849
  exec_strategy.def(py::init())
Y
yuyang18 已提交
850 851 852 853 854
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
855 856 857 858 859 860 861 862 863 864
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
865
      .def_property(
866 867 868 869
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
870 871 872 873
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
874 875 876 877 878
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
879 880 881 882
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
883 884 885 886 887 888 889
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
890 891 892 893 894 895 896 897 898 899 900
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
901 902 903 904 905 906
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
907

Y
yuyang18 已提交
908
  exec_strategy.def_property(
Y
yuyang18 已提交
909 910 911 912 913 914 915
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
916 917
      });

C
chengduo 已提交
918 919 920 921
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
922 923 924 925 926 927 928 929 930 931 932
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
933
)DOC");
Y
yuyang18 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
950
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
951
            self.reduce_ = strategy;
C
chengduo 已提交
952 953 954 955 956 957 958
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
959 960 961 962 963
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
964
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
965
            self.gradient_scale_ = strategy;
C
chengduo 已提交
966 967 968 969 970 971
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
972 973 974 975
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
976
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
977
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
978 979 980 981
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
982 983 984 985 986 987
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
988
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
989 990 991 992 993 994 995 996 997
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
998
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
999 1000 1001
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
1002 1003 1004 1005 1006 1007
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1020 1021 1022 1023 1024 1025
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1026
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1027 1028 1029 1030 1031
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1032 1033 1034 1035
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1036 1037 1038 1039
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1040 1041 1042 1043
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1044
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1045
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1046 1047 1048 1049 1050
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1051 1052 1053

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1054
                  const std::string &, Scope *, std::vector<Scope *> &,
1055
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1056 1057 1058 1059
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1060 1061 1062 1063 1064
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1065 1066 1067 1068
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1069 1070 1071 1072 1073 1074
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1075

1076
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1077
  BindAsyncExecutor(&m);
F
flame 已提交
1078 1079 1080

  BindGraph(&m);
  BindNode(&m);
L
Luo Tao 已提交
1081
}
1082
}  // namespace pybind
1083
}  // namespace paddle