framework.py 84.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
Q
qiaolongfei 已提交
27

M
minqiyang 已提交
28
from .. import compat as cpt
29
from .proto import framework_pb2
30
try:
P
peizhilin 已提交
31
    if os.name == 'nt':
P
peizhilin 已提交
32
        import sys
P
peizhilin 已提交
33 34 35 36 37
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

38
    from . import core
39
except ImportError as e:
P
peizhilin 已提交
40
    if os.name == 'nt':
41
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
42
        raise ImportError(
43 44 45 46 47
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
48 49 50 51 52 53
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
54
except Exception as e:
55
    raise e
56
from . import unique_name
Y
Yu Yang 已提交
57

58
__all__ = [
59 60 61 62
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
63
    'name_scope',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

72
_imperative_tracer_ = None
M
minqiyang 已提交
73
_imperative_current_expected_place_ = None
74 75 76 77 78 79 80 81 82


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
83

M
minqiyang 已提交
84
def _current_expected_place():
M
minqiyang 已提交
85
    return _imperative_current_expected_place_
M
minqiyang 已提交
86 87


88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
114
@signature_safe_contextmanager
115 116 117 118 119 120 121 122 123 124 125 126
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
127

128 129 130 131
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
132 133
          with name_scope("attention"):
             ...
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
153 154 155
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
156 157 158 159


def grad_var_name(var_name):
    """
160 161
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
162 163 164
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
165

166
def convert_np_dtype_to_dtype_(np_dtype):
167 168
    """
    Convert the data type in numpy to the data type in Paddle
169

170
    Args:
171
        np_dtype(np.dtype): the data type in numpy.
172

173 174
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
175 176

    """
177 178
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
179
        return core.VarDesc.VarType.FP32
180
    elif dtype == np.float64:
181
        return core.VarDesc.VarType.FP64
182
    elif dtype == np.float16:
183
        return core.VarDesc.VarType.FP16
184
    elif dtype == np.int32:
185
        return core.VarDesc.VarType.INT32
186
    elif dtype == np.int16:
187
        return core.VarDesc.VarType.INT16
188
    elif dtype == np.int64:
189
        return core.VarDesc.VarType.INT64
190
    elif dtype == np.bool:
191
        return core.VarDesc.VarType.BOOL
192 193
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
194 195
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
196 197
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
198
    else:
M
minqiyang 已提交
199
        raise ValueError("Not supported numpy dtype %s" % dtype)
200 201 202


def dtype_is_floating(dtype):
203 204 205
    """
    Check the data type is floating or not.
    Args:
206
        dtype(np.dtype|core.VarDesc.VarType): data type.
207 208 209 210 211
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
212
    if not isinstance(dtype, core.VarDesc.VarType):
213 214
        dtype = convert_np_dtype_to_dtype_(dtype)

215 216 217 218
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
219 220


Y
Yang Yang(Tony) 已提交
221
def _debug_string_(proto, throw_on_error=True):
222 223 224 225 226 227 228 229 230 231 232
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
233
    error_fields = list()
Y
Yang Yang(Tony) 已提交
234
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
235 236
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
237 238 239
    return proto.__str__()


X
Xin Pan 已提交
240
class Variable(object):
241
    """
242 243 244
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
245
    two variables in different blocks could have the same name.
246

247 248
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
249

250
    Most of a Variable's member variables can be setted to be None. It mean
251
    it is not available or will be specified later.
252 253

    Args:
254
        block(Block): The block that the variable belongs to.
255 256
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
257 258
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
259
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
260
            Some kinds of variable do not contain shape, just set it to None.
261 262 263
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
264
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
265
            series data.
266
            Default: None
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
289 290
    """

Y
Yu Yang 已提交
291 292
    def __init__(self,
                 block,
Y
Yu Yang 已提交
293
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
294 295 296 297
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
298
                 capacity=None,
Q
QI JUN 已提交
299
                 persistable=None,
F
fengjiayi 已提交
300
                 error_clip=None,
Y
Yu Yang 已提交
301
                 stop_gradient=False,
F
fengjiayi 已提交
302
                 is_data=False,
Y
Yu Yang 已提交
303
                 **kwargs):
Y
Yu Yang 已提交
304
        self.block = block
F
fengjiayi 已提交
305
        self.error_clip = error_clip
Y
Yu Yang 已提交
306 307

