pybind.cc 53.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
40
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
41
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
44
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/enforce.h"
46
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
50 51
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
52
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/ir.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

89 90 91 92 93 94 95 96
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

97
bool IsCompiledWithBrpc() {
98
#ifndef PADDLE_WITH_DISTRIBUTE
99 100
  return false;
#endif
101 102 103 104 105 106

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
107 108
}

Y
update  
Yancey1989 已提交
109
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
110
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
111 112 113 114 115 116
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
117 118 119 120 121
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

122
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
123 124 125
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
126
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
127
  m.doc() = "C++ core of PaddlePaddle";
128

129 130 131 132
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

133
  BindException(&m);
Y
Yu Yang 已提交
134

S
sneaxiy 已提交
135
  m.def(
S
sneaxiy 已提交
136
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
137 138 139 140
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
141 142 143
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

144 145 146 147 148 149 150
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
151
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
152 153
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
154
      .def("_run_backward",
X
Xin Pan 已提交
155
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
156
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
157
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
158
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
159
      .def("_grad_ivar",
M
minqiyang 已提交
160
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
161
           py::return_value_policy::reference)
M
minqiyang 已提交
162
      .def("_copy_to",
P
Paddle CI 已提交
163
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
164 165 166 167 168
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
169
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
170
      .def("_copy_to",
P
Paddle CI 已提交
171
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
172 173 174 175 176
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
177
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
178
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
179
           py::return_value_policy::reference)
180 181 182 183 184 185 186 187 188 189 190
      .def_property("name",
                    [](const imperative::VarBase &self) { return self.name_; },
                    [](imperative::VarBase &self, const std::string &name) {
                      self.name_ = name;
                    })
      .def_property("block",
                    [](const imperative::VarBase &self) { return self.block_; },
                    [](imperative::VarBase &self, framework::BlockDesc *block) {
                      self.block_ = block;
                    },
                    py::return_value_policy::reference)
191 192 193 194 195 196
      .def_property(
          "persistable",
          [](const imperative::VarBase &self) { return self.persistable_; },
          [](imperative::VarBase &self, const bool persistable) {
            self.persistable_ = persistable;
          })
197 198 199 200 201 202
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
203 204 205
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
206
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
207
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
208
            self.SetStopGradient(stop_gradient);
209
          });
210

211
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
212
      .def(py::init<>())
213 214 215 216
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
217 218 219 220 221 222 223
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
224
          py::return_value_policy::reference)
M
minqiyang 已提交
225 226 227 228 229 230 231 232 233 234
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
235 236 237 238 239 240
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
241 242 243 244 245 246 247
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
248 249
          py::return_value_policy::reference);

X
Xin Pan 已提交
250
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
251
  layer.def(py::init<>())
X
Xin Pan 已提交
252 253 254
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
255
      });
X
Xin Pan 已提交
256

X
polish  
Xin Pan 已提交
257
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
258
      .def(py::init<>())
X
Xin Pan 已提交
259 260
      .def_static(
          "apply",
X
Xin Pan 已提交
261
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
262 263 264 265
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
266 267 268 269 270
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
271

272 273
  BindTracer(&m);

274 275 276
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
277
      .def("_get_dims",
278
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
279
      .def("_set_dims",
Q
qijun 已提交
280
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
281
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
282
           })
Y
yuyang18 已提交
283
      .def("_set_layout",
D
dzhwinter 已提交
284 285 286
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
287
      .def("_alloc_float",
D
dzhwinter 已提交
288
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
289
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
290
           })
Y
yuyang18 已提交
291
      .def("_alloc_float",
Y
Yu Yang 已提交
292
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
293
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
294
           })
Y
yuyang18 已提交
295
      .def("_alloc_int",
Y
Yu Yang 已提交
296
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
297
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
298
           })
Y
yuyang18 已提交
299
      .def("_alloc_int",
D
dzhwinter 已提交
300
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
301
             self.mutable_data<int>(place);
Q
qijun 已提交
302
           })
Y
yuyang18 已提交
303
      .def("_alloc_int",
C
chengduoZH 已提交
304 305 306
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
307
      .def("_alloc_float",
C
chengduoZH 已提交
308 309 310
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
311 312
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
313
      .def("set", PyCPUTensorSetFromArray<double>)
314
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
315
      .def("set", PyCPUTensorSetFromArray<bool>)
316
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
317
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
318
      .def("set", PyCPUTensorSetFromArray<int8_t>)
319
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
320 321
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
322
      .def("set", PyCUDATensorSetFromArray<double>)
323
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
324
      .def("set", PyCUDATensorSetFromArray<bool>)
325
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
326
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
327
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
328 329 330 331 332 333
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
334
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
335
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
336
#endif
337
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
338 339 340 341
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
342
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
343
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
344

