framework.py 91.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306
        self.block = block
F
fengjiayi 已提交
307
        self.error_clip = error_clip
Y
Yu Yang 已提交
308 309

        if name is None:
Y
Yu Yang 已提交
310
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
311
        is_new_var = False
M
minqiyang 已提交
312
        name = cpt.to_text(name)
M
minqiyang 已提交
313
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
314 315

        if self.desc is None:
M
minqiyang 已提交
316
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
317
            is_new_var = True
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
327
        if shape is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
338
        if dtype is not None:
339
            if not isinstance(dtype, core.VarDesc.VarType):
340
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
341
            if is_new_var:
F
fengjiayi 已提交
342
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
343
            else:
F
fengjiayi 已提交
344
                old_dtype = self.dtype
Q
QI JUN 已提交
345
                if dtype != old_dtype:
Y
Yu Yang 已提交
346 347 348 349 350
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
351 352

        if lod_level is not None:
Y
Yu Yang 已提交
353
            if is_new_var:
354
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
355 356 357 358 359 360 361
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
362 363 364 365 366 367 368 369 370 371 372
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

373 374 375 376 377 378 379 380
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
381
        if _in_imperative_mode():
M
minqiyang 已提交
382
            # record vars in tracer rather than blocks
M
minqiyang 已提交
383 384
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
385
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
386
            self._ivar.desc = self.desc
M
minqiyang 已提交
387 388
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
389 390 391 392 393
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
394

395
    def _numpy(self):
M
minqiyang 已提交
396
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
397
        return np.array(new_ivar.value().get_tensor())
398 399

    def _backward(self):
X
Xin Pan 已提交
400
        self._ivar._run_backward()
401 402

    def _gradient(self):
M
minqiyang 已提交
403
        return np.array(self._ivar._grad_value())
404

X
Xin Pan 已提交
405 406
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
407

408
    def __str__(self):
Y
Yang Yang(Tony) 已提交
409 410
        return self.to_string(True)

F
update  
fengjiayi 已提交
411
    def to_string(self, throw_on_error, with_details=False):
412 413 414 415
        """
        Get debug string.

        Args:
416 417
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
418
            with_details(bool): more details about variables and parameters
419 420
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
421

422 423
        Returns:
            str: The debug string.
424
        """
F
update  
fengjiayi 已提交
425 426
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
427
        protostr = self.desc.serialize_to_string()
428
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
429 430 431 432
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
433 434
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
435
        return res_str
436 437 438

    __repr__ = __str__

W
Wu Yi 已提交
439
    def _set_desc(self, input):
440 441 442 443 444 445 446 447 448
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
449 450
        self.desc = input

451 452
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
453 454 455 456
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
457 458 459

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
460 461 462
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
463

464 465 466 467
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
468 469 470 471
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
472 473
    @property
    def name(self):
M
minqiyang 已提交
474
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
475

T
typhoonzero 已提交
476 477 478 479
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
480 481 482
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
483
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
484 485

    @property
F
fengjiayi 已提交
486 487
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
488 489 490

    @property
    def lod_level(self):
491
        return self.desc.lod_level()
Y
Yu Yang 已提交
492

Y
Yu Yang 已提交
493 494 495 496
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
497
    def _set_error_clip(self, error_clip):
498 499 500 501 502 503 504 505 506
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
507 508
        self.error_clip = error_clip

Y
Yu Yang 已提交
509

F
fengjiayi 已提交
510 511 512
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
513

514 515
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
516 517 518 519
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
520
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
521 522 523 524 525
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
526 527 528 529
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
530 531 532 533 534 535 536 537 538
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
539
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
540 541 542 543 544 545
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
546 547 548 549 550 551 552 553
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
554 555
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
556 557
        return self.op_proto_map[type]

558 559 560 561
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
562
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
563 564
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
565 566
        }

F
fengjiayi 已提交
567

X
Xin Pan 已提交
568
class Operator(object):
569
    """
570 571 572 573 574 575 576
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
577
        type(str): The type of operator. Default None.
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
598
        Block.append_op or Block._prepend_op instead.
599 600 601 602 603 604 605 606 607 608