        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
M
minqiyang 已提交
309 310 311 312
        #  print("create var", name)
        #  import sys
        #  sys.stdout.flush()

D
Dong Zhihong 已提交
313
        is_new_var = False
M
minqiyang 已提交
314
        name = cpt.to_text(name)
M
minqiyang 已提交
315
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
316 317

        if self.desc is None:
M
minqiyang 已提交
318
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
319
            is_new_var = True
Y
Yu Yang 已提交
320

Y
Yu Yang 已提交
321 322 323 324 325 326 327 328
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
329
        if shape is not None:
Y
Yu Yang 已提交
330
            if is_new_var:
331
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
340
        if dtype is not None:
341
            if not isinstance(dtype, core.VarDesc.VarType):
342
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
343
            if is_new_var:
F
fengjiayi 已提交
344
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
345
            else:
F
fengjiayi 已提交
346
                old_dtype = self.dtype
Q
QI JUN 已提交
347
                if dtype != old_dtype:
Y
Yu Yang 已提交
348 349 350 351 352
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
353 354

        if lod_level is not None:
Y
Yu Yang 已提交
355
            if is_new_var:
356
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
357 358 359 360 361 362 363
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
364 365 366 367 368 369 370 371 372 373 374
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

375 376 377 378 379 380 381 382
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
383
        self.block.vars[name] = self
Y
Yu Yang 已提交
384
        self.op = None
M
minqiyang 已提交
385
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
386
        self.is_data = is_data
X
Xin Pan 已提交
387
        if _in_imperative_mode():
M
minqiyang 已提交
388 389
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
390
                self._ivar = core.VarBase(name, stop_gradient)
X
Xin Pan 已提交
391
            self._ivar.desc = self.desc
392
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
393

394
    def _numpy(self):
M
minqiyang 已提交
395
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
396
        return np.array(new_ivar.value().get_tensor())
397 398

    def _backward(self):
X
Xin Pan 已提交
399
        self._ivar._run_backward()
400 401

    def _gradient(self):
M
minqiyang 已提交
402
        return np.array(self._ivar._grad_value())
403

X
Xin Pan 已提交
404 405
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
406

407
    def __str__(self):
Y
Yang Yang(Tony) 已提交
408 409
        return self.to_string(True)

F
update  
fengjiayi 已提交
410
    def to_string(self, throw_on_error, with_details=False):
411 412 413 414
        """
        Get debug string.

        Args:
415 416
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
417
            with_details(bool): more details about variables and parameters
418 419
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
420

421 422
        Returns:
            str: The debug string.
423
        """
F
update  
fengjiayi 已提交
424 425
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
426
        protostr = self.desc.serialize_to_string()
427
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
428 429 430 431
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
432 433
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
434
        return res_str
435 436 437

    __repr__ = __str__

W
Wu Yi 已提交
438
    def _set_desc(self, input):
439 440 441 442 443 444 445 446 447
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
448 449
        self.desc = input

450 451
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
452 453 454 455
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
456 457 458

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
459 460 461
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
462

463 464 465 466
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
467 468 469 470
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
471 472
    @property
    def name(self):
M
minqiyang 已提交
473
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
474

T
typhoonzero 已提交
475 476 477 478
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
479 480 481
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
482
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
483 484

    @property
F
fengjiayi 已提交
485 486
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
487 488 489

    @property
    def lod_level(self):
490
        return self.desc.lod_level()
Y
Yu Yang 已提交
491

Y
Yu Yang 已提交
492 493 494 495
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
496
    def _set_error_clip(self, error_clip):
497 498 499 500 501 502 503 504 505
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
506 507
        self.error_clip = error_clip

Y
Yu Yang 已提交
508

F
fengjiayi 已提交
509 510 511
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
512

513 514
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
515 516 517 518
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
519
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
520 521 522 523 524
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
525 526 527 528
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
529 530 531 532 533 534 535 536 537
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
538
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
539 540 541 542 543 544
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
545 546 547 548 549 550 551 552
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
553 554
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
555 556
        return self.op_proto_map[type]

557 558 559 560
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
561
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
562
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
563 564
        }

F
fengjiayi 已提交
565

X
Xin Pan 已提交
566
class Operator(object):
567
    """
568 569 570 571 572 573 574
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
575
        type(str): The type of operator. Default None.
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
596
        Block.append_op or Block._prepend_op instead.
597 598 599 600 601 602 603 604 605 606