X
Xin Pan 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
358
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
359
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
360
     columns, hence [5, 2].
X
Xin Pan 已提交
361 362 363

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
364 365
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
389 390
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
391 392 393 394 395 396 397 398 399 400 401 402 403 404
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
405
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
406 407 408 409 410
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
411
      .def("set_lod",
412
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
413
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
414
             LoD new_lod;
415 416
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
417 418
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
419
             self.set_lod(new_lod);
S
sneaxiy 已提交
420 421 422 423 424 425 426
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
442 443 444 445
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
446
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
447 448
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
449 450

           Args:
451
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
452
           )DOC")
453 454 455 456 457 458 459 460
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
461 462 463 464 465 466 467
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
468
      // Set above comments of set_lod.
469 470 471 472 473 474 475 476
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
477 478 479 480 481
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
482
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
496

Q
qijun 已提交
497 498 499 500 501 502 503 504 505 506 507
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
508 509
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
510 511
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
512 513 514 515 516 517 518 519 520
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
521
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
522
      .def("rows", [](SelectedRows &self) {
523 524 525 526 527
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
528
      });
Q
qijun 已提交
529

530
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
531 532 533

All parameter, weight, gradient are variables in Paddle.
)DOC")
534
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
535
      .def("set_int",
536 537
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
538 539 540 541 542 543 544
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
545
      .def("get_tensor",
546 547
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
548 549
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
550 551 552
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
553 554 555 556 557
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
558 559 560
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
561
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
562 563 564 565 566
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
567
#endif
Y
Refine  
Yu Yang 已提交
568 569 570 571 572
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
573
           py::return_value_policy::reference);
574

Y
Refine  
Yu Yang 已提交
575
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
576
      .def("start", &framework::ReaderHolder::Start)
577
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
578

S
sneaxiy 已提交
579 580 581 582
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
583 584
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
585
      .def("push",
S
sneaxiy 已提交
586
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
587
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
588
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
589
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
590
           })
S
sneaxiy 已提交
591 592 593 594
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
595

S
sneaxiy 已提交
596
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
597 598 599 600 601 602
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
603
        py::return_value_policy::copy);
S
sneaxiy 已提交
604

S
sneaxiy 已提交
605
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
625 626
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
627
      .def("var",
628
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
629
             return self.Var(name);
Y
Yu Yang 已提交
630
           },
S
sneaxiy 已提交
631 632
           py::arg("name"),
           R"DOC(
633
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
634

635
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
636
           current scope, the variable would be created. Otherwise,
637
           return the existing variable.
S
sneaxiy 已提交
638 639

           Args:
640 641
               name (str): the variable name.

S
sneaxiy 已提交
642
           Returns:
643
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
644 645 646 647
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
648
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
649
           its parent scope. Return None if not found.
650

S
sneaxiy 已提交
651 652
           Args:
               name (str): the variable name.
653

S
sneaxiy 已提交
654
           Returns:
655
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
656
           )DOC",
657
           py::return_value_policy::reference)
658
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
659 660 661 662 663 664
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
665
           py::return_value_policy::reference)
S
sneaxiy 已提交
666 667 668 669
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
670

S
sneaxiy 已提交
671 672 673 674 675 676
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
677 678
        R"DOC(
        Create a new scope.
679

S
sneaxiy 已提交
680 681 682
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
683 684
        py::return_value_policy::reference);

Y
Yu Yang 已提交
685 686
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
687 688
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
689 690 691 692 693 694 695 696 697 698
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
699 700
    return ret_values;
  });
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
717
  m.def("prune", [](const ProgramDesc &origin,
718
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
719
    ProgramDesc prog_with_targets(origin);
720
    for (const auto &t : targets) {
721
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
722
    }
723
    proto::ProgramDesc pruned_desc;
724
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
725
    return new ProgramDesc(pruned_desc);
726
  });
727 728 729 730
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
731 732 733
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
734 735
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
736
  // clang-format off
Y
Yu Yang 已提交
737
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
738 739
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
740
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
741 742 743
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
744
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
745
                      -> paddle::platform::DeviceContext* {
746
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
747
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
748
#else
Q
qijun 已提交
749
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
750
#endif
C
chengduoZH 已提交
751 752 753 754 755 756 757 758 759 760 761
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
762
// clang-format on
P
peizhilin 已提交
763
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
764 765
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
766
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
767 768 769 770 771 772 773 774 775 776 777 778
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
779 780 781 782 783
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
784
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
785

786 787
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
788 789 790 791 792
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
793
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
794