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
609
    """
610 611 612
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
613 614
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
615
    }
616

Y
Yu Yang 已提交
617 618
    def __init__(self,
                 block,
Y
Yu Yang 已提交
619
                 desc,
Y
Yu Yang 已提交
620 621 622
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
623
                 attrs=None):
Y
Yu Yang 已提交
624
        self.block = block
Y
Yu Yang 已提交
625
        self.desc = desc
G
gongweibao 已提交
626 627 628 629 630
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
631 632 633 634
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
635 636
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
637 638 639

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
640 641
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
642

G
gongweibao 已提交
643 644
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
645

F
fengjiayi 已提交
646 647 648 649 650
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
651 652 653 654 655
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
656
        self.desc.set_type(type)
F
fengjiayi 已提交
657
        proto = OpProtoHolder.instance().get_op_proto(type)
658

659 660 661
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
662 663
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
664
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
665 666
                    return True
            return False
Q
QI JUN 已提交
667

Y
Yang Yang(Tony) 已提交
668 669 670 671 672 673 674
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
675 676 677 678
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
679 680
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
681 682 683
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
684
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
685
                            in_arg_names.append(arg)
686 687
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
688
                        else:
M
minqiyang 已提交
689
                            in_arg_names.append(cpt.to_text(arg.name))
690
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
691 692
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
693

Y
Yu Yang 已提交
694
        if outputs is not None:
695
            for m in proto.outputs:
Q
qingqing01 已提交
696 697 698 699 700 701
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
702
            for out_proto in proto.outputs:
Q
qingqing01 已提交
703 704
                if out_proto.name not in outputs:
                    continue
705 706 707 708
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
709 710
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
711 712 713
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
714
                    out_arg_names.append(cpt.to_text(arg.name))
715 716
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
717

G
gongweibao 已提交
718 719
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
720
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
721
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
722
                attr_name = attr.name
G
gongweibao 已提交
723
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
724
                    continue
G
gongweibao 已提交
725
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
726 727
                self._update_desc_attr(attr_name, attr_val)

728
        self.desc.check_attrs()
M
minqiyang 已提交
729

W
Wu Yi 已提交
730
        if self._has_kernel(type):
Q
QI JUN 已提交
731
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
732
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
733

X
Xin Pan 已提交
734 735 736
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
737

X
Xin Pan 已提交
738
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
739
            if inputs is not None:
X
Xin Pan 已提交
740 741 742 743 744
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
745

X
Xin Pan 已提交
746
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
747
            if outputs is not None:
X
Xin Pan 已提交
748 749 750 751 752
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
753

W
Wu Yi 已提交
754
    def _has_kernel(self, op_type):
755 756
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
757
    def to_string(self, throw_on_error):
758
        """
759 760
        Get debug string.

761
        Args:
762 763
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
764

765 766
        Returns:
            str: The debug string.
767 768

        """
769
        protostr = self.desc.serialize_to_string()
770
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
771 772 773 774
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
775 776 777

    __repr__ = __str__

F
fengjiayi 已提交
778 779 780 781 782
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
783
        """
784
        Get the input arguments according to the input parameter name.
785

786 787
        Args:
            name(str): The input parameter name.
788

789 790 791
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
792
        """
F
fengjiayi 已提交
793 794
        return self.desc.input(name)

W
Wu Yi 已提交
795
    def _rename_input(self, old_name, new_name):
796 797 798 799 800 801 802 803 804 805
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
806
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
807

W
Wu Yi 已提交
808
    def _rename_output(self, old_name, new_name):
809 810 811 812 813 814 815 816 817 818
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
819
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
820

F
fengjiayi 已提交
821 822 823 824
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
825 826 827 828 829 830 831 832
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
833
    def output(self, name):
834
        """
835
        Get output arguments by the output parameter name.
836

837 838
        Args:
            name(str): The output parameter name.
839

840 841 842
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
843
        """
F
fengjiayi 已提交
844 845 846 847 848 849
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

850 851 852 853 854 855 856 857
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
858
    def has_attr(self, name):
859
        """
860 861
        Whether this Operator has the attribute with name or not.