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
607
    """
608 609 610
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
611 612
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
613
    }
614

Y
Yu Yang 已提交
615 616
    def __init__(self,
                 block,
Y
Yu Yang 已提交
617
                 desc,
Y
Yu Yang 已提交
618 619 620
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
621
                 attrs=None):
Y
Yu Yang 已提交
622
        self.block = block
Y
Yu Yang 已提交
623
        self.desc = desc
G
gongweibao 已提交
624 625 626 627 628
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
629 630 631 632
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
633 634
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
635 636 637

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
638 639
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
640

G
gongweibao 已提交
641 642
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
643

F
fengjiayi 已提交
644 645 646 647 648
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
649 650 651 652 653
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
654
        self.desc.set_type(type)
F
fengjiayi 已提交
655
        proto = OpProtoHolder.instance().get_op_proto(type)
656

657 658 659
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
660 661
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
662
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
663 664
                    return True
            return False
Q
QI JUN 已提交
665

Y
Yang Yang(Tony) 已提交
666 667 668 669 670 671 672
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
673 674 675 676
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
677 678
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
679 680 681
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
682
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
683
                            in_arg_names.append(arg)
684 685
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
686
                        else:
M
minqiyang 已提交
687
                            in_arg_names.append(cpt.to_text(arg.name))
688
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
689 690
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
691

Y
Yu Yang 已提交
692
        if outputs is not None:
693
            for m in proto.outputs:
Q
qingqing01 已提交
694 695 696 697 698 699
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
700
            for out_proto in proto.outputs:
Q
qingqing01 已提交
701 702
                if out_proto.name not in outputs:
                    continue
703 704 705 706
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
707 708
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
709 710 711
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
712
                    out_arg_names.append(cpt.to_text(arg.name))
713 714
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
715

G
gongweibao 已提交
716 717
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
718
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
719
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
720
                attr_name = attr.name
G
gongweibao 已提交
721
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
722
                    continue
G
gongweibao 已提交
723
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
724 725
                self._update_desc_attr(attr_name, attr_val)

726
        self.desc.check_attrs()
M
minqiyang 已提交
727

W
Wu Yi 已提交
728
        if self._has_kernel(type):
Q
QI JUN 已提交
729
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
730
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
731

X
Xin Pan 已提交
732 733 734
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
735
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
736
            if inputs is not None:
X
Xin Pan 已提交
737 738 739 740 741 742
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
743
            if outputs is not None:
X
Xin Pan 已提交
744 745 746 747 748
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
749

W
Wu Yi 已提交
750
    def _has_kernel(self, op_type):
751 752
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
753
    def to_string(self, throw_on_error):
754
        """
755 756
        Get debug string.

757
        Args:
758 759
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
760

761 762
        Returns:
            str: The debug string.
763 764

        """
765
        protostr = self.desc.serialize_to_string()
766
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
767 768 769 770
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
771 772 773

    __repr__ = __str__

F
fengjiayi 已提交
774 775 776 777 778
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
779
        """
780
        Get the input arguments according to the input parameter name.
781

782 783
        Args:
            name(str): The input parameter name.
784

785 786 787
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
788
        """
F
fengjiayi 已提交
789 790
        return self.desc.input(name)

W
Wu Yi 已提交
791
    def _rename_input(self, old_name, new_name):
792 793 794 795 796 797 798 799 800 801
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
802
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
803

W
Wu Yi 已提交
804
    def _rename_output(self, old_name, new_name):
805 806 807 808 809 810 811 812 813 814
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
815
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
816

F
fengjiayi 已提交
817 818 819 820
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
821 822 823 824 825 826 827 828
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
829
    def output(self, name):
830
        """
831
        Get output arguments by the output parameter name.
832

833 834
        Args:
            name(str): The output parameter name.
835

836 837 838
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
839
        """
F
fengjiayi 已提交
840 841 842 843 844 845
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

846 847 848 849 850 851 852 853
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
854
    def has_attr(self, name):
855
        """
856 857
        Whether this Operator has the attribute with name or not.