C
chengduoZH 已提交
795
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
796
      .def("__init__",
S
sneaxiy 已提交
797
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
798 799 800
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
801
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
802
           })
S
sneaxiy 已提交
803 804 805 806 807 808 809
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
810 811
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
812 813
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
814 815 816 817
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
818 819 820 821 822 823
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
824 825 826 827 828
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
829
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
830
             self = gpu_place;
C
chengduoZH 已提交
831 832
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
833 834
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
835
      });
Y
Yu Yang 已提交
836

Y
Yu Yang 已提交
837 838 839
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
840
                    proto::OpDesc desc;
Y
Yu Yang 已提交
841 842 843 844 845
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
846
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
847
                  })
848
      .def("run",
849
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
850 851 852
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
853
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
854 855 856 857 858
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
859 860 861 862 863 864 865
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
866 867
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
868
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
869
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
870 871 872 873
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
874

F
fengjiayi 已提交
875
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
876
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
877
      .def("close", &Executor::Close)
S
sneaxiy 已提交
878 879 880 881 882
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
883

D
dzhwinter 已提交
884
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
885
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
886 887
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
888

889
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
890
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
891
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
892
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
893 894 895 896 897 898
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
899

900
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
901
  m.def("get_fetch_variable", framework::GetFetchVariable);
902
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
903

X
Xin Pan 已提交
904 905
  m.def("_is_program_version_supported", IsProgramVersionSupported);

906 907 908 909 910
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
911

Y
Yu Yang 已提交
912 913 914 915 916 917 918 919 920
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
921
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
922 923
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
924 925 926 927 928 929 930 931 932 933
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
934 935 936 937 938 939 940
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
941

D
dzhwinter 已提交
942 943 944
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
945
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
946
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
947
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
948

P
peizhilin 已提交
949
#ifndef _WIN32
D
dangqingqing 已提交
950 951 952
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
953
#endif
P
peizhilin 已提交
954
#endif
Y
Yu Yang 已提交
955

956 957 958 959
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
960
      .value("kAll", platform::ProfilerState::kAll)
961 962 963 964 965 966 967 968 969 970 971 972 973
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
974
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
975
  m.def("reset_profiler", platform::ResetProfiler);
976
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
977 978 979
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
980

981 982
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
983
      .def("has", &ir::Pass::Has)
984 985 986
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
987
           })
988
      .def(
989
          "set",
990 991 992
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
993 994
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
995 996 997 998
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
999
        optim_graph.release();
F
flame 已提交
1000
      });
1001

X
fix  
Xin Pan 已提交
1002 1003
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1018
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1019

Y
yuyang18 已提交
1020
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1021 1022 1023 1024
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1036 1037 1038

        )DOC");

Y
yuyang18 已提交
1039
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1040 1041 1042 1043 1044
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1055
      .def_property(
1056 1057 1058 1059
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1060 1061 1062 1063
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1064 1065 1066 1067 1068
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1069 1070 1071 1072
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1073 1074 1075 1076 1077 1078 1079
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1091 1092 1093 1094 1095 1096
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1097

Y
yuyang18 已提交
1098
  exec_strategy.def_property(
Y
yuyang18 已提交
1099 1100 1101 1102 1103 1104 1105
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1106 1107
      });

C
chengduo 已提交
1108 1109 1110 1111
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1123
)DOC");
Y
yuyang18 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1140
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1141
            self.reduce_ = strategy;
C
chengduo 已提交
1142 1143 1144 1145 1146 1147 1148
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1149 1150 1151 1152 1153
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1154
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1155
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1156 1157 1158 1159 1160 1161
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1162 1163 1164 1165
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1166
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1167
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1168 1169 1170 1171
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1172 1173 1174 1175 1176 1177
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1178
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1188
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1189 1190
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1191
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1192 1193 1194 1195 1196 1197
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1210 1211 1212 1213 1214 1215
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1216
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1217 1218 1219 1220 1221
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1236 1237 1238 1239
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1240 1241 1242 1243
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1244
      .def_property(
D
dzhwinter 已提交
1245 1246 1247
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1248
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1249
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1250 1251 1252 1253 1254
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1255 1256

  pe.def(py::init<const std::vector<platform::Place> &,
X
Xin Pan 已提交
1257
                  const std::unordered_set<std::string> &, const std::string &,
X
Xin Pan 已提交
1258
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1259
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1260 1261 1262 1263
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1264 1265 1266 1267 1268
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1269 1270 1271 1272
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1273 1274 1275 1276 1277 1278
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1279

1280
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1281
  BindAsyncExecutor(&m);
F
flame 已提交
1282 1283
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1284
  BindInferenceApi(&m);
L
Luo Tao 已提交
1285
}
1286
}  // namespace pybind
1287
}  // namespace paddle