862
        Args:
863
            name(str): the attribute name.
864

865 866
        Returns:
            bool: True if has this attribute.
867 868

        """
F
fengjiayi 已提交
869 870 871
        return self.desc.has_attr(name)

    def attr_type(self, name):
872
        """
873
        Get the type of attribute by attribute's name.
874

875 876
        Args:
            name(str): the attribute name.
877

878 879
        Returns:
            core.AttrType: the attribute type.
880
        """
F
fengjiayi 已提交
881 882
        return self.desc.attr_type(name)

W
Wu Yi 已提交
883
    def _set_attr(self, name, val):
884 885 886 887 888 889 890 891 892 893
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
907 908
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
909 910
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
911
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
912 913 914 915
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
916
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
917

F
fengjiayi 已提交
918 919 920 921 922
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
923
        """
924 925
        Get the attribute by name.

926
        Args:
927
            name(str): the attribute name.
928

929 930
        Returns:
            bool|int|str|float|list: The attribute value. The return value
931 932
            can be any valid attribute type.
        """
F
fengjiayi 已提交
933
        return self.desc.attr(name)
Y
Yu Yang 已提交
934

W
Wu Yi 已提交
935
    def _block_attr_id(self, name):
936
        """
G
gongweibao 已提交
937
        Get the block attribute's id by name.
938

939 940
        Args:
            name(str): the attribute name.
941

942 943
        Returns:
            int: the block index.
944
        """
W
Wu Yi 已提交
945
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
946

W
Wu Yi 已提交
947
    def _block_attr(self, name):
G
gongweibao 已提交
948 949 950 951 952 953 954 955 956 957
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
958
        id = self._block_attr_id(name)
G
gongweibao 已提交
959 960 961
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
962
    def _blocks_attr(self, name):
G
gongweibao 已提交
963 964 965 966 967 968 969 970 971 972
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
973
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
974 975 976 977 978
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
979
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
980 981 982 983 984 985 986 987 988 989
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
990
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
991

J
JiayiFeng 已提交
992
    def all_attrs(self):
F
fengjiayi 已提交
993
        """
994 995 996
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
997
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
998 999 1000 1001
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1002 1003
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1004
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1005 1006 1007
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1008
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1009 1010 1011 1012
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1013 1014
        return attr_map

Y
Yu Yang 已提交
1015

Y
Yu Yang 已提交
1016
class Block(object):
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1031
        use `Program._create_block()` to create a block.
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1046
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1047
        self.desc = program.desc.block(idx)
1048
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1049
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1050
        self.program = program
1051
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1052

1053
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1054 1055
        return self.to_string(True)

F
fengjiayi 已提交
1056 1057
    def to_string(self, throw_on_error, with_details=False):
        """
1058 1059
        Get debug string.

F
fengjiayi 已提交
1060 1061
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1062
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1063
            with_details(bool): more details about variables and parameters
1064 1065
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1066

1067 1068
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1069 1070 1071 1072
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1073
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1074 1075
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1076
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1077
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1078
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1079
            for op in self.ops:
F
fengjiayi 已提交
1080 1081
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1082 1083 1084
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1085 1086
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1087 1088
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1089 1090 1091

    __repr__ = __str__

Y
Yu Yang 已提交
1092 1093
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1094
        return self.desc.parent
Y
Yu Yang 已提交
1095

Y
Yu Yang 已提交
1096 1097 1098 1099
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1100
    def _set_forward_block_idx(self, idx):
1101 1102 1103 1104 1105 1106 1107 1108 1109
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1110
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1111

Y
Yu Yang 已提交
1112 1113
    @property
    def idx(self):
Y
Yu Yang 已提交
1114
        return self.desc.id
Y
Yu Yang 已提交
1115

Q
Qiao Longfei 已提交
1116
    def var(self, name):
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1130
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1131 1132 1133
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1134 1135
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1136
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1137
        return v
Q
Qiao Longfei 已提交
1138