858
        Args:
859
            name(str): the attribute name.
860

861 862
        Returns:
            bool: True if has this attribute.
863 864

        """
F
fengjiayi 已提交
865 866 867
        return self.desc.has_attr(name)

    def attr_type(self, name):
868
        """
869
        Get the type of attribute by attribute's name.
870

871 872
        Args:
            name(str): the attribute name.
873

874 875
        Returns:
            core.AttrType: the attribute type.
876
        """
F
fengjiayi 已提交
877 878
        return self.desc.attr_type(name)

W
Wu Yi 已提交
879
    def _set_attr(self, name, val):
880 881 882 883 884 885 886 887 888 889
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
903 904
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
905 906
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
907
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
908 909 910 911
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
912
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
913

F
fengjiayi 已提交
914 915 916 917 918
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
919
        """
920 921
        Get the attribute by name.

922
        Args:
923
            name(str): the attribute name.
924

925 926
        Returns:
            bool|int|str|float|list: The attribute value. The return value
927 928
            can be any valid attribute type.
        """
F
fengjiayi 已提交
929
        return self.desc.attr(name)
Y
Yu Yang 已提交
930

W
Wu Yi 已提交
931
    def _block_attr_id(self, name):
932
        """
G
gongweibao 已提交
933
        Get the block attribute's id by name.
934

935 936
        Args:
            name(str): the attribute name.
937

938 939
        Returns:
            int: the block index.
940
        """
W
Wu Yi 已提交
941
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
942

W
Wu Yi 已提交
943
    def _block_attr(self, name):
G
gongweibao 已提交
944 945 946 947 948 949 950 951 952 953
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
954
        id = self._block_attr_id(name)
G
gongweibao 已提交
955 956 957
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
958
    def _blocks_attr(self, name):
G
gongweibao 已提交
959 960 961 962 963 964 965 966 967 968
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
969
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
970 971 972 973 974
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
975
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
976 977 978 979 980 981 982 983 984 985
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
986
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
987

J
JiayiFeng 已提交
988
    def all_attrs(self):
F
fengjiayi 已提交
989
        """
990 991 992
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
993
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
994 995 996 997
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
998 999
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1000
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1001 1002 1003
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1004
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1005 1006 1007 1008
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1009 1010
        return attr_map

Y
Yu Yang 已提交
1011

Y
Yu Yang 已提交
1012
class Block(object):
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1027
        use `Program._create_block()` to create a block.
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1042
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1043
        self.desc = program.desc.block(idx)
1044
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1045
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1046
        self.program = program
1047
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1048

1049
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1050 1051
        return self.to_string(True)

F
fengjiayi 已提交
1052 1053
    def to_string(self, throw_on_error, with_details=False):
        """
1054 1055
        Get debug string.

F
fengjiayi 已提交
1056 1057
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1058
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1059
            with_details(bool): more details about variables and parameters
1060 1061
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1062

1063 1064
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1065 1066 1067 1068
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1069
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1070 1071
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1072
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1073
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1074
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1075
            for op in self.ops:
F
fengjiayi 已提交
1076 1077
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1078 1079 1080
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1081 1082
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1083 1084
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1085 1086 1087

    __repr__ = __str__

Y
Yu Yang 已提交
1088 1089
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1090
        return self.desc.parent
Y
Yu Yang 已提交
1091

Y
Yu Yang 已提交
1092 1093 1094 1095
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1096
    def _set_forward_block_idx(self, idx):
1097 1098 1099 1100 1101 1102 1103 1104 1105
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1106
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1107

Y
Yu Yang 已提交
1108 1109
    @property
    def idx(self):
Y
Yu Yang 已提交
1110
        return self.desc.id
Y
Yu Yang 已提交
1111

Q
Qiao Longfei 已提交
1112
    def var(self, name):
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1126
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1127 1128 1129
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1130 1131
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1132
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1133
        return v
Q
Qiao Longfei 已提交
1134

X
Xin Pan 已提交
1135
    def _find_var_recursive(self, name):
1136 1137 1138 1139 1140 1141 1142
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1143
            Variable: the Variable with the giving name. Or None if not found.
1144
        """
Y
Yu Yang 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1169
        return None
Y
Yu Yang 已提交
1170

X
Xin Pan 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1190

Q
Qiao Longfei 已提交
1191
    def all_parameters(self):
1192
        return list(self.iter_parameters())
1193

1194
    def iter_parameters(self):
M
minqiyang 已提交
1195
        return (item[1] for item in six.iteritems(self.vars)
1196
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1197

Y
Yu Yang 已提交
1198
    def create_var(self, *args, **kwargs):
1199
        var = Variable(block=self, *args, **kwargs)
1200 1201
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1202
        return var
Y
Yu Yang 已提交
1203

