trainer.py 29.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
F
Feng Ni 已提交
25 26
from PIL import Image, ImageOps, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
27 28

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
39 40
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
41
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
42
import ppdet.utils.stats as stats
43
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
44

45
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
46
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
47 48

from ppdet.utils.logger import setup_logger
49
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
50 51 52

__all__ = ['Trainer']

53 54
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
55 56 57 58 59 60 61

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
62
        self.optimizer = None
63
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
64

G
George Ni 已提交
65
        # build data loader
W
wangguanzhong 已提交
66
        capital_mode = self.mode.capitalize()
67
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
68 69
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
70
        else:
W
wangguanzhong 已提交
71 72
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
73 74 75 76 77

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
78
        if self.mode == 'train':
W
wangguanzhong 已提交
79
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
80 81 82 83
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
84 85
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
86

F
FlyingQianMM 已提交
87
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
88 89
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
90
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
91

K
Kaipeng Deng 已提交
92
        # build model
93 94 95 96 97
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
98

99 100 101
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

102 103
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
104 105
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
106
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
107 108 109 110
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
111

K
Kaipeng Deng 已提交
112 113 114 115 116 117 118 119
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
120 121 122 123 124

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
125
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
126

M
minghaoBD 已提交
127 128 129 130
        if self.cfg.get('unstructured_prune'):
            self.pruner = create('UnstructuredPruner')(self.model,
                                                       steps_per_epoch)

W
wangguanzhong 已提交
131 132
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
133

K
Kaipeng Deng 已提交
134 135 136
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
137
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
138 139 140 141 142 143 144 145 146 147 148

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
149
            if self.cfg.get('use_vdl', False):
150
                self._callbacks.append(VisualDLWriter(self))
151 152
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
153 154 155
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
156 157
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
158
            self._compose_callback = ComposeCallback(self._callbacks)
159
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
160 161
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
162 163 164 165
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
166 167
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
168 169
            self._metrics = []
            return
170
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
171
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
172
            # TODO: bias should be unified
173
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
174 175
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
176
            save_prediction_only = self.cfg.get('save_prediction_only', False)
177 178 179

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
180 181
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
182 183 184 185

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
186
            dataset = self.dataset
187 188 189 190
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
191
                dataset = eval_dataset
192

193
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
194 195 196 197 198 199 200 201 202 203 204
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
205
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
206 207 208 209 210 211 212 213 214
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
215
                        save_prediction_only=save_prediction_only)
216
                ]
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
246 247 248
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
249
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
250
                    class_num=self.cfg.num_classes,
251 252
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
253
            ]
254 255 256 257 258 259 260 261 262
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
263 264 265 266
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
267
            save_prediction_only = self.cfg.get('save_prediction_only', False)
268
            self._metrics = [
269 270 271 272 273 274
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
275
            ]
Z
zhiboniu 已提交
276 277 278 279
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
280
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
281
            self._metrics = [
282 283 284 285 286 287
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
288
            ]
G
George Ni 已提交
289 290
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
291
        else:
292
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
293
                self.cfg.metric))
K
Kaipeng Deng 已提交
294 295 296 297 298 299 300
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
301
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
315
    def load_weights(self, weights):
316 317
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
318
        self.start_epoch = 0
319
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
320 321
        logger.debug("Load weights {} to start training".format(weights))

322 323 324 325 326 327 328
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
329
    def resume_weights(self, weights):
330 331 332 333 334 335
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
336
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
337

K
Kaipeng Deng 已提交
338
    def train(self, validate=False):
K
Kaipeng Deng 已提交
339
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
340
        Init_mark = False
W
wangguanzhong 已提交
341 342
        if validate:
            self.cfg.EvalDataset = create("EvalDataset")()
K
Kaipeng Deng 已提交
343

344
        model = self.model
345
        if self.cfg.get('fleet', False):
346
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
347
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
348
        elif self._nranks > 1:
G
George Ni 已提交
349 350 351 352
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
353 354

        # initial fp16
355
        if self.cfg.get('fp16', False):
356 357
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
358

K
Kaipeng Deng 已提交
359 360 361 362 363 364 365 366 367 368 369 370
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
371
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
372 373 374
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
375
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
376

377 378
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
379
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
380
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
381 382 383
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
384
            model.train()
K
Kaipeng Deng 已提交
385 386 387 388
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
389
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
390
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
391
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
392

393
                if self.cfg.get('fp16', False):
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
411 412
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
413 414
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
415 416 417
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
418
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
419 420 421 422
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
423 424
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
425
                iter_tic = time.time()
K
Kaipeng Deng 已提交
426

427 428
            # apply ema weight on model
            if self.use_ema:
429
                weight = copy.deepcopy(self.model.state_dict())
430
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
431 432
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
433

K
Kaipeng Deng 已提交
434 435
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
436
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
437
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
438 439 440 441 442 443 444 445 446 447 448 449
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
450 451 452 453 454 455
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
456
                with paddle.no_grad():
457
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
458 459
                    self._eval_with_loader(self._eval_loader)

460 461 462 463
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

464 465
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
466
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
467 468 469
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
470 471
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
472
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
473 474 475
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
K
Kaipeng Deng 已提交
476
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
496
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
497 498 499
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
500
    def evaluate(self):
501 502
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
503

C
cnn 已提交
504 505 506 507 508
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
509 510 511 512 513 514
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
515 516
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
517

K
Kaipeng Deng 已提交
518 519 520
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
521
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
522 523
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
524
        results = []
K
Kaipeng Deng 已提交
525 526 527 528
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
529

K
Kaipeng Deng 已提交
530 531
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
532
            for key, value in outs.items():
533 534
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
535 536 537
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
538 539
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
540

541
        for outs in results:
K
Kaipeng Deng 已提交
542 543
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
544

K
Kaipeng Deng 已提交
545 546 547 548
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
549
                image = ImageOps.exif_transpose(image)
550
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
551

552
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
553 554 555 556
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
557 558
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
559 560 561 562
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
563
                    int(im_id), catid2name, draw_threshold)
564
                self.status['result_image'] = np.array(image.copy())
565 566
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
567 568 569 570 571
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
572 573
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
574 575 576 577 578 579 580
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
581 582 583 584 585 586 587 588 589 590 591 592
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
593
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
594
        image_shape = None
595 596
        im_shape = [None, 2]
        scale_factor = [None, 2]
597 598 599 600 601 602
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
603
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
604
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
605
        if image_shape is None:
G
Guanghua Yu 已提交
606
            image_shape = [None, 3, -1, -1]
607

G
Guanghua Yu 已提交
608 609
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
610 611 612
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
613

614 615 616 617 618
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
619

K
Kaipeng Deng 已提交
620 621 622 623 624 625 626
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
627
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
628
            "im_shape": InputSpec(
629
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
630
            "scale_factor": InputSpec(
631
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
632
        }]
G
George Ni 已提交
633 634 635 636 637
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
638 639 640 641 642 643 644 645 646 647 648 649
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
650 651 652 653 654 655 656
        # TODO: Hard code, delete it when support prune input_spec.
        if self.cfg.architecture == 'PicoDet':
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
657 658 659 660 661 662 663 664
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
665

G
Guanghua Yu 已提交
666 667
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
668 669 670

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
671 672 673 674 675
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
676
            self.cfg.slim.save_quantized_model(
677 678
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
679 680
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
681

G
Guanghua Yu 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))