X
Xin Pan 已提交
1139
    def _find_var_recursive(self, name):
1140 1141 1142 1143 1144 1145 1146
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1147
            Variable: the Variable with the giving name. Or None if not found.
1148
        """
Y
Yu Yang 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1173
        return None
Y
Yu Yang 已提交
1174

X
Xin Pan 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1194

M
minqiyang 已提交
1195
    def _clear_block(self):
M
minqiyang 已提交
1196
        assert _in_imperative_mode()
M
minqiyang 已提交
1197

M
minqiyang 已提交
1198 1199
        # TODO(minqiyang): move this to Variable and Operator's __del__
        self.desc._clear_block()
M
minqiyang 已提交
1200

M
minqiyang 已提交
1201 1202
        assert len(self.vars) == 0
        assert len(self.ops) == 0
M
minqiyang 已提交
1203

Q
Qiao Longfei 已提交
1204
    def all_parameters(self):
1205
        return list(self.iter_parameters())
1206

1207
    def iter_parameters(self):
M
minqiyang 已提交
1208
        return (item[1] for item in six.iteritems(self.vars)
1209
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1210

Y
Yu Yang 已提交
1211
    def create_var(self, *args, **kwargs):
1212
        var = Variable(block=self, *args, **kwargs)
1213 1214
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1215
        return var
Y
Yu Yang 已提交
1216

Q
Qiao Longfei 已提交
1217 1218 1219
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1220
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1221 1222
        """
        Rename variable in vars and ops' inputs and outputs
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1235
        """
M
minqiyang 已提交
1236 1237
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1238

T
typhoonzero 已提交
1239
        if not self.has_var(name):
1240
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1241 1242
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1243
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1244 1245 1246 1247 1248 1249 1250
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1251
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1252 1253 1254 1255
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1256
        orig_var_type = v.type
M
minqiyang 已提交
1257
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1258
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1259
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1260
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1261 1262 1263 1264
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1265
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1266 1267 1268 1269 1270 1271 1272
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1273
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1274 1275
            var = Variable(
                self,
T
typhoonzero 已提交
1276
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1277 1278 1279 1280
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1281
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1282 1283 1284
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1285
        self._sync_with_cpp()
1286
        return var
T
typhoonzero 已提交
1287

W
Wu Yi 已提交
1288
    def _remove_var(self, name):
M
minqiyang 已提交
1289
        self._sync_with_cpp()
M
minqiyang 已提交
1290
        self.desc._remove_var(cpt.to_bytes(name))
1291 1292
        del self.vars[name]

Y
Yu Yang 已提交
1293 1294
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1295
        param = Parameter(global_block, *args, **kwargs)
1296
        if 'initializer' in kwargs:
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1317
        return param
Y
Yu Yang 已提交
1318

Y
Yu Yang 已提交
1319
    def append_op(self, *args, **kwargs):
1320 1321 1322 1323 1324 1325
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1326
        op_desc = self.desc.append_op()
1327 1328 1329 1330 1331 1332 1333
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1334 1335 1336 1337 1338 1339

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1340 1341 1342 1343
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1344

1345 1346
        return op

W
Wu Yi 已提交
1347
    def _insert_op(self, index, *args, **kwargs):
1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1357 1358
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1359 1360 1361 1362
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1363
    def _remove_op(self, index):
1364 1365 1366 1367 1368 1369 1370 1371 1372
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1373
        self._sync_with_cpp()
W
Wu Yi 已提交
1374
        self.desc._remove_op(index, index + 1)
1375 1376
        del self.ops[index]

W
Wu Yi 已提交
1377
    def _slice_ops(self, start, end):
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1388
        return self.ops[start:end]
Y
Yancey1989 已提交
1389

W
Wu Yi 已提交
1390 1391
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1392 1393 1394 1395 1396 1397 1398
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1399
        if _in_imperative_mode():
M
minqiyang 已提交
1400 1401 1402 1403
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1404 1405
        return op

W
Wu Yi 已提交
1406
    def _sync_with_cpp(self):
1407
        """
1408 1409
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1410
        """
Q
Qiao Longfei 已提交
1411 1412 1413 1414 1415
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1416
        # sync variables removed from c++ end
1417
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1418
            if not self.desc.find_var(cpt.to_bytes(var)):
1419 1420
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1421
        # sync operators from cpp
1422 1423 1424 1425
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1442 1443 1444 1445 1446

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1447
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1448 1449 1450 1451 1452 1453 1454

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1468 1469 1470 1471
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1472
    def _copy_param_info_from(self, other):
1473
        """
1474 1475
        Copy the information of parameters from the other block.