Q
Qiao Longfei 已提交
1204 1205 1206
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1207
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1208 1209
        """
        Rename variable in vars and ops' inputs and outputs
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1222
        """
M
minqiyang 已提交
1223 1224
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1225

T
typhoonzero 已提交
1226
        if not self.has_var(name):
1227
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1228 1229
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1230
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1231 1232 1233 1234 1235 1236 1237
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1238
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1239 1240 1241 1242
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1243
        orig_var_type = v.type
M
minqiyang 已提交
1244
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1245
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1246
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1247
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1248 1249 1250 1251
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1252
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1253 1254 1255 1256 1257 1258 1259
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1260
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1261 1262
            var = Variable(
                self,
T
typhoonzero 已提交
1263
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1264 1265 1266 1267
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1268
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1269 1270 1271
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1272
        self._sync_with_cpp()
1273
        return var
T
typhoonzero 已提交
1274

W
Wu Yi 已提交
1275
    def _remove_var(self, name):
M
minqiyang 已提交
1276 1277
        if not _in_imperative_mode():
            self._sync_with_cpp()
M
minqiyang 已提交
1278
        self.desc._remove_var(cpt.to_bytes(name))
1279 1280
        del self.vars[name]

Y
Yu Yang 已提交
1281 1282
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1283
        param = Parameter(global_block, *args, **kwargs)
1284
        if 'initializer' in kwargs:
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1305
        return param
Y
Yu Yang 已提交
1306

Y
Yu Yang 已提交
1307
    def append_op(self, *args, **kwargs):
1308 1309 1310 1311 1312 1313
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1314
        op_desc = self.desc.append_op()
1315 1316 1317 1318 1319 1320 1321 1322
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1323

M
minqiyang 已提交
1324 1325
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1326 1327 1328 1329
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1330
        if _in_imperative_mode():
1331
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1332 1333
                                       _imperative_current_expected_place_,
                                       stop_gradient)
Y
Yu Yang 已提交
1334

W
Wu Yi 已提交
1335
    def _insert_op(self, index, *args, **kwargs):
1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1345 1346
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1347 1348 1349 1350
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1351
    def _remove_op(self, index):
1352 1353 1354 1355 1356 1357 1358 1359 1360
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
M
minqiyang 已提交
1361 1362
        if not _in_imperative_mode():
            self._sync_with_cpp()
W
Wu Yi 已提交
1363
        self.desc._remove_op(index, index + 1)
1364 1365
        del self.ops[index]

W
Wu Yi 已提交
1366
    def _slice_ops(self, start, end):
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1377
        return self.ops[start:end]
Y
Yancey1989 已提交
1378

W
Wu Yi 已提交
1379 1380
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1381 1382 1383 1384 1385 1386 1387
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1388
        self.ops.insert(0, op)
1389
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1390 1391
        return op

W
Wu Yi 已提交
1392
    def _sync_with_cpp(self):
1393
        """
1394 1395
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1396
        """
Q
Qiao Longfei 已提交
1397 1398 1399 1400 1401
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1402
        # sync variables removed from c++ end
1403
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1404
            if not self.desc.find_var(cpt.to_bytes(var)):
1405 1406
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1407
        # sync operators from cpp
1408 1409 1410 1411
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1428 1429 1430 1431 1432

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1433
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1434 1435 1436 1437 1438 1439 1440

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1454 1455 1456 1457
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1458
    def _copy_param_info_from(self, other):
1459
        """
1460 1461
        Copy the information of parameters from the other block.

1462
        Args:
1463 1464 1465 1466 1467
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1468 1469 1470 1471 1472

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1473 1474
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1475
        for p in other.iter_parameters():
1476 1477 1478
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1479
                raise ValueError("_copy_param_info_from should be invoked with "
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1492
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1493
                error_clip=p.error_clip,
1494 1495 1496
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1497
    def _clone_variable(self, var):
1498 1499
        """
        Clone a variable into current block.
1500

1501 1502 1503 1504
        Args:
            var: the variable to be cloned.