1476
        Args:
1477 1478 1479 1480 1481
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1482 1483 1484 1485 1486

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1487 1488
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1489
        for p in other.iter_parameters():
1490 1491 1492
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1493
                raise ValueError("_copy_param_info_from should be invoked with "
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1506
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1507
                error_clip=p.error_clip,
1508 1509 1510
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1511
    def _clone_variable(self, var):
1512 1513
        """
        Clone a variable into current block.
1514

1515 1516 1517 1518
        Args:
            var: the variable to be cloned.

        Returns:
1519
            Variable: the new  variable cloned from 'var' in current block.
1520 1521
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1522 1523 1524 1525 1526
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1527 1528
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1529
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1530 1531 1532 1533 1534 1535
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1536 1537
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1538 1539 1540 1541 1542 1543 1544
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1545 1546
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1547
        return ret_var
1548

Y
Yu Yang 已提交
1549

1550 1551
class IrGraph(object):
    """
1552 1553 1554 1555
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1556 1557 1558 1559
    """

    def __init__(self, graph, for_test=False):
        """
1560 1561
        Construct an IrGraph using core.Graph.

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1572 1573 1574
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1575 1576
        return self._for_test

W
WangZhen 已提交
1577
    def all_nodes(self):
1578 1579 1580
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1581
        return {node for node in self.graph.nodes()}
1582 1583

    def all_vars(self):
1584 1585 1586
        """
        Return all variable nodes included in the graph as a set.
        """
1587 1588
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1589
    def all_persistable_vars(self):
1590 1591 1592
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1593 1594 1595 1596 1597 1598 1599
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1600
    def all_ops(self):
1601 1602 1603
        """
        Return all operator nodes included in the graph as a set.
        """
1604 1605
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1606 1607
    def var_node(self, name):
        """
1608 1609
        Get a variable node by name from the graph.

W
WangZhen 已提交
1610 1611
        Args:
            name(str): the name of the variable node.
1612

W
WangZhen 已提交
1613 1614 1615
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1616

W
WangZhen 已提交
1617
        Returns:
1618
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1633
    def create_param_node(self, name, var_type, shape, var_dtype):
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1647 1648 1649 1650 1651 1652 1653 1654
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1669 1670 1671 1672 1673 1674 1675
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1686 1687 1688
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1701 1702
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1703
        for attr, value in six.iteritems(attrs):
1704
            self._update_desc_attr(op_desc, attr, value)
1705
        for input_name, var_nodes in six.iteritems(inputs):
1706 1707 1708 1709
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1710
        for output_name, var_nodes in six.iteritems(outputs):
1711 1712 1713 1714 1715 1716 1717
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1718 1719 1720 1721 1722 1723 1724 1725 1726
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1727 1728 1729
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1730 1731 1732 1733 1734 1735 1736 1737
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1738 1739 1740
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1741 1742 1743 1744 1745 1746 1747
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1748 1749 1750 1751 1752 1753 1754
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1755
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1756
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1757 1758 1759 1760
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1761 1762 1763 1764 1765 1766 1767
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1768
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1769 1770 1771 1772
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1773 1774
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1775
    def has_circle(self):
1776 1777 1778 1779 1780 1781
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1782 1783 1784
        return core.has_circle(self.graph)

    def graph_num(self):
1785 1786 1787 1788 1789 1790
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1791 1792 1793
        return core.graph_num(self.graph)

    def topology_sort(self):
1794 1795 1796 1797 1798 1799 1800 1801
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1802 1803 1804
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1805 1806 1807 1808 1809 1810
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1811 1812
        return core.build_adjacency_list(self.graph)