        Returns:
1505
            Variable: the new  variable cloned from 'var' in current block.
1506 1507
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1508 1509 1510 1511 1512
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1513 1514
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1515
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1516 1517 1518 1519 1520 1521
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1522 1523
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1524 1525 1526 1527 1528 1529 1530
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1531 1532
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1533
        return ret_var
1534

Y
Yu Yang 已提交
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
class IrGraph(object):
    """
    IrGraph uses core.Graph as the delegation to accomplish the manipulation.
    """

    def __init__(self, graph, for_test=False):
        """
        Construct the IrGraph using core.Graph.
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
        return self._for_test

    def all_parameters(self):
        param_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                param_nodes.add(node)
        return param_nodes

    def all_vars(self):
        return {node for node in self.graph.nodes() if node.is_var()}

    def all_ops(self):
        return {node for node in self.graph.nodes() if node.is_op()}

    def create_param_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
        for attr, value in attrs.iteritems():
            self._update_desc_attr(op_desc, attr, value)
        for input_name, var_nodes in inputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
        for output_name, var_nodes in outputs.iteritems():
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
        assert old_input_node in self.graph.nodes() and new_input_node in self.graph.nodes() and \
            op_node in self.graph.nodes(), 'Th three arguments must be in the graph nodes.'
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
            'Th two arguments must be in the graph nodes.'
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
        if not isinstance(remove_nodes, set):
            remove_nodes = set(remove_nodes)
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

    def draw(self, save_path, name, marked_nodes=None):
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

        remove_ctr_vars = set()
        ops_num = 0
        for node in self.graph.nodes():
            if node.is_ctrl_var():
                remove_ctr_vars.add(node)
            elif node.is_op():
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        self.safe_remove_nodes(remove_ctr_vars)
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
        convert_pass = core.get_pass('graph_to_program_pass')
        convert_pass.set('program', Program().desc)
        convert_pass.apply(self.graph)
        desc = convert_pass.get_program('program')
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1684
class Program(object):
D
dzhwinter 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1696
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1697 1698

    Returns:
Y
yuyang18 已提交
1699
        A empty program.
D
dzhwinter 已提交
1700 1701

    Examples:
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1708 1709 1710

    """

1711 1712
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1713 1714
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1715
        self._seed = 0
Y
yuyang18 已提交
1716
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1717
        self._op_role_var = []
T
tangwei12 已提交
1718

1719 1720
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1721
        self._is_distributed = False
1722
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1723
        self._is_chief = False
1724 1725 1726
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1727
        self._endpoints = []
1728 1729 1730
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1731
        self._trainers_endpoints = []
1732
        # the distributed lookup table names
T
tangwei12 已提交
1733
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1734
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1735
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1736
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1737 1738

    @property
D
dzhwinter 已提交
1739
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1740 1741
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1742
        return self.__is_mem_optimized
D
dzhwinter 已提交
1743

D
dzhwinter 已提交
1744 1745 1746
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1747 1748 1749

    @property
    def op_role(self):
Y
yuyang18 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1763 1764 1765
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
1766
    def op_role(self, role):
Y
yuyang18 已提交
1767 1768 1769 1770
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1771 1772 1773 1774 1775 1776 1777
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1778 1779 1780 1781
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1782
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1783

S
rename  
sneaxiy 已提交
1784
    @signature_safe_contextmanager
W
Wu Yi 已提交
1785
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1786 1787 1788 1789 1790 1791 1792
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1793
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1794 1795 1796 1797

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1798
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1799 1800
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1801 1802 1803
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1804 1805
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1806 1807 1808 1809
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1810
        yield
X
Xin Pan 已提交
1811 1812
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1813

S
rename  
sneaxiy 已提交
1814
    @signature_safe_contextmanager
X
Xin Pan 已提交
1815
    def _lr_schedule_guard(self, is_with_opt=False):
1816 1817 1818 1819 1820 1821 1822
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1823 1824 1825 1826
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1827 1828 1829 1830 1831 1832 1833

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1834 1835 1836 1837

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1838 1839
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1840 1841
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1842 1843 1844
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1845 1846
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1847

1848
    def __str__(self):
Y
yuyang18 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1858 1859
        return self.to_string(True)

F
fengjiayi 已提交
1860 1861 1862
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1863

F
fengjiayi 已提交
1864
        Args:
Y
yuyang18 已提交
1865 1866
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1867

Y
yuyang18 已提交
1868 1869 1870 1871
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1872 1873
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1874 1875 1876 1877

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1888 1889
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1890 1891
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1892

W
Wu Yi 已提交
1893
    def _get_desc(self):
Y
yuyang18 已提交
1894 1895 1896 1897 1898 1899 1900
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1901 1902
        return self.desc

X
version  
Xin Pan 已提交
1903 1904 1905
    def _version(self):
        return self.desc._version()

1906
    def clone(self, for_test=False):
Y
yuyang18 已提交
1907 1908 1909
        """
        Create a new, duplicated program.

1910

Y
yuyang18 已提交
1911 1912 1913 1914
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1915

Y
yuyang18 已提交
1916 1917 1918 1919
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1920 1921 1922 1923 1924
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1925 1926

        Args:
Y
yuyang18 已提交
1927 1928
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1929

D
dzhwinter 已提交
1930
        Returns:
Y
yuyang18 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1984 1985
        """
        if for_test:
X
Xin Pan 已提交
1986
            p = self._inference_optimize(prune_read_op=False)
1987
        else:
1988
            p = Program()
G
gongweibao 已提交
1989 1990
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1991
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1992 1993 1994
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1995 1996 1997 1998

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1999
            p._sync_with_cpp()
2000

W
Wu Yi 已提交
2001
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2002
        p._copy_data_info_from(self)
2003
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2004
        return p
2005

W
Wu Yi 已提交
2006
    def _prune(self, targets):
Y
yuyang18 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2022 2023 2024 2025 2026 2027
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2028 2029
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2030
                    # and we need to find the current op that generate this
2031 2032 2033 2034 2035 2036 2037 2038
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2039
                    t = t.op
2040 2041 2042 2043
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2044
                else:
2045 2046
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2047 2048 2049 2050

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2051 2052 2053
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2054
        res._sync_with_cpp()
2055 2056
        return res

X
Xin Pan 已提交
2057
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2058
        """
F
fengjiayi 已提交
2059 2060 2061 2062 2063
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2064
        3. change the :code:`is_test`
Y
yuyang18 已提交
2065 2066 2067
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2068
        Args:
X
Xin Pan 已提交
2069 2070
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2071

Y
yuyang18 已提交
2072 2073 2074 2075 2076 2077
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2078
        res = Program()
2079
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2080 2081 2082 2083

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2084
        if prune_read_op:
2085 2086 2087 2088 2089 2090 2091 2092 2093
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2094
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2095 2096

        # change all `is_test` attributes to True
M
minqiyang 已提交
2097
        for i in six.moves.range(res.desc.num_blocks()):
2098
            block = res.desc.block(i)
M
minqiyang 已提交
2099
            for j in six.moves.range(block.op_size()):
2100 2101
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2102
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2103 2104 2105
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2106
        res._sync_with_cpp()
2107 2108
        return res

2109 2110
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2111 2112 2113 2114 2115 2116 2117
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2118
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2119 2120 2121 2122

        Returns:
            Program: A deserialized program desc.
        """
2123 2124
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2125
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2126
        p._sync_with_cpp()
2127
        return p
Y
Yu Yang 已提交
2128

2129
    @staticmethod
2130
    def _construct_from_desc(desc):
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2146 2147
    @property
    def random_seed(self):
Y
yuyang18 已提交
2148 2149 2150 2151 2152 2153
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2154 2155
        return self._seed

Q
qiaolongfei 已提交
2156 2157
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2158 2159 2160
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2161 2162
        return self.desc.num_blocks()

D
dzhwinter 已提交
2163 2164 2165 2166 2167 2168
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2169
    def __repr__(self):
2170
        return self.__str__()
2171

Y
Yu Yang 已提交
2172
    def global_block(self):
Y
yuyang18 已提交
2173 2174 2175
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2176 2177
        return self.blocks[0]

Q
Qiao Longfei 已提交
2178
    def block(self, index):
Y
yuyang18 已提交
2179 2180 2181 2182 2183 2184 2185 2186
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2187 2188
        return self.blocks[index]

Y
Yu Yang 已提交
2189
    def current_block(self):
Y
yuyang18 已提交
2190 2191 2192 2193
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2194 2195
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2196
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2207
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2208 2209 2210
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2211 2212 2213 2214
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2215
    def _rollback(self):
Y
yuyang18 已提交
2216 2217 2218 2219 2220
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2221 2222
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2223
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2234 2235 2236
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2237
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2238

W
Wu Yi 已提交
2239
    def _copy_param_info_from(self, other):
2240
        """
2241
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2242

Y
yuyang18 已提交
2243 2244 2245
        Notes: This is a very low level API. Users should not invoke it
        directly.