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1827 1828 1829 1830 1831 1832 1833 1834 1835
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1836 1837 1838 1839 1840 1841
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1842 1843
        ops_num = 0
        for node in self.graph.nodes():
1844
            if node.is_op():
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1871
        convert_pass = core.get_pass('graph_to_program_pass')
1872 1873
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1894
class Program(object):
D
dzhwinter 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1906
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1907 1908

    Returns:
Y
yuyang18 已提交
1909
        A empty program.
D
dzhwinter 已提交
1910 1911

    Examples:
Y
yuyang18 已提交
1912 1913 1914 1915 1916 1917
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1918 1919 1920

    """

1921 1922
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1923 1924
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1925
        self._seed = 0
Y
yuyang18 已提交
1926
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1927
        self._op_role_var = []
T
tangwei12 已提交
1928

1929 1930
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1931
        self._is_distributed = False
1932
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1933
        self._is_chief = False
1934 1935 1936
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1937
        self._endpoints = []
1938 1939 1940
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1941
        self._trainers_endpoints = []
1942
        # the distributed lookup table names
T
tangwei12 已提交
1943
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1944
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1945
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1946
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1947 1948

    @property
D
dzhwinter 已提交
1949
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1950 1951
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1952
        return self.__is_mem_optimized
D
dzhwinter 已提交
1953

D
dzhwinter 已提交
1954 1955 1956
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1957 1958 1959

    @property
    def op_role(self):
Y
yuyang18 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1973 1974 1975
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1976
    def op_role(self, role):
Y
yuyang18 已提交
1977 1978 1979 1980
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1981 1982 1983 1984 1985 1986 1987
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1988 1989 1990 1991
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1992
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1993

S
rename  
sneaxiy 已提交
1994
    @signature_safe_contextmanager
W
Wu Yi 已提交
1995
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1996 1997 1998 1999 2000 2001 2002
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2003
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2004 2005 2006 2007

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2008
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2009 2010
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2011 2012 2013
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2014 2015
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2016 2017 2018 2019
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2020
        yield
X
Xin Pan 已提交
2021 2022
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2023

S
rename  
sneaxiy 已提交
2024
    @signature_safe_contextmanager
X
Xin Pan 已提交
2025
    def _lr_schedule_guard(self, is_with_opt=False):
2026 2027 2028 2029 2030 2031 2032
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2033 2034 2035 2036
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2037 2038 2039 2040 2041 2042 2043

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2044 2045 2046 2047

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2048 2049
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2050 2051
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2052 2053 2054
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2055 2056
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2057

2058
    def __str__(self):
Y
yuyang18 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2068 2069
        return self.to_string(True)

F
fengjiayi 已提交
2070 2071 2072
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2073

F
fengjiayi 已提交
2074
        Args:
Y
yuyang18 已提交
2075 2076
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2077

Y
yuyang18 已提交
2078 2079 2080 2081
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2082 2083
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2084 2085 2086 2087

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2098 2099
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2100 2101
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2102

W
Wu Yi 已提交
2103
    def _get_desc(self):
Y
yuyang18 已提交
2104 2105 2106 2107 2108 2109 2110
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2111 2112
        return self.desc

X
version  
Xin Pan 已提交
2113 2114 2115
    def _version(self):
        return self.desc._version()

2116
    def clone(self, for_test=False):
Y
yuyang18 已提交
2117 2118 2119
        """
        Create a new, duplicated program.

2120

Y
yuyang18 已提交
2121 2122 2123 2124
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2125

Y
yuyang18 已提交
2126 2127 2128 2129
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2130 2131 2132 2133 2134
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2135 2136

        Args:
Y
yuyang18 已提交
2137 2138
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2139

D
dzhwinter 已提交
2140
        Returns:
Y
yuyang18 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2194 2195
        """
        if for_test:
X
Xin Pan 已提交
2196
            p = self._inference_optimize(prune_read_op=False)
2197
        else:
2198
            p = Program()
G
gongweibao 已提交
2199 2200
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2201
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2202 2203 2204
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2205 2206 2207 2208

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2209
            p._sync_with_cpp()
2210

W
Wu Yi 已提交
2211
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2212
        p._copy_data_info_from(self)
2213
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2214
        return p
2215

W
Wu Yi 已提交
2216
    def _prune(self, targets):
Y
yuyang18 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2232 2233 2234 2235 2236 2237
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2238 2239
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2240
                    # and we need to find the current op that generate this
2241 2242 2243 2244 2245 2246 2247 2248
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2249
                    t = t.op
2250 2251 2252 2253
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2254
                else:
2255 2256
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2257 2258 2259 2260

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2261 2262 2263
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2264
        res._sync_with_cpp()
2265 2266
        return res

X
Xin Pan 已提交
2267
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2268
        """
F
fengjiayi 已提交
2269 2270 2271 2272 2273
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2274
        3. change the :code:`is_test`
Y
yuyang18 已提交
2275 2276 2277
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2278
        Args:
X
Xin Pan 已提交
2279 2280
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2281

Y
yuyang18 已提交
2282 2283 2284 2285 2286 2287
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2288
        res = Program()
2289
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2290 2291 2292 2293

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2294
        if prune_read_op:
2295 2296 2297 2298 2299 2300 2301 2302 2303
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2304
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2305 2306

        # change all `is_test` attributes to True
M
minqiyang 已提交
2307
        for i in six.moves.range(res.desc.num_blocks()):
2308
            block = res.desc.block(i)
M
minqiyang 已提交
2309
            for j in six.moves.range(block.op_size()):
2310 2311
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2312
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2313 2314 2315
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2316
        res._sync_with_cpp()
2317 2318
        return res

2319 2320
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2321 2322 2323 2324 2325 2326 2327
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2328
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2329 2330 2331 2332

        Returns:
            Program: A deserialized program desc.
        """
2333 2334
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2335
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2336
        p._sync_with_cpp()
2337
        return p
Y
Yu Yang 已提交
2338

2339
    @staticmethod
2340
    def _construct_from_desc(desc):
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2356 2357
    @property
    def random_seed(self):
Y
yuyang18 已提交
2358 2359 2360 2361 2362 2363
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2364 2365
        return self._seed

Q
qiaolongfei 已提交
2366 2367
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2368 2369 2370
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2371 2372
        return self.desc.num_blocks()

D
dzhwinter 已提交
2373 2374 2375 2376 2377 2378
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2379
    def __repr__(self):
2380
        return self.__str__()
2381

Y
Yu Yang 已提交
2382
    def global_block(self):
Y
yuyang18 已提交
2383 2384 2385
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2386 2387
        return self.blocks[0]

Q
Qiao Longfei 已提交
2388
    def block(self, index):
Y
yuyang18 已提交
2389 2390 2391 2392 2393 2394 2395 2396
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2397 2398
        return self.blocks[index]

Y
Yu Yang 已提交
2399
    def current_block(self):
Y
yuyang18 已提交
2400 2401 2402 2403
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2404 2405
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2406
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2417
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2418 2419 2420
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2421 2422 2423 2424
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2425
    def _rollback(self):
Y
yuyang18 已提交
2426 2427 2428 2429 2430
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2431 2432
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2433
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2444 2445 2446
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2447
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2448

W
Wu Yi 已提交
2449
    def _copy_param_info_from(self, other):
2450
        """
2451
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2452

Y
yuyang18 已提交
2453 2454 2455
        Notes: This is a very low level API. Users should not invoke it
        directly.