2246 2247 2248 2249 2250 2251 2252
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2253
            raise TypeError("_copy_param_info_from should be invoked with "
2254 2255 2256
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2257
            raise ValueError("_copy_param_info_from should be invoked with two "
2258
                             "program, with represent the same topology")
W
Wu Yi 已提交
2259
        self.global_block()._copy_param_info_from(other.global_block())
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2276
        self._parameters_on_pservers = other._parameters_on_pservers
2277
        self._endpoints = other._endpoints
2278
        self._ps_endpoint = other._ps_endpoint
2279 2280
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2281
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2282 2283
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2284

Y
yuyang18 已提交
2285 2286 2287
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2288 2289 2290 2291 2292 2293 2294
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2295
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2296 2297 2298
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2299
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2300
                             "program, with represent the same topology")
2301
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2302 2303 2304
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2305
    def list_vars(self):
Y
yuyang18 已提交
2306 2307 2308 2309 2310 2311
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2312
        for each_block in self.blocks:
2313
            for each_var in list(each_block.vars.values()):
2314 2315
                yield each_var

Y
Yu Yang 已提交
2316

Y
Yu Yang 已提交
2317
class Parameter(Variable):
2318
    """
2319
    Parameter is derived from Variable. A parameter is a persistable
2320
    Variable, and will be updated by optimizers after each iteration.
2321
    The training of a neural network is essentially the updating of
2322 2323
    its parameters.

2324
    Relative to a general Variable, a Parameter has several its own
2325 2326
    member variables:

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2339 2340
    """

Y
Yu Yang 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2351 2352 2353

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2354 2355 2356 2357
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2358 2359
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2360
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2361

W
wanghaoshuang 已提交
2362
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2363

F
fengjiayi 已提交
2364 2365 2366
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2367 2368 2369
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2370

F
update  
fengjiayi 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2385
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2386
            for attr_name in additional_attr:
2387 2388
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2389 2390
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2391 2392 2393 2394
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2395

Y
Yu Yang 已提交
2396
# program is a global instance.
Y
Yu Yang 已提交
2397 2398
_main_program_ = Program()
_startup_program_ = Program()
2399

2400

2401
def default_startup_program():
Y
Yu Yang 已提交
2402
    """
Y
yuyang18 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2412

Y
Yu Yang 已提交
2413 2414 2415
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2416
    return _startup_program_
2417

2418

2419
def default_main_program():
Y
Yu Yang 已提交
2420
    """
Y
yuyang18 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2430

Y
Yu Yang 已提交
2431 2432 2433
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2434
    return _main_program_
Y
Yu Yang 已提交
2435 2436 2437 2438 2439


def switch_main_program(program):
    """
    Switch the main program to a new program.
2440

Y
Yu Yang 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2455
    Switch the startup program to a new program
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2468
@signature_safe_contextmanager
Y
Yu Yang 已提交
2469 2470
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2471 2472 2473
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2474

Y
Yu Yang 已提交
2475
    Examples:
Y
yuyang18 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2486

Y
Yu Yang 已提交
2487
    Examples:
Y
yuyang18 已提交
2488 2489 2490 2491 2492 2493

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2494

Y
Yu Yang 已提交
2495
    Args:
Y
yuyang18 已提交
2496
        main_program(Program): New main program inside `with` statement.
2497
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2511 2512


W
Wu Yi 已提交
2513
def _get_var(name, program=None):
X
xuwei06 已提交
2514
    """
Y
yuyang18 已提交
2515
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2516

X
xuwei06 已提交
2517 2518 2519
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2520
        If None, default_global_program() will be used.
X
xuwei06 已提交
2521 2522 2523 2524 2525 2526 2527

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2528
    assert isinstance(program, Program)
X
xuwei06 已提交
2529 2530

    return program.global_block().var(name)
2531 2532


S
rename  
sneaxiy 已提交
2533
@signature_safe_contextmanager
P
Paddle CI 已提交
2534
def _imperative_guard(tracer):
2535 2536 2537
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2538

P
Paddle CI 已提交
2539 2540 2541 2542 2543
    yield

    _imperative_tracer_ = tmp_trace


S
rename  
sneaxiy 已提交
2544
@signature_safe_contextmanager
P
Paddle CI 已提交
2545
def _imperative_place_guard(place):
M
minqiyang 已提交
2546 2547 2548
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2549

2550
    yield
M
minqiyang 已提交
2551

M
minqiyang 已提交
2552
    _imperative_current_expected_place_ = tmp_place