2456 2457 2458 2459 2460 2461 2462
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2463
            raise TypeError("_copy_param_info_from should be invoked with "
2464 2465 2466
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2467
            raise ValueError("_copy_param_info_from should be invoked with two "
2468
                             "program, with represent the same topology")
W
Wu Yi 已提交
2469
        self.global_block()._copy_param_info_from(other.global_block())
2470

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2486
        self._parameters_on_pservers = other._parameters_on_pservers
2487
        self._endpoints = other._endpoints
2488
        self._ps_endpoint = other._ps_endpoint
2489 2490
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2491
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2492 2493
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2494

Y
yuyang18 已提交
2495 2496 2497
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2498 2499 2500 2501 2502 2503 2504
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2505
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2506 2507 2508
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2509
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2510
                             "program, with represent the same topology")
2511
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2512 2513 2514
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2515
    def list_vars(self):
Y
yuyang18 已提交
2516 2517 2518 2519 2520 2521
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2522
        for each_block in self.blocks:
2523
            for each_var in list(each_block.vars.values()):
2524 2525
                yield each_var

Y
Yu Yang 已提交
2526

Y
Yu Yang 已提交
2527
class Parameter(Variable):
2528
    """
2529
    Parameter is derived from Variable. A parameter is a persistable
2530
    Variable, and will be updated by optimizers after each iteration.
2531
    The training of a neural network is essentially the updating of
2532 2533
    its parameters.

2534
    Relative to a general Variable, a Parameter has several its own
2535 2536
    member variables:

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2549 2550
    """

Y
Yu Yang 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2561 2562 2563

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2564 2565 2566 2567
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2568 2569
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2570
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2571

W
wanghaoshuang 已提交
2572
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2573

F
fengjiayi 已提交
2574 2575 2576
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2577 2578 2579
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2580

F
update  
fengjiayi 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2595
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2596
            for attr_name in additional_attr:
2597 2598
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2599 2600
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2601 2602 2603 2604
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2605

Y
Yu Yang 已提交
2606
# program is a global instance.
Y
Yu Yang 已提交
2607 2608
_main_program_ = Program()
_startup_program_ = Program()
2609

2610

2611
def default_startup_program():
Y
Yu Yang 已提交
2612
    """
Y
yuyang18 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2622

Y
Yu Yang 已提交
2623 2624 2625
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2626
    return _startup_program_
2627

2628

2629
def default_main_program():
Y
Yu Yang 已提交
2630
    """
Y
yuyang18 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2640

Y
Yu Yang 已提交
2641 2642 2643
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2644
    return _main_program_
Y
Yu Yang 已提交
2645 2646 2647 2648 2649


def switch_main_program(program):
    """
    Switch the main program to a new program.
2650

Y
Yu Yang 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2665
    Switch the startup program to a new program
Y
Yu Yang 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2678
@signature_safe_contextmanager
Y
Yu Yang 已提交
2679 2680
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2681 2682 2683
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2684

Y
Yu Yang 已提交
2685
    Examples:
Y
yuyang18 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2696

Y
Yu Yang 已提交
2697
    Examples:
Y
yuyang18 已提交
2698 2699 2700 2701 2702 2703

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2704

Y
Yu Yang 已提交
2705
    Args:
Y
yuyang18 已提交
2706
        main_program(Program): New main program inside `with` statement.
2707
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2721 2722


W
Wu Yi 已提交
2723
def _get_var(name, program=None):
X
xuwei06 已提交
2724
    """
Y
yuyang18 已提交
2725
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2726

X
xuwei06 已提交
2727 2728 2729
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2730
        If None, default_global_program() will be used.
X
xuwei06 已提交
2731 2732 2733 2734 2735 2736 2737

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2738
    assert isinstance(program, Program)
X
xuwei06 已提交
2739 2740

    return program.global_block().var(name)
2741 2742


S
rename  
sneaxiy 已提交
2743
@signature_safe_contextmanager
P
Paddle CI 已提交
2744
def _imperative_guard(tracer):
2745 2746 2747
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2748

P
Paddle CI 已提交
2749 2750 2751 2752 2753
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2754
@signature_safe_contextmanager
P
Paddle CI 已提交
2755
def _imperative_place_guard(place):
M
minqiyang 已提交
2756 2757 2758
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2759

2760
    yield
M
minqiyang 已提交
2761

M
minqiyang 已提交
2762
    _imperative_current_expected_place_ = tmp_place